• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Study on divertor heat flux under n=3 and n=4 resonant magnetic perturbations using infrared thermography diagnostic in EAST

    2022-09-06 13:04:26RuirongLIANG梁瑞榮XianzuGONG龔先祖BinZHANG張斌ZhendongYANG仰振東ManniJIA賈曼妮YouwenSUN孫有文QunMA馬群JiayuanZHANG張家源YunchanHU胡云禪JinpingQIAN錢金平andtheEASTTeam
    Plasma Science and Technology 2022年10期
    關(guān)鍵詞:金平馬群張斌

    Ruirong LIANG (梁瑞榮),Xianzu GONG (龔先祖),Bin ZHANG (張斌),Zhendong YANG (仰振東),Manni JIA (賈曼妮),Youwen SUN (孫有文),Qun MA (馬群),Jiayuan ZHANG (張家源),Yunchan HU (胡云禪),Jinping QIAN (錢金平) and the EAST Team

    1 Institute of Plasma Physics,Hefei Institutes of Physical Science,Chinese Academy of Sciences,Hefei 230031,People’s Republic of China

    2 University of Science and Technology of China,Hefei 230026,People’s Republic of China

    3 Tongling University,Tongling 244000,People’s Republic of China

    Abstract Resonant magnetic perturbations (RMPs) with high toroidal mode number n are considered for controlling edge-localized modes (ELMs) and divertor heat flux in future ITER H-mode operations.In this paper,characteristics of divertor heat flux under high-n RMPs(n=3 and 4)in H-mode plasma are investigated using newly upgraded infrared thermography diagnostic in EAST.Additional splitting strike point(SSP)accompanying with ELM suppression is observed under both RMPs with n=3 and n=4,the SSP in heat flux profile agrees qualitatively with the modeled magnetic footprint.Although RMPs suppress ELMs,they increase the stationary heat flux during ELM suppression.The dependence of heat flux on q95 during ELM suppression is preliminarily investigated,and further splitting in the original strike point is observed at q95=4 during ELM suppression.In terms of ELM pulses,the presence of RMPs shows little influence on transient heat flux distribution.

    Keywords: resonant magnetic perturbation (RMP),divertor heat flux,strike point splitting,infrared thermography diagnostic

    1.Introduction

    Long pulse high-performance H-mode operation is the foreseen scenario for future fusion devices like ITER and CFETR.However,edge localized modes (ELMs) existing in H-mode plasma could lead to periodic bursts of tremendous transient heat flux striking the plasma-facing components,especially the divertor targets.Resonant magnetic perturbation(RMP)is an effective means of controlling ELMs and meanwhile manipulating stationary heat flux (SHF) [1-3].Many devices have equipped with RMP coils for investigation on ELM and divertor heat flux control via RMPs,such as ASDEX Upgrade[4-8],DIII-D[3,9-14],EAST[15-20],HL-2A[21,22],JET[23,24],KSTAR [25,26],MAST [27-29],NSTX [30,31],TEXTOR [32-35].Theoretical simulation and experiment results have shown that the imposed external RMP field could modify the topology of edge magnetic field and induce the 2D pattern heat flux on divertor target often appearing as strike point splitting[6,19,27,36].The basic RMP parameters,i.e.RMP coil current (IRMP),toroidal mode number (n),current phase difference between the upper and lower coils (ΔφUL),are proved to play a critical role in redistributing the divertor heat flux[6,23,26,30,37].In previous work,the RMPs have been demonstrated to control the divertor heat flux.On ASDEX Upgrade,a wider divertor SHF distribution has been observed with rotating RMP under toroidal mode number n=2 in L-mode plasmas [6].On DIII-D,a mix of n=2 rotating RMP and n=3 static RMP has successfully demonstrated divertor heat flux control during ELM suppression in H-mode discharges[13].These results shed a light on the development of divertor heat flux control technology.However,most of the previous experiment results are implemented under low-n RMPs.Considering low-n RMPs could easily lead to lock-mode,high-n RMPs (n ≥ 3) are more preferred for ELM and divertor heat flux control in future ITER H-mode operations [1],and divertor heat flux pattern under high-n RMPs in H-mode plasmas still need more investigations.

    EAST is a supper-conducting tokamak dedicated to long pulse H-mode operation and has equipped with an RMP system that can generate an RMP spectrum with a high toroidal mode number (n=3 or 4) and infrared (IR) thermography diagnostic system that allows investigation of the divertor heat flux pattern.In this work,divertor heat flux characteristics under n=3 and n=4 RMPs are investigated using newly upgraded IR thermography diagnostic on EAST.

    The structure of this paper is as follows.In section 2,the RMP system,IR diagnostic on EAST and heat flux calculation code are introduced.In section 3,experiment results on divertor heat flux under n=3 and n=4 RMPs are analyzed.Section 4 gives the summary.

    2.Experiments setup

    Two arrays of in-vessel RMP coils have been symmetrically installed on the upper and lower parts of EAST device to generate 3D perturbated magnetic fields,as shown in figure 1(a).The upper array coils (named as U1-U8) and lower array coils (named as L1-L8) are evenly distributed along the toroidal direction,with each coil consisting of 4 turns.These sixteen RMP coils are controlled by a flexible power supply system enabling various RMP operation parameters.The maximum amplitude of RMP coil current IRMPcan reach up to 3 kA(12 kAt)in DC,or AC mode commonly used to obtain rotating RMPs.The RMP coil arrays can form perturbated magnetic fields with toroidal mode number n from 1 to 4.RMP poloidal spectrum is then controlled by varying the phase difference between upper and lower coils defined as ΔφUL=φU?φL,whereφUandφLrepresent the current phase of upper and lower coils respectively [19].In the cases of n ranging from 1 to 3,theΔφULcan be scanned from 0° to 360° or fixed at a specific value.In the case of n=4,ΔφULcan only be set as 0° or 180° due to the limit number of RMP coils.In this work,static RMPs with n=3 and n=4 are applied.

    The preferred diagnostic for surface temperature measurement on divertor target is infrared (IR) thermography.A set of IR/Visible integrated endoscope diagnostic systems is installed at the midplane of EAST on port G as shown in figure 2.The system monitors in the clockwise direction and covers the ports from E to B,as indicated by the red shaded area in figure 2.The optic is designed with a large field of view (FOV) of 49.5° × 62° and is capable to monitor the upper and lower divertor targets simultaneously,as shown in figure 3(a).The IR camera is a TELOPS TS-IR MW MCT model,with a sampling rate of 115 Hz at a full frame size of 640 × 512 and up to 4.8 kHz at a reduced frame of 72 × 40 pixels[38].The working bandwidth of the IR camera is 3-4.9 μm with a temperature measurement range of room temperature(RT)to 2500°C.Recently,the IR diagnostic system has been upgraded by developing a dynamic foveated imager system which improves the local spatial resolution from 4 mm pixel?1to 2 mm pixel?1on divertor targets[39].In this study,the IR camera was set in a small window of 184 × 160 pixels with a sampling rate of 1 kHz viewing on the upper-outer(UO) diverter through the foveated imager.As figure 3(a)shows,the location of the dynamic foveated imager was fixed at the view of divertor on ports D and E,covering five ITERlike tungsten divertor cassettes named D4,D5,E1,E2 and E3,and the D5 cassette(at a toroidal angleφ=88 °)is chosen for the following heat flux analysis.The geometry of the EAST divertor is shown in figure 3(b) with a red plotting scale ranging from 0 to 250 mm.Ldivin millimeter represents the poloidal distance from one point on the target to divertor corner (Ldiv=0 mm).

    In order to get a reliable surface temperature measurement of divertor target,careful calibration of IR parameters has been carried out using a blackbody furnace with a temperature range of RT to 700 °C,indicating that the transmittance of the optical path is 0.19 at the central area of foveated imager.The emissivity of the tungsten monoblock surface at the upper divertor is 0.55,which is calibrated during vacuum baking with the help of the thermocouple system on EAST.

    Divertor heat flux profile at one fixed toroidal angle is then calculated by a newly self-developed computation code using surface temperature obtained by the IR camera based on the finite element method,which is dedicated to EAST W/Cu monoblock divertor with active water-cooling.The reliability of this code was verified by comparing the calculation results with ANSYS under the same condition [40].During the plasma shots,the formation of a thin layer on the divertor surface due to depositions not only affects the temperature measurement accuracy of IR system but also reduces the thermal conductivity of divertor target.For evaluating the influence of this thin layer,a heat transmission coefficient(so called alpha factor)is introduced into the heat flux calculation code,with its value determined by a criterion of the energy deposition equilibrium,i.e.the energy deposition on the divertor target should keep constant after the discharge terminated,since no more heat flux from plasma would deposit on divertor.The alpha value of 12 500 W m?2K?1satisfies the criterion and is used for the following heat flux calculations.

    3.Divertor heat flux characteristics under RMP

    As is known thatq95and RMPΔφULare important parameters in satisfying the resonant condition for RMP suppressing ELMs.In experiments,ELM suppression usually occurs at some specificq95andΔφULwindows[41].In order to find the resonant condition for ELM suppression,EAST shots#91553,#91557,#91554 and#91558 were operated with scannedq95from 4 to 3.5 and varied RMP ΔφUL,with very similar plasma conditions.In these shots,RMPs were set with the same toroidal mode number n=3 and the same amplitude of coil current IRMP=3 kA,however,phase differences between upper and lower coilsΔφULwere pre-set as 0°,90°,180° and 270°,respectively.Among these shots,ELM suppression was only observed in shot #91554 with RMPΔφUL=180° atq95≈3.64.Plasma parameters for these shots were very similar,taking shot #91554 as an example,it was operated in H-mode with upper single null configuration indicated by the equilibrium reconstruction shown in figure 3(b) and with toroidal magnetic field BT=1.6 T.Other parameters are shown in figure 4:safety factor at 95%normalized poloidal fluxq95scanned from 4 to 3.5 as plasma current Ipramped up from 420 to 480 kA;line averaged density ne~3-4.3 (1019m?3);plasma stored energy WMHD~126-153 kJ;RMP application from 3 to 7 s with n=3,IRMP=3 kA,ΔφUL=180°;plasma heating power of 0.65 MW lower hybrid wave and 1.42 MW neutral beam.

    As RMP was switched on,there was a slight descent in plasma density neand stored energy WMHDdue to RMP pump-out effect[2,42].However,as plasma evolved,plasma density and stored energy gradually increased and recovered to the level before RMP application.ELMs were mitigated during the whole RMP application,appearing as the increase in ELM frequency and decrease in ELM amplitude,indicated by the Dαsignals shown in figure 4(d).In terms of ELM suppression,it was observed whenq95decreased to around 3.64,confirmed by the elimination of pulses in Dαsignals from 6340 to 6380 ms.The heat flux during the ELM suppression period is shown in figure 5.During the ELM suppression period,a splitting strike point (SSP) appeared at the position around 120-140 mm on divertor,as seen in figure 5(a).While no SSP was found at the same position at nearby inter-ELM phases(with very closeq95~3.64)before or after ELM suppression.

    The comparison between heat flux profiles at ELM suppression and nearby inter-ELM phases is shown in figure 6(a).Compared to inter-ELM heat flux,heat flux during ELM suppression increased at the original strike point(OSP) by a factor of 37%.Besides,there appeared an SSP at the position around 120-140 mm,while no SSP was found at the same position in inter-ELM heat flux profiles.During RMP application,the formation of magnetic lobes structure is responsible for the strike point splitting in particle flux and heat flux[6,19,23].To qualitatively understand the splitting heat flux pattern,a magnetic footprint modeling in a vacuum paradigm is implemented by field line tracing code TOP2D[18].In the modeling,we useρminto describe the magnetic footprint.Here,ρminrepresents the normalized radius of the minimum flux surface reached by each field line in the radial coordinate of the magnetic surface,and the penetration depth of the magnetic field line is defined as 1 ?ρminwhich represents the distance of minimum flux surface to last closed flux surface (LCFS,ρ=1).So,1 ?ρmin> 0represents the case that the field line penetrates deep inside the LCFS to the main plasma,and 1 ?ρmin<0represents a shallow penetration in the scrape-off layer.Figure 6(b) shows the spiral magnetic footprint produced by n=3 RMP on divertor target in shot #91554 at time slice of 6.38 s during the ELM suppression period.The black dashed line indicates the IR view at a toroidal angleφ=88 ° (position of D5 cassette) on divertor.Theoretically,the spiral structure of the magnetic footprint induces a 2D heat flux pattern on divertor target.From the fixed angle view of the IR camera,this manifests as the splitting in strike point.As shown in figure 6(c),the splitting heat flux profile agrees qualitatively with the magnetic footprint presented as field line penetration depth 1 ?ρminextracted from a toroidal angleφ=88°.

    Figure 1.Layout of RMP coil system on EAST,showing the configuration of RMP with n=4 andΔφUL=180°.

    Figure 2.Top view of EAST ports from A to P and the installation of the IR camera on port G.The toroidal angleφ is defined as positive in the counterclockwise direction,andφ=0°is defined as the middle of ports A and P;the IR camera is installed at the midplane of port G and views in the clockwise direction,the field of view is indicated by the red shaded area.

    Figure 3.(a) The field of view of the IR diagnostic system,(b) the plotting scale in red indicates the length (Ldiv) of one point on target to divertor corner;the magnetic surface in blue represents the equilibrium reconstruction in shot #91554 with the upper single null configuration at time slice of 6.38 s during the ELM-free period.

    Figure 4.Time traces of plasma parameters in shot #91554: (a)plasma current (black solid curve) ramping up from 420 to 480 kA meanwhile q95 (red dashed curve) ramping down from 4 to 3.5,(b)line averaged density,(c)plasma stored energy,(d)RMP application from 3 to 7 s with IRMP=3 kA,n=3,ΔφUL=180°;Dα signals indicate the ELM suppression period from 6340 to 6380 ms,(e)heating power of LHW and NBI.

    Figure 5.Time traces of divertor heat flux and Dα signals for shot#91554,revealing a short ELM-free phase from 6340 to 6380 ms:(a)time evolution of contour of divertor heat flux;the white dashed line indicates the strike point position calculated from EFIT[43],(b)divertor peak heat flux reaches around 4 MW m?2 at ELM pulse and around 1.2 MW m?2 during ELM-free phase,(d)Dα signals indicate ELM pulses and ELM-free period.

    Figure 6.(a) Comparison of heat fulx profiles in shot #91554 revealing the further strike point splitting during ELM suppression,(b)magnetic footprint at time slice 6.38 s in shot#91554 with n=3 RMP and q95≈3.64,the black dashed line shows the IR view at a toroidal angleφ=88° of divertor,(c) a qualitative agreement between the shapes of magnetic footprint (red dashed curve) and splitting heat flux profile (blue solid curve).

    Figure 7.Evolution of plasma and divertor heat flux during RMP application in shot #91535.(a) Plasma current (black solid curve)ramping up from 420 to 470 kA during the period of 3-5 s and meanwhile q95(red dashed curve)ramping down from 3.9 to 3.5,(b)plasma stored energy (black solid curve) and line averaged density(red dashed curve),(c) RMP with n=4,IRMP=3 kA and ΔφUL=180°was applied from 2.5 to 7.0 s,Dα signals indicate the periods of ELM suppression,(d) time evolution of contour of divertor heat flux;the white dashed line indicates the strike point position calculated from EFIT [43],(e) divertor peak heat flux.

    Figure 8.(a)Heat flux profiles comparison in shot#91535 revealing the further strike point splitting during ELM suppression,(b)magnetic footprint at time slice of 5.82 s under RMP application

    Figure 9.Heat flux profiles during ELM suppression at different q95 windows.

    Figure 10.Comparison of transient heat flux distribution at ELM pulses with and without RMP.

    This phenomenon of further splitting in heat flux profile synchronous with ELM suppression was also observed in shot#91535 under n=4 RMP application.In this shot,RMP was applied from 2.5 to 7.0 s with parameters:n=4,IRMP=3 kA andΔφUL=180°.It has the same heating power as shot#91554,other plasma parameters are shown in figure 7.The plasma current ramped up from 420 to 470 kA in time duration of 3-5 s (then kept constant at 470 kA until 7.5 s),meanwhile,theq95ramped down from 3.9 to around 3.5,as shown in figure 7(a).ELMs were suppressed asq95ramped down to around 3.5 for several time intervals from 4.8 to 6.4 s,indicated by the elimination of the pulses in both Dαsignals in figure 7(c)and heat flux in figure 7(e).The plasma density and stored energy increased during ELM suppression periods from 4.8 to 6.4 s and decreased when ELM suppression was lost.As RMP was switched off at 7.0 s,plasma density and stored energy recovered,and at the same time,ELMs became larger indicated by the increase in the amplitude of Dαsignals and also the ELM peak heat flux in figure 7(e).As seen in figure 7(d),accompanied by ELM suppression,there existed an obvious additional SSP at the position around 160-180 mm on divertor target.The white dash line indicates the strike point position calculated from EFIT [43].Note that the time scale in figure 7(d) is too large to show the details of heat flux of the ELM pulses as figure 5 does.

    In order to investigate the effect of high-n RMP application and also ELM suppression on heat flux,heat flux profiles at time slices of 5.820 s (ELM suppression),6.606 s (inter-ELM with RMP) and 7.048 s (inter-ELM without RMP) are selected to compare in figure 8.At these time slices,q95are very close and comparable since Ipis kept constant from 5 to 7.5 s.As reported in the case of low-n RMP application,although the application of RMPs controls (mitigates or suppresses) the ELMs and simultaneously enlarges the heat deposition width,on the other hand,it increases the amplitude of the SHF[26].In terms of high-n RMP application in EAST,a similar phenomenon is observed.As shown in figure 8(a),the inter-ELM heat flux under RMP increased compared to that without RMP: there appeared an SSP at the position of 170-220 mm,besides,the heat flux at OSP also increased.Compared to inter-ELM heat flux under RMP,the heat flux during ELM suppression was even larger:the heat flux at OSP increased,and there was further splitting in the SSP presenting as the heat flux at positions from 160 to 180 mm increased sharply.As a result,although transient heat flux induced by ELMs is mitigated or suppressed by RMPs,as a cost,the SHF increases.Additionally,noting that the SSP has a considerable amplitude nearly the same as the OSP,although the splitting itself has enlarged the heat deposition area,it produces another local heat peak.One possible solution for relieving the impact of local heat peak is to apply rotating RMPs which will be investigated detailly in future work.

    The magnetic footprint by n=4 RMP at a time slice of 5.82 s during ELM suppression is given in figure 8(b),and a comparison between shapes of magnetic footprint and heat flux profile is shown in figure 8(c).The SSP in heat flux at the position of 160-220 mm agrees qualitatively with the magnetic footprint.

    In this paragraph,the preliminary investigation into the effect ofq95on heat flux pattern in H-mode plasma during ELM suppression under RMP is presented.In shot #91458,RMP parameters were set as n=4,IRMP=3 kA and ΔφUL=180°,theq95ramped down from 4 to 3.6,and ELM suppression was obtained at threeq95windows(around 4,3.8 and 3.7).The heat flux profiles during ELM suppression at differentq95windows are shown in figure 9.All three profiles show a secondary strike point in the position of 160 to 220 mm (or farther).Asq95decreased,the secondary strike point moved in the direction to divertor corner.This phenomenon is similar to what was reported in JET in L-mode plasma under n=2 RMP application thatq95scan could drive the magnetic lobes moving in a toroidal direction and resulted in the displacement of the SSP viewed by a fixed IR camera [23].Except for the geometrical effect in heat flux,the splitting pattern could be also influenced byq95scan.Atq95=4,further splitting occurred at OSP,while atq95=3.7and 3.8,no similar phenomenon was observed.

    As shown above,the distribution of divertor SHF is effectively influenced by RMP application,and the induced SSP undertakes a considerable part of the heat flux.However,in terms of transient heat flux caused by ELM pulses,no significant changes in heat flux distribution were observed although RMPs (n=3 or n=4) were applied.As shown in figure 10,most portion of heat flux condenses at the OSP under both n=3 and n=4 RMPs,similar to the situation without RMPs.

    4.Summary

    Taking advantage of the upgraded infrared thermography diagnostic with a dynamic foveated imager system and the newly developed heat flux calculating code dedicated to W/Cu monoblock divertor with active water-cooling on EAST,characteristics of divertor heat flux in H-mode plasma under high-n RMPs(n=3 and 4)were investigated.The additional strike point splitting accompanied by ELM suppression is observed under RMPs with both n=3 and n=4,implying a significant change in divertor heat flux distribution under ELM suppression.The SSP in heat flux agrees qualitatively with the modeled magnetic footprint.Although RMPs suppress the ELMs,as a cost,they increase the SHF during ELM suppression.The dependence of heat flux onq95during ELM suppression is preliminarily investigated.Further splitting in OSP is observed atq95=4during ELM suppression.In terms of ELM pulse,the presence of RMPs both n=3 and n=4 shows little influence on transient heat flux distribution,most portion of heat flux condenses at the OSP,similar to the situation without RMP.The upgrade of IR diagnostics is still ongoing for a better investigation into divertor heat flux patterns under RMP applications,and further analysis in detailed physics will be proceeded by performing dedicated simulation via EMC3-EIRENE modeling [44,45].

    Acknowledgments

    This work was supported by the National Key Research and Development Program of China (No.2017YFA0402500),the National MCF Energy R&D Program of China (No.2019YFE03040000),National Natural Science Foundation of China (Nos.12005262 and 11975274),the Foundation of President of Hefei Institutes of Physical Science,CAS (No.YZJJ2018QN8),the Anhui Provincial Natural Science Foundation (No.2108085J06),the Users with Excellence Program of Hefei Science Center CAS (Nos.2021HSC-UE018 and 2020HSC-UE011),External Cooperation Program of Chinese Academy of Sciences (No.116134KYSB20180035),Science Foundation of Institute of Plasma Physics,Chinese Academy of Sciences (No.DSJJ-2021-04).

    猜你喜歡
    金平馬群張斌
    SiC trench MOSFET with dual shield gate and optimized JFET layer for improved dynamic performance and safe operating area capability
    夕陽家園
    金秋(2022年10期)2022-11-25 16:28:12
    Rapid identification of volatile organic compounds and their isomers in the atmosphere
    Effect of anode area on the sensing mechanism of vertical GaN Schottky barrier diode temperature sensor
    一路有你都是歌
    開心
    失 眠
    《花之戀》
    Monolithic all- fiber mid-infrared supercontinuum source based on a step-index two-mode As2S3 fiber?
    準(zhǔn)噶爾盆地的下午
    文學(xué)港(2019年5期)2019-05-24 14:19:42
    亚洲第一电影网av| 亚洲最大成人中文| 亚洲一区高清亚洲精品| av视频在线观看入口| 九色成人免费人妻av| 久久人人精品亚洲av| 999久久久精品免费观看国产| 在线观看66精品国产| 看片在线看免费视频| 脱女人内裤的视频| 中文字幕最新亚洲高清| 99热这里只有精品一区 | 国产日本99.免费观看| 欧美成狂野欧美在线观看| 欧美在线一区亚洲| 亚洲九九香蕉| 久久久久久久午夜电影| 亚洲av日韩精品久久久久久密| 深夜精品福利| 岛国视频午夜一区免费看| 无遮挡黄片免费观看| 12—13女人毛片做爰片一| 久久久精品欧美日韩精品| 88av欧美| 99热只有精品国产| 搡老岳熟女国产| 日韩欧美国产一区二区入口| 亚洲一区二区三区色噜噜| 麻豆成人av在线观看| 一二三四在线观看免费中文在| 又黄又爽又免费观看的视频| 在线十欧美十亚洲十日本专区| 国产欧美日韩精品一区二区| 国产精品永久免费网站| 久久这里只有精品19| 男插女下体视频免费在线播放| 国产高清有码在线观看视频| 观看美女的网站| 国产aⅴ精品一区二区三区波| 国产亚洲欧美98| av女优亚洲男人天堂 | 99久久成人亚洲精品观看| xxxwww97欧美| tocl精华| 观看美女的网站| 国产精品爽爽va在线观看网站| 99热只有精品国产| 国产精品久久久久久精品电影| 人人妻人人澡欧美一区二区| 12—13女人毛片做爰片一| 亚洲国产精品合色在线| 在线观看舔阴道视频| 午夜精品一区二区三区免费看| 中文字幕最新亚洲高清| 欧美成人免费av一区二区三区| 热99re8久久精品国产| 午夜免费激情av| 色精品久久人妻99蜜桃| 免费大片18禁| 亚洲国产欧洲综合997久久,| 成人三级黄色视频| 99久久久亚洲精品蜜臀av| 一个人看的www免费观看视频| 亚洲va日本ⅴa欧美va伊人久久| 美女被艹到高潮喷水动态| 国产高清三级在线| 欧美3d第一页| 在线看三级毛片| cao死你这个sao货| 嫩草影院精品99| 亚洲熟妇熟女久久| 丰满人妻一区二区三区视频av | 一本综合久久免费| 一区二区三区国产精品乱码| 人妻丰满熟妇av一区二区三区| 一本精品99久久精品77| 观看免费一级毛片| 欧美日韩亚洲国产一区二区在线观看| 欧美黄色淫秽网站| 久99久视频精品免费| 一级作爱视频免费观看| 男人和女人高潮做爰伦理| 久久久色成人| 毛片女人毛片| 成人无遮挡网站| 久久天躁狠狠躁夜夜2o2o| 欧美成人性av电影在线观看| а√天堂www在线а√下载| 免费大片18禁| 观看美女的网站| 亚洲七黄色美女视频| 日韩欧美免费精品| 国产一区二区三区在线臀色熟女| 免费高清视频大片| 日韩三级视频一区二区三区| www.999成人在线观看| 日本 欧美在线| 国产成人精品无人区| 69av精品久久久久久| 99riav亚洲国产免费| 观看美女的网站| 88av欧美| 国内少妇人妻偷人精品xxx网站 | 97人妻精品一区二区三区麻豆| 久久欧美精品欧美久久欧美| 国产男靠女视频免费网站| 亚洲美女黄片视频| 中文字幕人成人乱码亚洲影| 美女大奶头视频| 午夜福利欧美成人| 宅男免费午夜| 国产91精品成人一区二区三区| 欧美精品啪啪一区二区三区| 搞女人的毛片| 久久久久国产精品人妻aⅴ院| 国产精品1区2区在线观看.| 在线观看免费视频日本深夜| 国内精品美女久久久久久| 日韩精品青青久久久久久| 亚洲 国产 在线| 午夜福利18| 中文字幕人成人乱码亚洲影| 99久久精品热视频| 日韩欧美三级三区| 亚洲熟妇中文字幕五十中出| 日本精品一区二区三区蜜桃| 日本精品一区二区三区蜜桃| 国产亚洲欧美在线一区二区| 淫秽高清视频在线观看| 少妇裸体淫交视频免费看高清| 国产黄色小视频在线观看| 91在线精品国自产拍蜜月 | 亚洲av日韩精品久久久久久密| 国产精品av久久久久免费| 嫩草影院精品99| 国产精品 国内视频| 久久九九热精品免费| 在线观看免费午夜福利视频| 亚洲人成伊人成综合网2020| 美女 人体艺术 gogo| 精品久久蜜臀av无| 日韩欧美国产在线观看| 久久热在线av| 久久久国产成人精品二区| 精品一区二区三区视频在线 | 香蕉丝袜av| a级毛片在线看网站| 国产亚洲精品久久久com| 国产成人av教育| 美女高潮的动态| 亚洲国产中文字幕在线视频| 日本在线视频免费播放| 国产探花在线观看一区二区| 99国产精品一区二区三区| 成年版毛片免费区| 国产精品综合久久久久久久免费| 久久久久亚洲av毛片大全| 美女大奶头视频| 亚洲国产欧洲综合997久久,| 视频区欧美日本亚洲| а√天堂www在线а√下载| 俺也久久电影网| 十八禁人妻一区二区| 中亚洲国语对白在线视频| 男人和女人高潮做爰伦理| 99精品久久久久人妻精品| 在线看三级毛片| 国产激情久久老熟女| 亚洲在线自拍视频| 99久久99久久久精品蜜桃| 精品福利观看| 久久久久久人人人人人| 成人三级黄色视频| 最新中文字幕久久久久 | 久久久久久大精品| 久久中文字幕一级| 亚洲av熟女| 美女cb高潮喷水在线观看 | 午夜两性在线视频| 久久精品91蜜桃| 不卡一级毛片| 国产av在哪里看| 大型黄色视频在线免费观看| 国产三级中文精品| 久久久国产欧美日韩av| 男人舔女人下体高潮全视频| 国产精品久久久久久精品电影| 最新中文字幕久久久久 | 在线观看美女被高潮喷水网站 | 在线播放国产精品三级| 亚洲 欧美一区二区三区| 久久精品国产综合久久久| 国产黄片美女视频| 国产亚洲精品久久久久久毛片| 老汉色∧v一级毛片| 日韩人妻高清精品专区| 国产99白浆流出| 精品国产亚洲在线| 亚洲自偷自拍图片 自拍| 9191精品国产免费久久| 免费在线观看视频国产中文字幕亚洲| 免费看光身美女| 国产精品99久久99久久久不卡| 国产黄片美女视频| 999久久久国产精品视频| 亚洲成人精品中文字幕电影| 男人舔女人下体高潮全视频| 免费电影在线观看免费观看| 国产一区二区在线av高清观看| 亚洲精品中文字幕一二三四区| 黄频高清免费视频| 这个男人来自地球电影免费观看| 热99re8久久精品国产| 欧美中文综合在线视频| 两个人看的免费小视频| 午夜日韩欧美国产| 久久国产精品影院| 小说图片视频综合网站| 黄色成人免费大全| ponron亚洲| 免费看a级黄色片| 成人国产一区最新在线观看| 人人妻,人人澡人人爽秒播| 久久人人精品亚洲av| 18禁国产床啪视频网站| 床上黄色一级片| 美女黄网站色视频| 国产黄a三级三级三级人| 日日干狠狠操夜夜爽| 欧美激情在线99| 久久九九热精品免费| 国产精品亚洲av一区麻豆| 91老司机精品| 特级一级黄色大片| 一级黄色大片毛片| 午夜影院日韩av| 国产精品香港三级国产av潘金莲| 18禁国产床啪视频网站| 久久中文字幕一级| 午夜免费激情av| 97超级碰碰碰精品色视频在线观看| www.熟女人妻精品国产| 亚洲中文日韩欧美视频| 国产精品乱码一区二三区的特点| 全区人妻精品视频| 欧美av亚洲av综合av国产av| 亚洲精品粉嫩美女一区| 亚洲aⅴ乱码一区二区在线播放| 麻豆成人午夜福利视频| 欧美一级毛片孕妇| 最近最新中文字幕大全电影3| 久久久久免费精品人妻一区二区| 亚洲人成网站在线播放欧美日韩| 999久久久国产精品视频| 一a级毛片在线观看| 亚洲国产欧美人成| a级毛片a级免费在线| 黄频高清免费视频| 久久性视频一级片| 女警被强在线播放| 亚洲男人的天堂狠狠| 少妇的逼水好多| 亚洲欧美精品综合一区二区三区| 日韩中文字幕欧美一区二区| 欧美+亚洲+日韩+国产| 亚洲国产看品久久| 国产欧美日韩精品亚洲av| 亚洲七黄色美女视频| 女警被强在线播放| 日本在线视频免费播放| 久久精品亚洲精品国产色婷小说| 国产99白浆流出| 久久99热这里只有精品18| 国产精品av久久久久免费| 免费观看的影片在线观看| 久久久久国产一级毛片高清牌| 亚洲av成人精品一区久久| 国产毛片a区久久久久| 大型黄色视频在线免费观看| 丰满人妻一区二区三区视频av | 午夜福利18| 五月玫瑰六月丁香| 午夜亚洲福利在线播放| 精品无人区乱码1区二区| 亚洲天堂国产精品一区在线| 一本综合久久免费| 男人舔奶头视频| 91麻豆精品激情在线观看国产| 中文字幕熟女人妻在线| 亚洲av熟女| 久99久视频精品免费| 熟女少妇亚洲综合色aaa.| 欧美一级a爱片免费观看看| 欧美成人免费av一区二区三区| 中亚洲国语对白在线视频| 美女黄网站色视频| 亚洲欧美日韩高清在线视频| 国产高清激情床上av| 午夜两性在线视频| 老熟妇仑乱视频hdxx| 日韩欧美一区二区三区在线观看| 亚洲av熟女| xxxwww97欧美| 国内精品久久久久精免费| 成人国产综合亚洲| 国产一区二区三区视频了| 一进一出好大好爽视频| 国内精品美女久久久久久| av欧美777| 精品免费久久久久久久清纯| 亚洲人成伊人成综合网2020| 一级毛片女人18水好多| 欧美日韩精品网址| 999精品在线视频| www日本黄色视频网| 国产91精品成人一区二区三区| 亚洲七黄色美女视频| 国产精品美女特级片免费视频播放器 | 成人午夜高清在线视频| 99热6这里只有精品| 久久久精品大字幕| 白带黄色成豆腐渣| 亚洲真实伦在线观看| 五月玫瑰六月丁香| 老鸭窝网址在线观看| 久久精品国产99精品国产亚洲性色| 男女那种视频在线观看| 色老头精品视频在线观看| 欧美一区二区精品小视频在线| 国产一区二区在线观看日韩 | 999久久久国产精品视频| 97超视频在线观看视频| 亚洲五月天丁香| 人妻久久中文字幕网| 欧美高清成人免费视频www| 成人av一区二区三区在线看| 国产精品一区二区三区四区久久| 国产精品 国内视频| 国产视频内射| 欧美乱色亚洲激情| 亚洲美女黄片视频| 视频区欧美日本亚洲| 亚洲欧美日韩高清专用| 99热这里只有精品一区 | 黄色 视频免费看| 国产私拍福利视频在线观看| 91久久精品国产一区二区成人 | 国产三级中文精品| 九九久久精品国产亚洲av麻豆 | 国产淫片久久久久久久久 | 婷婷精品国产亚洲av| 大型黄色视频在线免费观看| 国产黄a三级三级三级人| 这个男人来自地球电影免费观看| 久久性视频一级片| 国产成人aa在线观看| 淫妇啪啪啪对白视频| 亚洲av片天天在线观看| 亚洲成av人片在线播放无| 老熟妇仑乱视频hdxx| 日韩欧美 国产精品| 香蕉av资源在线| 亚洲av电影在线进入| 亚洲成人久久爱视频| 高潮久久久久久久久久久不卡| 老熟妇乱子伦视频在线观看| 欧美又色又爽又黄视频| 久久中文看片网| 51午夜福利影视在线观看| 桃色一区二区三区在线观看| 国产精品电影一区二区三区| 久久国产精品影院| 欧美日本亚洲视频在线播放| 国产一区二区激情短视频| 久久九九热精品免费| 中文在线观看免费www的网站| 老司机在亚洲福利影院| 久久久国产欧美日韩av| 免费观看人在逋| 热99re8久久精品国产| 免费观看精品视频网站| 成人特级黄色片久久久久久久| 免费电影在线观看免费观看| 成人午夜高清在线视频| 国产成人av教育| 国产1区2区3区精品| 日韩免费av在线播放| 岛国视频午夜一区免费看| 男女视频在线观看网站免费| 亚洲第一电影网av| 亚洲 欧美 日韩 在线 免费| 宅男免费午夜| 亚洲成av人片免费观看| 久久精品国产综合久久久| 又粗又爽又猛毛片免费看| av在线天堂中文字幕| 99精品久久久久人妻精品| 精品久久蜜臀av无| 欧美绝顶高潮抽搐喷水| 美女免费视频网站| 黄片大片在线免费观看| 99久久综合精品五月天人人| 韩国av一区二区三区四区| 无遮挡黄片免费观看| 极品教师在线免费播放| 狂野欧美激情性xxxx| 精品久久久久久久人妻蜜臀av| 精品国产超薄肉色丝袜足j| 国产精品久久久久久精品电影| 日本免费a在线| www国产在线视频色| 亚洲最大成人中文| 午夜免费观看网址| 麻豆成人午夜福利视频| 丁香六月欧美| 女人高潮潮喷娇喘18禁视频| 成在线人永久免费视频| 欧美国产日韩亚洲一区| 免费av不卡在线播放| 久久亚洲精品不卡| 国产成人精品久久二区二区91| 国产成人啪精品午夜网站| 动漫黄色视频在线观看| 婷婷丁香在线五月| 国产精品乱码一区二三区的特点| 午夜福利18| 黄频高清免费视频| 99久久成人亚洲精品观看| 熟女电影av网| 国产av不卡久久| 很黄的视频免费| 最近最新中文字幕大全电影3| 亚洲精品在线美女| 国产精品,欧美在线| 久久天躁狠狠躁夜夜2o2o| 亚洲欧洲精品一区二区精品久久久| 麻豆成人av在线观看| 午夜福利欧美成人| 色精品久久人妻99蜜桃| 精品国产乱子伦一区二区三区| 国产爱豆传媒在线观看| 极品教师在线免费播放| www.精华液| 日韩中文字幕欧美一区二区| 九色成人免费人妻av| 国产真实乱freesex| 91九色精品人成在线观看| 欧美av亚洲av综合av国产av| 国产成人精品久久二区二区91| 久久国产精品人妻蜜桃| 一进一出抽搐gif免费好疼| av视频在线观看入口| 高清在线国产一区| h日本视频在线播放| 国产精品,欧美在线| 欧美日韩福利视频一区二区| 一区二区三区国产精品乱码| 亚洲专区中文字幕在线| 青草久久国产| 国产真实乱freesex| 国产伦一二天堂av在线观看| 久久精品夜夜夜夜夜久久蜜豆| 哪里可以看免费的av片| 国产成人av教育| 成人高潮视频无遮挡免费网站| 亚洲激情在线av| 成年免费大片在线观看| 国产精品亚洲一级av第二区| 麻豆国产97在线/欧美| 欧美丝袜亚洲另类 | 精品国产亚洲在线| 国产蜜桃级精品一区二区三区| 国产美女午夜福利| 中文字幕高清在线视频| www日本黄色视频网| a在线观看视频网站| 9191精品国产免费久久| 91麻豆精品激情在线观看国产| 亚洲人成伊人成综合网2020| 一级黄色大片毛片| 噜噜噜噜噜久久久久久91| 国产久久久一区二区三区| 男人舔奶头视频| 在线观看午夜福利视频| 成人精品一区二区免费| 久久精品夜夜夜夜夜久久蜜豆| 亚洲成人久久爱视频| 白带黄色成豆腐渣| 淫秽高清视频在线观看| 国产单亲对白刺激| 午夜两性在线视频| av黄色大香蕉| 午夜福利在线在线| 欧美成人一区二区免费高清观看 | 久久这里只有精品中国| 在线观看免费午夜福利视频| 好看av亚洲va欧美ⅴa在| 国产精品免费一区二区三区在线| 精品无人区乱码1区二区| 超碰成人久久| 美女高潮喷水抽搐中文字幕| 日本撒尿小便嘘嘘汇集6| 国产精品乱码一区二三区的特点| 国产欧美日韩一区二区三| 成年人黄色毛片网站| 国产1区2区3区精品| 国产精品香港三级国产av潘金莲| 在线观看日韩欧美| 99国产精品一区二区三区| 草草在线视频免费看| 一级作爱视频免费观看| 国产精品一区二区三区四区免费观看 | 国产亚洲欧美98| 国产99白浆流出| 偷拍熟女少妇极品色| 国产aⅴ精品一区二区三区波| 精品人妻1区二区| 嫩草影院入口| 欧美日本视频| 深夜精品福利| 欧美3d第一页| 亚洲成人久久性| cao死你这个sao货| 免费一级毛片在线播放高清视频| 婷婷六月久久综合丁香| 麻豆成人午夜福利视频| 757午夜福利合集在线观看| 88av欧美| 少妇的丰满在线观看| 伊人久久大香线蕉亚洲五| cao死你这个sao货| 成人永久免费在线观看视频| 天堂动漫精品| 熟女少妇亚洲综合色aaa.| 免费看a级黄色片| 99精品久久久久人妻精品| 在线a可以看的网站| 狠狠狠狠99中文字幕| 久久久久久久久中文| 男女床上黄色一级片免费看| 欧美成人免费av一区二区三区| 日韩欧美 国产精品| 十八禁人妻一区二区| 亚洲专区字幕在线| 草草在线视频免费看| 成年女人毛片免费观看观看9| 神马国产精品三级电影在线观看| 色播亚洲综合网| 最新美女视频免费是黄的| 村上凉子中文字幕在线| 国产精品美女特级片免费视频播放器 | 亚洲国产欧美网| 最新中文字幕久久久久 | 观看免费一级毛片| 亚洲欧美日韩无卡精品| a在线观看视频网站| 两性午夜刺激爽爽歪歪视频在线观看| 天堂√8在线中文| 亚洲欧美日韩高清在线视频| 国产免费av片在线观看野外av| 中出人妻视频一区二区| 嫩草影视91久久| 亚洲色图 男人天堂 中文字幕| 国产精品一区二区精品视频观看| 制服丝袜大香蕉在线| 99久久精品一区二区三区| 波多野结衣高清作品| 国产久久久一区二区三区| 丁香欧美五月| 欧美丝袜亚洲另类 | 久久久久久久久久黄片| 欧美丝袜亚洲另类 | 婷婷六月久久综合丁香| 性欧美人与动物交配| 日韩精品青青久久久久久| 久久性视频一级片| 在线观看66精品国产| 久久天躁狠狠躁夜夜2o2o| 亚洲无线观看免费| 露出奶头的视频| 精品国产乱子伦一区二区三区| 美女高潮喷水抽搐中文字幕| www.精华液| 国产主播在线观看一区二区| 免费在线观看亚洲国产| 国产99白浆流出| 亚洲aⅴ乱码一区二区在线播放| 久久精品国产综合久久久| 亚洲精品粉嫩美女一区| 日本在线视频免费播放| 日韩 欧美 亚洲 中文字幕| av女优亚洲男人天堂 | 日韩欧美免费精品| 成人一区二区视频在线观看| 男女床上黄色一级片免费看| 99热这里只有是精品50| 宅男免费午夜| 久久久久精品国产欧美久久久| 18禁黄网站禁片免费观看直播| 色视频www国产| 精品一区二区三区视频在线观看免费| 日本 欧美在线| 欧美不卡视频在线免费观看| 两个人视频免费观看高清| 久久精品国产综合久久久| 久久久国产精品麻豆| 中文字幕av在线有码专区| 久久久久久国产a免费观看| 国内精品久久久久精免费| 岛国视频午夜一区免费看| 亚洲人成网站高清观看| 国产伦精品一区二区三区视频9 | 夜夜爽天天搞| 白带黄色成豆腐渣| 狠狠狠狠99中文字幕|