• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Tailored martensitic transformation and enhanced magnetocaloric effect in all-d-metal Ni35Co15Mn33Fe2Ti15 alloy ribbons

    2022-08-31 09:58:40YongLi李勇LiangQin覃亮HongguoZhang張紅國andLingweiLi李領偉
    Chinese Physics B 2022年8期
    關鍵詞:李勇

    Yong Li(李勇) Liang Qin(覃亮) Hongguo Zhang(張紅國) and Lingwei Li(李領偉)

    1Key Laboratory of Novel Materials for Sensor of Zhejiang Province,College of Materials&Environmental Engineering,Hangzhou Dianzi University,Hangzhou 310018,China

    2Faculty of Materials and Manufacturing,Key Laboratory of Advanced Functional Materials,Ministry of Education of China,Beijing University of Technology,Beijing 100124,China

    Keywords: martensitic transformation,magnetocaloric effect,wheel speeds,all-d-metal Heusler ribbons

    1. Introduction

    Magnetic materials with outstanding magnetoresponsive performances have been attracted researchers’ interest in recent years.[1–5]Among them,compared to conventional refrigeration technologies based on vapor compression which have caused the environmental pollution and greenhouse effect,the solid-state magnetic refrigeration(MR)technologies,[6–18]based on the magnetocaloric effect (MCE), have been shown as high efficiency alternative and environmentally friendly method that we seek in sustainable society. Until now, several materials based on first-order magnetostructural transitions (FOMSTs) with large MCE have been reported, including rare earth(RE)-based compounds,[12,14,19]Hexagonal MM’X alloys,[20,21]and Heusler alloys,[22,23]etc.Searching and designing novel magnetic materials with outstanding magnetocaloric performance is one of the topic issues at present stage.

    In 2015, Weiet al.[24]reported a new alloy system with FOMSTs named all-d-metal Heusler alloys, substitutingp–dorbital hybridization between main-group element and transition group element(Al,Ga,In,etc.) byd–dorbital hybridization between transition group elements(Ni with high valenceelectrons and Ti with low valence-electrons), which has accelerated the exploration of new multifunctional materials.Thed–dorbital hybridization can also stabilize parent phase structure and introduced Co atoms make the establishment of ferromagnetism.[25]Subsequently, Bezet al.[26]reported that solidified ribbons exhibit magnetic entropy change (?Sm) as high as 27 J/kg·K with magnetic field change of 20 kOe in Ni37.5Co12.5Mn35Ti15. Using digital image correlation and infrared thermography technologies, Weiet al.[27]observed irreversible(reversible)?Tadof 10.7 K(9.0 K)at a strain level of 3.9%(4.6%)for Ni50Mn32Ti18and Ni35Co15Mn35Ti15,respectively. At the same time, the prediction of crystal and electronic behaviors, phase stability, magnetic state, and possible martensitic transformation (MT) have also been calculated by the first principle calculations based on density functional theory (DFT) to explore the more all-d-metal Heusler alloys.[28,29]Most of them are focused on the modification of chemical composition, thermal treatment, and pressure in the all-d-metal alloys.For ribbon samples,little attention has been focused on the effect of linear wheel speed on MT and MCE.

    Improving phase compatibility and minimizing thermal hysteresis between the martensite and the austenite through hydrostatic pressure and/or chemical substitutions (such as Fe element) have been reported.[5,26,30]In this work, the effect of wheel speeds (15 m/s, 30 m/s, and 45 m/s) on the crystal structure, MT and mangetocaloric properties in Ni35Co15Mn33Fe2Ti15ribbons are systematically investigated.With the increase of wheel speed, the grain size becomes smaller resulting in the decrease of martensitic transformation temperature (Tt) from 230 K to 210 K,i.e., the austenite is stabilized. Meanwhile, Curie temperature of martensite (TAC)slightly increases from 371 K to 378 K.It is worth noting that the enhancement of ?Smof 15.6 (39.7) J/kg·K and refrigeration capacity (RC) of 85.5 (212.7) J/kg with magnetic field change of 20(50)kOe can be obviously obtained for S45,the values are comparable or even larger than some reported magnetocaloric materials.

    2. Experimental details

    With high purity metals (≥99.9%), the polycrystalline Ni35Co15Mn33Fe2Ti15alloy ingot was fabricated by arcmelting method under the argon atmosphere. The alloy ingot was turned and re-melted for 4-times to ensure homogeneity and then cut into three pieces. The Mn losses were compensated for by adding the excess of Mn elements. The three ribbons,ejecting(ejection pressure of~0.1 MPa)the ingots onto a rotating copper wheel with a surface speed of 15 m/s(S15),30 m/s(S30),and 45 m/s(S45),were prepared by using meltspinning techniques as studied samples. The scanning electron microscope(SEM,Sigma 300,Zeiss)with x-ray energydispersive spectroscopy (EDS) was carried out to investigate the microstructure and composition of melt-spun ribbons. The crystal structures were investigated by room temperature(RT)x-ray diffiraction(XRD,SmartLab-9 kW,Rigaku)with Cu-Kαradiation. The differential scanning calorimeter (DSC, Discovery DSC 25, TA) was used to measure thermal property.The microstructure was measured by using scanning electron microscope(SEM,Sigma-300,Zeiss).The magnetization data(thermomagnetic(M–T)curves and isothermal magnetization(M–H)curves)were obtained by magnetic property measurement system(MPMS3,Quantum Design).

    3. Results and discussion

    The microstructure of free surface using SEM at room temperature (RT) is depicted in Figs. 1(a)–1(c) for Ni35Co15Mn33Fe2Ti15with S15, S30, and S45, respectively.The visible equiaxed-grain-like austenite without the appearance of plat-like martensite can be clearly seen. The average grain size obviously declines from 3.5 μm (S15) to 2.8 μm(S30)and further to 1.0μm(S45)with increasing wheel speed,i.e., lower grain size with higher cooling rate. RT XRD patterns of Ni35Co15Mn33Fe2Ti15with different wheel speeds are shown in Fig. 1(d). The similar phenomenon can be seen for all ribbons. Due to absence of the superlattice diffraction peaks of L21structure,all three ribbons crystalize in B2-ordered structure which is similar to other reported all-d-metal Heusler alloys,[24,31]meaning that the ribbons prefer to form B2 rather than L21structure during melt spun process. It also indicates that the martensitic transformation temperature (Tt)is below RT,which is conformed to SEM analysis. The miller indexes of (220), (400), (422) are signed in the corresponding peaks. The characteristic peaks move slightly towards to small angle with increasing wheel speed,the crystal constant,5.893(2) ?A for S15, 5.898(4) ?A for S30, and 5.898(6) ?A for S45(see Table 1),monotonically increases. Another is worth noting is that the more intensive intensity of the diffraction of(220) plane, showing that the〈110〉direction is closely parallel to the solidification direction, is the preferred direction during melt spun process.[32,33]

    The DSC curves with different wheel speeds were measured upon heating and cooling rates of 10 K/min under nitrogen atmosphere,which are displayed in Fig.1(e). The obviously exothermic and endothermic peaks (below RT) with thermal hysteresis appear for three ribbons, which show that the type of transition belongs to first order nature.Tt(T′t)monotonously decreases with the increase of wheel speed(Table 1), meaning that MT is sensitive to wheel speed. TheTt(T′t) of 231 (268) K for S15 decreases to 218 (246) K for S30 and further to 206(243)K for S45.

    Fig.1. (a)–(c)Microstructure of free surface using SEM,(d)room-temperature XRD patterns,and(e)DSC curves for Ni35Co15Mn33Fe2Ti15 with wheel speed of 15 m/s,30 m/s,and 45 m/s,respectively.

    Fig. 2. (a) Thermomagnetic (M–T) curves under 1 kOe. (b) The derivative of M–T (dM/dT) curves as a function of temperature. (c)–(e)Temperature dependence of magnetization (M–T) curves under 1 kOe and 50 kOe. (f) The driving rate by magnetic field (?Tt/?H, normal MT,circle;?T′t/?H,reverse MT,square)for Ni35Co15Mn33Fe2Ti15 with wheel speed of 15 m/s,30 m/s,and 45 m/s,respectively.

    The thermomagnetic (M–T) curves were measured at 5 K/min in a magnetic field of 1 kOe between 10 K and 400 K,as depicted in Fig.2(a). The three ribbons,upon cooling process, firstly undergo the Curie temperature in austenite (TAC)from paramagnetic state to FM state. Subsequently, a magnetostructural transitions happen accompanied by a sudden drop of magnetization from FM austenite to weak-magnetic(WM) martensite. The reverse curves upon heating are not coincided with the curves upon cooling,i.e.,the thermal hysteresis obviously exists, indicating the characteristic of first order transition.[34]Herein,to gain theTt(T′t)andTACvalues,the derivative ofM–Tcurves (dM/dT) was performed and the pattern is shown in Fig.2(b). The results show that theTt(TAC)is sensitive(insensitive)to the wheel speed. With the increase of wheel speed,theTt(T′t)monotonously declines from 230(262)K for S15 to 210(238)K for S45, which are basically in good agreement with the values from DSC. TheTAC(371 K for S15, 374 K for S30, and 378 K for S45) slightly rises simultaneously. The corresponding data are listed in Table 1. The larger wheel speed is used, the more stable the austenite keeps. More importantly, compared with S15 the thermal hysteresis declines for S30 and S45. Smaller hysteresis benefits refrigeration because a reduction in the refrigerant capacity caused by the irreversible behaviors associated with large hysteresis.[35]Furthermore, the magnetization change(?M)increases from 63.5 emu/g(S15)to 81.9 emu/g(S45)by enhancement of Mn–Co–Mn interaction resulting in the more effective magnetoresponsive performance,which is benefit to the magnetic refrigeration in practice application under low magnetic field.[20]

    To find out the fact what affects martensitic transformation, we analyzed possible reasons. For many FOMST alloys,the increase of grain size through heat treatment can tailor MT to high temperature, such as NiMn-based,[36–39]Cubased[40,41]Heulser alloys, and Ni–Co–Mn–Ti.[42]Recently,Maet al.[43]reported that the decline of MT for all-d-metal Heusler ribbons Mn50Ni31.5Co8.5Ti10with increasing wheel speed results in the decrease of grain size. The atomic ratio is not obviously changed for three ribbons (EDS) and the three ribbons show very similar lattice constant with B2 structure (XRD), which give rise to the unchanged valence electron concentration (e/a) and ordering. Thee/avalue and ordering should not be taken into account in the presented case. Therefore, the grain size in three ribbons should play important role. The reason is similar to Mn–Fe–Ni–Ge–Si[44]and Mn50Ni31.5Co8.5Ti10,[43]during the MT the strain energy stored in the material is produced by shearing and by volume change totally, the more produced defects with increasing wheel speed result in the smaller grain size,then the more large driving force was needed to complete MT process.Therefore, the MT shifts to low temperature with increasing wheel speed,i.e.increase of wheel speed can stabilize parent phase.[39]

    Table 1. The values of Tt (T′t),Thys,?Tt (?T′t),and ?Tt/?H (?T′t/?H)using DSC under zero magnetic field and MPMS under the fields of 1 kOe and 50 kOe for Ni35Co15Mn33Fe2Ti15 with wheel speed of 15m/s,30 m/s and 45 m/s,respectively.

    Figures 2(c)–2(e) display the thermomagnetic (M–T)curves recorded under magnetic fields of 1 kOe and 50 kOe between 10 K and 400 K for Mn50Ni31.5Co8.5Ti10with S15,S30, and S45, respectively. It is worth noting that the ferromagnetism of austenite is stronger than that of martensite,theTt(T′t)calculated from the inset of Fig.2(e)obviously declines with increase of external magnetic field owing to the transformation from FM to WM state. The behaviors result from the magnetic field stabilizing the phase with a higher magnetization by introducing Zeeman energy,i.e., magnetic field stabilizes parent phase in the system. The results are similar to many conventional Heusler shape memory alloys, just like Ni–Mn–In,[45]Ni–Co–Mn–In,[46]Co–V–Ga,[47]and Ni–Mn–Sn.[48]The maximum changes ofTt(T′t)induced by magnetic field(?Tt/?H,?T′t/?H)can reach?4.3(?3.7)K/T(Fig.2(f),Table 1) for S30, which are compared with and even larger than other materials.[43,49,50]

    For solid-state magnetic refrigeration materials,the magnetic entropy change(?Sm)and refrigeration capacity(RC)are important factors to determine refrigeration performance in practical applications.[6]The temperature loop method,[31,51]with the temperature step (?T) of 3 K, was used in vicinity of MST to eliminate the residual effect generated in previous measurement and avoid overestimating the ?Sm. Figure 3(a)displays the isothermal magnetization (M–H) curves for S15 measured around reverse MT. BelowTt, the quasi-linear increased magnetization under a magnetic field up to 50 kOe indicates the weak-magnetic behavior. The magnetic hysteresis is low due to the absence of change of magnetization induced by variation between austenite and martensite.AboveTt,characteristic FM behaviors with low saturation-field of austenite can be observed,showing that the samples are easy to be magnetized and saturated with increasing magnetic field. In the vicinity ofTt, obviously magnetic-field-induced reverse MT,with critical field(Hcr)of 42 kOe,can be seen,the feature of metamagnetic transformation with obvious magnetic hysteresis appears.

    Table 2. The values of ?Sm and RC under the field change of 50 kOe for Ni35Co15Mn33Fe2Ti15 and reported magnetocaloric materials,respectively.

    Fig.3. (a)Isothermal magnetization(M–H)curves for Ni35Co15Mn33Fe2Ti15 with wheel speed of 15 m/s. (b)–(d)Magnetic entropy changes(?Sm)in magnetic field change of 50 kOe for Ni35Co15Mn33Fe2Ti15 with wheel speed of 15 m/s,30 m/s,and 45 m/s,respectively.

    Fig.4. Magnetic field dependence of(a)?Sm and(b)RC curves in the field change up to 50 kOe for Ni35Co15Mn33Fe2Ti15 with wheel speed of 15 m/s,30 m/s,and 45 m/s,respectively.

    In Fig. 4(b), the RC curves also increase quasilinearly with increasing wheel speed. The RC values reach 76.5(191.9)J/kg and 85.5(212.7)J/kg with ?H=(20)50 kOe for S15 and S45, respectively. TheRCvalues decline to 36.8 (92.1) J/kg, nearly half of the maximum values of S15,for S30 owing to a smaller FWHM and comparative ?Smvalue calculated by two formulas above. Thus, the optimal values appear in S45 (listed in Table 2) and are comparable with and even larger than that of reported magnetocaloric materials, such as 91.5 J/kg for Ni50Mn32.7Cu1.3In16with ?H=20 kOe[56]and 206.8 J/kg for Ni35Co11Fe4Mn35Ti15,[31]197 J/kg for Ni36.0Co14.0Mn35.7Ti14.3,[42]121 J/kg for Mn50Ni32Co8Ti10,[57]239.7 J/kg for Ni36.5Co13.5Mn35Ti15[58]with ?H= 50 kOe. The increase of wheel speed not only tailors MT but also enhances magnetocaloric performances(large ?SmandRC),which makes the all-d-metal ribbon more probable for magnetic refrigeration application.

    4. Conclusion

    In summary,we investigated the crystal structure,martensitic transformation, and magnetocaloric effect of all-d-metal Ni35Co15Mn33Fe2Ti15alloy ribbons with different wheel speeds (15 m/s, 30 m/s, and 45 m/s). The results indicate that three ribbons crystalize ordered B2-type cubic structure at room temperature, and crystal constant is 5.893(2) ?A,5.898(4) ?A, and 5.898(6) ?A, respectively. With the increase of wheel speed, theTtdeclines andTACslightly increases due to the decrease of grain size. More importantly, the enhanced magnetocaloric effect is also been gained. The maximum value (S45) of magnetic entropy change (?Sm)and refrigeration capacity (RC) are 15.6 (39.7) J/kg·K and 85.5 (212.7) J/kg in the fields of 20 (50) kOe, respectively.Therefore,Ni35Co15Mn33Fe2Ti15alloys are considerable candidate for magnetic refrigeration.

    Acknowledgments

    Project supported by the National Natural Science Foundation of China(Grant Nos.52001102 and 51771003).

    猜你喜歡
    李勇
    A radiation–temperature coupling model of the optical fiber attenuation spectrum in the Ge/P co-doped fiber
    Mild moxibustion plus loratadine tablets for children with allergic rhinitis: a randomized controlled trial
    秋qiū天ti?。畹模洌孱仯ⅲ钌蟥?/a>
    組圖:豐收中國
    李勇作品選
    齊魯藝苑(2019年5期)2019-11-09 02:57:58
    李勇作品
    藝術家(2019年2期)2019-03-21 06:39:50
    古韻新聲
    詩潮(2016年2期)2016-03-12 08:31:10
    High Velocity Impact Experiment on Ti/CFRP/Ti Sandwich Structure
    Gyroscope Fault Diagnosis Using Fuzzy SVM to Unbalanced Samples
    Wave-current i*mpacts on surface-piercing structure based on a fully nonlinear numerical tank
    午夜福利网站1000一区二区三区| 国产亚洲精品第一综合不卡 | 久久亚洲国产成人精品v| 伊人久久精品亚洲午夜| 亚洲欧美中文字幕日韩二区| 多毛熟女@视频| 亚洲国产精品成人久久小说| 亚洲国产精品一区二区三区在线| 日本黄色日本黄色录像| 亚洲丝袜综合中文字幕| 亚洲婷婷狠狠爱综合网| 美女中出高潮动态图| 亚洲欧美日韩卡通动漫| 亚洲伊人久久精品综合| 色婷婷av一区二区三区视频| freevideosex欧美| av播播在线观看一区| 亚洲欧美一区二区三区黑人 | 天堂中文最新版在线下载| 视频中文字幕在线观看| 交换朋友夫妻互换小说| 国产 一区精品| 亚洲av.av天堂| 午夜久久久在线观看| 99热网站在线观看| 亚洲国产精品一区二区三区在线| 大陆偷拍与自拍| 天堂中文最新版在线下载| 日产精品乱码卡一卡2卡三| 亚洲天堂av无毛| 99视频精品全部免费 在线| 精品久久久久久电影网| 久久国内精品自在自线图片| 一本色道久久久久久精品综合| 人成视频在线观看免费观看| 赤兔流量卡办理| 久久久久久久久久久丰满| 国产精品99久久99久久久不卡 | 内地一区二区视频在线| 麻豆精品久久久久久蜜桃| 中国三级夫妇交换| 成人手机av| 亚洲成人一二三区av| 亚洲精品久久成人aⅴ小说 | 亚洲欧洲精品一区二区精品久久久 | 99久国产av精品国产电影| 国内精品宾馆在线| 国产一级毛片在线| 久久久a久久爽久久v久久| 女性被躁到高潮视频| a级毛片黄视频| av女优亚洲男人天堂| 日本爱情动作片www.在线观看| 天美传媒精品一区二区| 亚洲中文av在线| 视频在线观看一区二区三区| 99国产综合亚洲精品| 国产又色又爽无遮挡免| 国产 精品1| 中文字幕最新亚洲高清| 秋霞伦理黄片| 亚洲精品一区蜜桃| 婷婷成人精品国产| 男男h啪啪无遮挡| 十八禁高潮呻吟视频| 国产不卡av网站在线观看| 亚洲成人手机| 欧美xxⅹ黑人| 91精品国产国语对白视频| 欧美三级亚洲精品| 午夜福利视频精品| 高清在线视频一区二区三区| 国产极品天堂在线| 大香蕉久久成人网| 香蕉精品网在线| 高清欧美精品videossex| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲激情五月婷婷啪啪| 免费观看无遮挡的男女| 亚洲丝袜综合中文字幕| 一本久久精品| 99九九线精品视频在线观看视频| 99热国产这里只有精品6| 亚洲国产av影院在线观看| 国产精品国产三级国产av玫瑰| av在线观看视频网站免费| 在线观看免费视频网站a站| 午夜精品国产一区二区电影| 在线 av 中文字幕| 好男人视频免费观看在线| 午夜91福利影院| 亚洲精品国产av成人精品| 国产精品一区www在线观看| 精品人妻熟女av久视频| 国产 精品1| 久久99热6这里只有精品| 丝袜美足系列| 亚洲,一卡二卡三卡| 在线观看免费日韩欧美大片 | 欧美老熟妇乱子伦牲交| 99久久精品一区二区三区| 国产淫语在线视频| 亚洲国产精品国产精品| 一本久久精品| 国产亚洲欧美精品永久| 最新的欧美精品一区二区| 午夜影院在线不卡| 色婷婷久久久亚洲欧美| 国产亚洲午夜精品一区二区久久| 亚洲欧美一区二区三区黑人 | 美女脱内裤让男人舔精品视频| 少妇人妻精品综合一区二区| 桃花免费在线播放| 国产一区二区三区av在线| 热99国产精品久久久久久7| 人成视频在线观看免费观看| 丁香六月天网| 青春草视频在线免费观看| 岛国毛片在线播放| 亚洲第一区二区三区不卡| 免费av不卡在线播放| 99精国产麻豆久久婷婷| 亚洲激情五月婷婷啪啪| 视频在线观看一区二区三区| 国产一区亚洲一区在线观看| 国产视频首页在线观看| 免费高清在线观看视频在线观看| 亚洲婷婷狠狠爱综合网| 日本黄大片高清| 亚洲欧美一区二区三区黑人 | 2022亚洲国产成人精品| 亚洲国产精品一区二区三区在线| 国产熟女欧美一区二区| 国产有黄有色有爽视频| 亚洲中文av在线| 日本免费在线观看一区| 交换朋友夫妻互换小说| 亚洲激情五月婷婷啪啪| 91午夜精品亚洲一区二区三区| 大香蕉久久成人网| 日日撸夜夜添| 丰满迷人的少妇在线观看| a 毛片基地| 美女中出高潮动态图| 亚洲精品乱码久久久久久按摩| 自拍欧美九色日韩亚洲蝌蚪91| 精品卡一卡二卡四卡免费| 少妇精品久久久久久久| 色网站视频免费| 最新中文字幕久久久久| 亚洲人与动物交配视频| 久久久精品免费免费高清| 日韩人妻高清精品专区| 久久久精品94久久精品| 韩国高清视频一区二区三区| 人妻制服诱惑在线中文字幕| 欧美精品国产亚洲| 国产乱来视频区| 亚洲国产精品999| 在线看a的网站| av福利片在线| 亚洲国产最新在线播放| 亚洲精品456在线播放app| 黄色欧美视频在线观看| 久久久久久人妻| 中文乱码字字幕精品一区二区三区| 建设人人有责人人尽责人人享有的| 王馨瑶露胸无遮挡在线观看| 国产精品秋霞免费鲁丝片| 欧美精品一区二区免费开放| 国产女主播在线喷水免费视频网站| 亚洲av电影在线观看一区二区三区| 菩萨蛮人人尽说江南好唐韦庄| 欧美日韩成人在线一区二区| 国产色婷婷99| 国产一区二区三区av在线| 在线观看一区二区三区激情| 亚洲av不卡在线观看| 亚洲美女搞黄在线观看| 午夜福利影视在线免费观看| av不卡在线播放| 丝袜美足系列| 99九九线精品视频在线观看视频| 18在线观看网站| 国产免费一级a男人的天堂| 国产熟女欧美一区二区| 国产女主播在线喷水免费视频网站| 色吧在线观看| 大香蕉久久网| 免费黄网站久久成人精品| 少妇的逼水好多| 亚洲欧美成人精品一区二区| 一个人看视频在线观看www免费| 亚洲国产日韩一区二区| 成年av动漫网址| 亚洲欧美色中文字幕在线| 亚洲国产精品一区二区三区在线| 日产精品乱码卡一卡2卡三| 亚洲精品视频女| 22中文网久久字幕| 只有这里有精品99| 亚洲熟女精品中文字幕| 亚洲欧美成人综合另类久久久| 亚州av有码| 日本爱情动作片www.在线观看| 久久99热这里只频精品6学生| 成人漫画全彩无遮挡| 国产成人av激情在线播放 | 日韩制服骚丝袜av| 久久久久久久久久久久大奶| 又大又黄又爽视频免费| 有码 亚洲区| 一级毛片电影观看| 自拍欧美九色日韩亚洲蝌蚪91| 青春草亚洲视频在线观看| 日韩免费高清中文字幕av| 国产亚洲一区二区精品| 午夜激情av网站| 日本av手机在线免费观看| 免费观看a级毛片全部| 99九九线精品视频在线观看视频| 天堂俺去俺来也www色官网| 国产乱人偷精品视频| 色5月婷婷丁香| 美女主播在线视频| 午夜福利影视在线免费观看| 18+在线观看网站| 老司机影院毛片| 国产国拍精品亚洲av在线观看| 女性被躁到高潮视频| 人妻 亚洲 视频| 亚洲在久久综合| 日韩制服骚丝袜av| 亚洲四区av| 黄色欧美视频在线观看| 国产一区二区在线观看av| 最近手机中文字幕大全| 久久婷婷青草| 男女啪啪激烈高潮av片| 嫩草影院入口| 久久国产精品男人的天堂亚洲 | kizo精华| av免费在线看不卡| 国产 精品1| 久久狼人影院| 日韩不卡一区二区三区视频在线| 久久99热这里只频精品6学生| 欧美丝袜亚洲另类| 夜夜看夜夜爽夜夜摸| 在线观看三级黄色| 国产乱来视频区| 国产免费福利视频在线观看| 国产男女内射视频| 男人爽女人下面视频在线观看| 亚洲少妇的诱惑av| 大香蕉久久成人网| 91精品国产国语对白视频| 精品人妻熟女av久视频| 新久久久久国产一级毛片| 两个人免费观看高清视频| 国产成人精品在线电影| 日韩中文字幕视频在线看片| 国产视频内射| 亚洲人成77777在线视频| 各种免费的搞黄视频| 国产老妇伦熟女老妇高清| 免费看不卡的av| 日本色播在线视频| 精品卡一卡二卡四卡免费| 伊人久久国产一区二区| 一区二区三区精品91| 美女内射精品一级片tv| 国产精品人妻久久久久久| av免费观看日本| 色视频在线一区二区三区| 久久久久国产精品人妻一区二区| 国产成人午夜福利电影在线观看| av免费观看日本| 黄色毛片三级朝国网站| 亚洲欧美色中文字幕在线| 寂寞人妻少妇视频99o| 多毛熟女@视频| 999精品在线视频| 久久女婷五月综合色啪小说| 国产成人精品婷婷| 中文字幕制服av| 欧美变态另类bdsm刘玥| 亚洲熟女精品中文字幕| 建设人人有责人人尽责人人享有的| 免费人成在线观看视频色| 午夜影院在线不卡| 日本av手机在线免费观看| 黑人欧美特级aaaaaa片| 青青草视频在线视频观看| 青春草亚洲视频在线观看| 精品久久蜜臀av无| 日韩三级伦理在线观看| av天堂久久9| 成年人午夜在线观看视频| 香蕉精品网在线| 亚洲欧美清纯卡通| 曰老女人黄片| 国产精品久久久久久久久免| 在线观看一区二区三区激情| 七月丁香在线播放| 在现免费观看毛片| 国产在线一区二区三区精| 在线播放无遮挡| 成人亚洲精品一区在线观看| 欧美日韩综合久久久久久| 全区人妻精品视频| 纵有疾风起免费观看全集完整版| 最近最新中文字幕免费大全7| 在线观看美女被高潮喷水网站| 黄色视频在线播放观看不卡| 美女中出高潮动态图| 免费av不卡在线播放| 91aial.com中文字幕在线观看| 少妇的逼好多水| 亚洲精品日本国产第一区| 亚洲av成人精品一区久久| 亚洲精华国产精华液的使用体验| a级毛片在线看网站| 亚洲国产欧美在线一区| 国产亚洲精品久久久com| 乱码一卡2卡4卡精品| 国产精品久久久久久久电影| 免费不卡的大黄色大毛片视频在线观看| 爱豆传媒免费全集在线观看| 韩国av在线不卡| .国产精品久久| 欧美另类一区| 亚洲av在线观看美女高潮| 精品国产一区二区三区久久久樱花| 久久久久人妻精品一区果冻| 国产日韩欧美亚洲二区| 成年美女黄网站色视频大全免费 | 久久人人爽av亚洲精品天堂| 精品人妻一区二区三区麻豆| 人成视频在线观看免费观看| 国产成人免费无遮挡视频| 国产日韩欧美视频二区| 狠狠婷婷综合久久久久久88av| 亚洲国产精品一区三区| 中文字幕制服av| 日韩熟女老妇一区二区性免费视频| 久久久久精品久久久久真实原创| 99国产综合亚洲精品| 日韩欧美一区视频在线观看| 18+在线观看网站| 日韩,欧美,国产一区二区三区| 亚洲一级一片aⅴ在线观看| 麻豆乱淫一区二区| 伦精品一区二区三区| 看非洲黑人一级黄片| 日本爱情动作片www.在线观看| 99热这里只有精品一区| 国产成人精品无人区| 国产高清有码在线观看视频| 一个人免费看片子| 亚洲精品自拍成人| 久久 成人 亚洲| 国产精品麻豆人妻色哟哟久久| 欧美日韩成人在线一区二区| 成年人午夜在线观看视频| 日韩视频在线欧美| 国产一区二区在线观看日韩| 插阴视频在线观看视频| 欧美 日韩 精品 国产| 欧美97在线视频| 久久毛片免费看一区二区三区| 一级毛片黄色毛片免费观看视频| 日韩精品有码人妻一区| 精品久久蜜臀av无| 天堂8中文在线网| 欧美日韩av久久| 十八禁高潮呻吟视频| 国产又色又爽无遮挡免| 黄色一级大片看看| 国产 一区精品| 制服人妻中文乱码| 国产精品一区www在线观看| 久久国产精品男人的天堂亚洲 | 下体分泌物呈黄色| 新久久久久国产一级毛片| 色网站视频免费| 极品人妻少妇av视频| 在线观看免费高清a一片| 亚洲综合精品二区| 麻豆成人av视频| 啦啦啦在线观看免费高清www| 亚洲图色成人| 国产精品一国产av| 欧美日韩国产mv在线观看视频| 午夜免费男女啪啪视频观看| 国产男人的电影天堂91| 亚洲av在线观看美女高潮| 精品熟女少妇av免费看| 成年人午夜在线观看视频| 人妻制服诱惑在线中文字幕| 18禁在线播放成人免费| 日韩一区二区视频免费看| 亚洲怡红院男人天堂| 欧美日韩av久久| 免费观看在线日韩| 大片免费播放器 马上看| 在线精品无人区一区二区三| 精品久久久久久久久av| 欧美一级a爱片免费观看看| 搡女人真爽免费视频火全软件| 美女内射精品一级片tv| 国产在线免费精品| 久久影院123| 高清视频免费观看一区二区| 国产欧美另类精品又又久久亚洲欧美| 久久久精品免费免费高清| 伦理电影免费视频| 欧美精品高潮呻吟av久久| 精品国产乱码久久久久久小说| 丝瓜视频免费看黄片| 国产黄色免费在线视频| 亚洲国产色片| 日韩一本色道免费dvd| 热99国产精品久久久久久7| 看免费成人av毛片| 卡戴珊不雅视频在线播放| 99国产精品免费福利视频| 国产高清国产精品国产三级| 中文字幕人妻熟人妻熟丝袜美| av播播在线观看一区| 狂野欧美白嫩少妇大欣赏| 日产精品乱码卡一卡2卡三| 99久国产av精品国产电影| 成年人免费黄色播放视频| 亚洲婷婷狠狠爱综合网| 不卡视频在线观看欧美| 久久97久久精品| 久久亚洲国产成人精品v| 国产精品人妻久久久影院| 国产精品久久久久久精品古装| 亚洲欧美精品自产自拍| 免费观看的影片在线观看| 久久久久久久久久久久大奶| av不卡在线播放| 国产男女超爽视频在线观看| 高清视频免费观看一区二区| 视频区图区小说| 久久久久久人妻| 汤姆久久久久久久影院中文字幕| 在线观看免费高清a一片| 色网站视频免费| 毛片一级片免费看久久久久| 免费av中文字幕在线| 国产精品久久久久久精品古装| 成人毛片a级毛片在线播放| 欧美日韩国产mv在线观看视频| 国产熟女欧美一区二区| 好男人视频免费观看在线| 久久久久久久久久成人| 午夜福利视频精品| 99re6热这里在线精品视频| 国产精品免费大片| 欧美+日韩+精品| 男女边吃奶边做爰视频| 精品一区二区三卡| 制服人妻中文乱码| 欧美激情国产日韩精品一区| av一本久久久久| 黄色配什么色好看| 观看美女的网站| 免费大片黄手机在线观看| av天堂久久9| 国产成人精品一,二区| 日韩中字成人| 香蕉精品网在线| 18在线观看网站| av不卡在线播放| 亚洲中文av在线| 亚洲,一卡二卡三卡| 日韩,欧美,国产一区二区三区| 99久久中文字幕三级久久日本| 高清在线视频一区二区三区| 免费播放大片免费观看视频在线观看| 成年av动漫网址| 啦啦啦在线观看免费高清www| 十八禁高潮呻吟视频| 国产精品三级大全| 成人综合一区亚洲| 在线观看国产h片| 欧美一级a爱片免费观看看| a级毛片在线看网站| 亚洲国产色片| av播播在线观看一区| 国产无遮挡羞羞视频在线观看| 超色免费av| 亚洲成人一二三区av| 婷婷色综合大香蕉| 国产视频内射| 91国产中文字幕| 最近的中文字幕免费完整| 看非洲黑人一级黄片| 久久久久久久国产电影| 九九久久精品国产亚洲av麻豆| 亚洲国产毛片av蜜桃av| 爱豆传媒免费全集在线观看| 97超碰精品成人国产| 男女边吃奶边做爰视频| 欧美激情极品国产一区二区三区 | 嫩草影院入口| 性高湖久久久久久久久免费观看| 在线观看国产h片| 日韩精品免费视频一区二区三区 | 亚洲,欧美,日韩| 国产欧美另类精品又又久久亚洲欧美| 亚洲人成网站在线观看播放| 国国产精品蜜臀av免费| 80岁老熟妇乱子伦牲交| 高清不卡的av网站| 国产成人freesex在线| 国模一区二区三区四区视频| 国产精品一区二区在线观看99| 国产精品一区二区在线不卡| 国产在线视频一区二区| 免费观看无遮挡的男女| 大话2 男鬼变身卡| 99久久精品国产国产毛片| 成人亚洲精品一区在线观看| 下体分泌物呈黄色| 最新的欧美精品一区二区| 国产乱人偷精品视频| av免费观看日本| 如何舔出高潮| 最黄视频免费看| 一个人免费看片子| 爱豆传媒免费全集在线观看| 夜夜爽夜夜爽视频| 一级a做视频免费观看| 人妻 亚洲 视频| 亚洲国产av新网站| 成年女人在线观看亚洲视频| 亚洲av电影在线观看一区二区三区| 99re6热这里在线精品视频| 亚洲精品国产av成人精品| 亚洲国产精品一区二区三区在线| 另类精品久久| 国产黄频视频在线观看| 老女人水多毛片| 大片电影免费在线观看免费| 亚洲av成人精品一区久久| www.色视频.com| 一区二区日韩欧美中文字幕 | 亚洲图色成人| 97超视频在线观看视频| 国产亚洲一区二区精品| 边亲边吃奶的免费视频| 日韩一区二区三区影片| 国产精品一国产av| 丰满饥渴人妻一区二区三| 国产精品成人在线| 三级国产精品片| 国产成人免费观看mmmm| 国产日韩欧美在线精品| 亚洲精品av麻豆狂野| 女人久久www免费人成看片| 国产精品一区www在线观看| 22中文网久久字幕| 18禁观看日本| 国产精品国产三级国产av玫瑰| 国产毛片在线视频| 最近中文字幕高清免费大全6| 一个人看视频在线观看www免费| 久久久久网色| 人成视频在线观看免费观看| 午夜精品国产一区二区电影| 十分钟在线观看高清视频www| 纯流量卡能插随身wifi吗| 亚洲av男天堂| 在线亚洲精品国产二区图片欧美 | 国产老妇伦熟女老妇高清| 日韩人妻高清精品专区| 极品少妇高潮喷水抽搐| 亚洲精品乱久久久久久| 免费看光身美女| 精品国产国语对白av| 国产精品国产三级专区第一集| 久久久精品区二区三区| 亚洲精品色激情综合| 久久久a久久爽久久v久久| 一区二区三区四区激情视频| 久久鲁丝午夜福利片| a 毛片基地| 日本av免费视频播放| 中文字幕久久专区| 伦理电影免费视频| 热99久久久久精品小说推荐| 国产亚洲最大av| 亚洲精华国产精华液的使用体验| 五月玫瑰六月丁香| 黄色一级大片看看| 国语对白做爰xxxⅹ性视频网站| 午夜福利在线观看免费完整高清在| 国产无遮挡羞羞视频在线观看| 国产极品粉嫩免费观看在线 | 赤兔流量卡办理| 亚洲情色 制服丝袜| 日本黄色日本黄色录像| 亚洲国产av新网站| 欧美日韩国产mv在线观看视频| 简卡轻食公司| 亚洲成人av在线免费| 高清欧美精品videossex| 97超碰精品成人国产| 成人18禁高潮啪啪吃奶动态图 | 一级黄片播放器| 亚洲天堂av无毛|