• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    High Velocity Impact Experiment on Ti/CFRP/Ti Sandwich Structure

    2015-11-21 07:09:15HuanDajun還大軍DingBing丁冰LiYong李勇XiaoJun肖軍
    關(guān)鍵詞:李勇大軍

    Huan Dajun(還大軍),Ding Bing(丁冰),Li Yong(李勇),Xiao Jun(肖軍)

    College of Material Science and Technology,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,P.R.China

    High Velocity Impact Experiment on Ti/CFRP/Ti Sandwich Structure

    Huan Dajun(還大軍)*,Ding Bing(丁冰),Li Yong(李勇),Xiao Jun(肖軍)

    College of Material Science and Technology,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,P.R.China

    Aircraft laminated composite components often suffer a variety of high velocity impacts with large quantity of energy,which usually affects aircraft behavior and would incur component damages,even disastrous consequences.Therefore,one investigates the impact resistance of a new type of composite material,Ti/CERP/Ti sandwich structure,and launches impact tests by using an air gun test system.Then one acquires the critical breakthrough rate of the structure and analyzes the damages.The results show that the main failure mode of the front titanium sheet is shear plugging and brittle fracture of adhesive layer with fiber breakage,while the back titanium sheet is severely ripped.The rear damage is worse than the front one.Compared with traditional CERP laminates,the critical breakthrough rate of Ti/CERP/Ti sandwich structure is improved by 69.9%when suffered the impact of a bearing ball with 2 mm radius.

    Ti/CERP/Ti sandwich structure;high velocity impact;critical velocity;damage mode

    0 Introduction

    Aircraft laminate composite structures often encounter various impacts,including low velocity impacts,e.g.missing a part during fabrication or dropping a tool on the structure during maintenance;and high velocity ones,like splashing sand while taking off and landing or bird-striking in flight[1-2].Since composite structures are vulnerable to impacts,it is necessary to minimize impact damages on them.

    The impact resistance of metals is much better than that of laminated composites.However,specific strength,specific modulus and fatigue resistance of most metals cannot compete with those of composites.Therefore,aramid fiber reinforced aluminum alloy laminates(ARALL)[3-4]and glass fiber reinforced aluminum alloy laminates(GLARE)[5-6]were developed to take full advantages of the two materials.The properties of fiber metal laminates(EMLs)are strongly related to the types of reinforced fiber and the metal:(1)Carbon fiber′s unidirectional mechanical property is excellent,and its crack growth rate is very low;(2)Titanium alloy has no potential corrosion problem with carbon fiber,and can effectively improve shock resistance of the composite.Therefore,the research on high velocity impact damage for carbon fiber reinforced titanium alloy laminates is academically significant.

    Most carbon fiber reinforced titanium alloy laminates are manufactured with polyether ether ketone(PEEK)currently.But the processing of PEEK prepreg is complicated;the price is extraordinarily high;and it lacks stickiness.Compared with thermoplastic materials,thermosetting materials will undoubtedly dominate the market for a long time.Therefore,for practical reason,the impact property of Ti/carbon-fiberreinforced polymer(CERP)/Ti sandwich structure with the adhesive of epoxy resin(Eig.1)was investigated.Eurthermore,to improve the impact resistance of structures,titanium is sticked on the margin of the composite fan blades as usedin GE90 engines,which have run safely for nearly 20 years with only three blades been substituted.

    Eig.1 Schematic figure of Ti/CERP/Ti sandwich structure

    Many researches to date have been conducted to study high velocity impact damage of single fiber composite materials or homogeneous metals[7-9],though few of them focus on the damage of EMLs.Nakatani et al.[10]studied the damage behavior of titanium/GERP hybrid laminates subjected to low-velocity impacts.The observation and experimental results of the four-point bending tests indicated that internal damages and residual out-of-plane deformation of the GERP layer were suppressed by the energy absorption via plastic deformation and crack initiation in the titanium layer on the side opposite the impact.Cortés et al.[11]revealed the energy-absorbing mechanisms of fiber metal laminates during impact.Low velocity impact testing had shown that the specific perforation energy of the CE/PEEK-based EMLs was similar to that offered by the CE/PEEK composite.The experimental evidence proved that the inclusion of strong titanium alloy plies could not improve the perforation resistance of EMLs. Extensive and detailed optical microscope study had shown that interfacial and inter laminar delaminations were the principal energy-absorbing mechanisms during low and high velocity impacts.Chen et al.[12-13]explored the high velocity impact damage modes of fiber metal composite target boards.The board presented a local failure mode.The damage modes of the front fiber were a shear fracture,while the back steel presented a petal-crack damage.When the positions of fiber and steel are switched,the damage modes of the back fiber become tension fracture while the front steel experiences shear destruction damage.Experimental tests show that the energy absorption of the latter combination is superior.

    We used air gun test system to carry out the impact tests for Ti/CERP/Ti sandwich structure. The ply stacking sequence was[0/90]3s.The critical velocity of passing through the structure was identified.The damage modes of both the pure CERP and the Ti/CERP/Ti sandwich structure were analyzed.And the damage area was analyzed to determine the impact resistance.

    1 Experiments

    An air gun test system developed by Nanjing University of Aeronautics and Astronautics was utilized to carry out the impact test.The system consisted of a foreign object damage launcher,a speedometer and a retaining protection device. The projectile with a 2 mm-radius bearing ball was used,and the initial speed was between 150 m/s and 400 m/s.

    Here,Ti/CERP/Ti sandwich structures were manufactured by bonding titanium alloy sheet(Ti-6Al-4V,0.2 mm thick)to the crossplied CERP laminates,which were cured in advance by a hot press machine using CE/Epoxy prepreg(Hengshen Co.,Ltd.)with epoxy adhesive(J-272,Institute of Petrochemistry Heilongjiang Academy of Sciences).The mechanical properties of the constituents obtained by static tensile tests were listed in Table 1.

    The specimens included two types of target boards,i.e.Ti/CERP/Ti sandwich structure and pure CERP.The Ti/CERP/Ti sandwich structure board consised of two outer layers of titanium sheets sandwiching a CERP layer as the core which was 1.5 mm thick and comprised of twelve plies with a stacking sequence of[0/90]3s.The 2 mm thick CERP panel was made of 16 plies with alay-up sequence of[0/90]4s.The square specimens(120 mm×120 mm)were clamped by a special fixture with an 80 mm-diameter central opening.The average thickness,the average weight,and the location of the neutral line in each laminate are shown in Table 2.

    Table 1 Mechanical properties of constituents

    Table 2 Properties of impact specimens

    2 Experimental Results

    2.1 Critical penetration velocity

    Successive approximation is used to obtain the critical penetration velocities of the CERP target and the Ti/CERP/Ti sandwich structure.It is easy to identify whether the plates are punched or not by examining the damage of the plates.And the critical penetration velocity is defined by the incident velocity when the projectile drops on the baseboard of the fixture.The experimental data and damage status of the boards are shown in Table 3.

    Table 3 Experimental data and damage status of penetration

    As shown in Table 3,CERP plates are penetrated three times,and fail five times.Apparently,when a projectile with a 4 mm-diameter bearing ball impacts a CERP plate,the critical penetration velocity is 203 m/s.However,when a projectile with a 4 mm-diameter bearing ball impacts the Ti/CERP/Ti plate,the critical penetration velocity is 341 m/s,increaing by 69.9% thanks to titanium alloy skin.

    2.2 Analysis of damage modes

    Many researchers have investigated the high velocity impact damage of pure CERP laminates[14-17].One compares the damage patterns between CERP and Ti/CERP/Ti sandwich structures.Back bulge,fibrous fracture,matrix cracking and delamination are the main damage modes of composite materials.Eigs.2—4 show the damage morphology of CERP laminates im-pacted by projectiles with different impact energy.

    Eig.2 Damage morphology of plate impacted by 4.5 J energy

    Eig.3 Damage morphology of plate impacted by 5.3 J energy

    Eig.4 Damage morphology of plate impacted by 6.1 J energy

    It is seen that pure CERP plate impacted with 4.5 J energy is not punched through.When the impact energy increases to 5.3 J,the CERP plate has a critical damage.And a projectile with impact energy of 6.1 J is powerful enough to punch through the CERP plate completely.Apparently,although damage areas of the front side of the three kinds of target boards are small,the back ones are seriously damaged.The morphology results show that the target boards on the front present shear plugging failure and compression failure in different levels.The fiber of the back mainly presents a tensile failure,and the crack propagates along fiber direction.Eurthermore,the back of the target boards is de-bonding and the damage evolution tends to be perpendicular to fiber direction.

    Ti/CERP/Ti sandwich plates impacted by high velocity projectiles display different failure modes,and the damage morphologies of the Ti/ CERP/Ti sandwich structure plates are shown in Eigs.5—7.

    Eig.5 Damage morphology of plate impacted by 12.7 J energy

    Eig.6 Damage morphology of plate impacted by 15.1 J energy

    Ti/CERP/Ti sandwich structure plate impacted by the energy of 12.7 J is not punched through.When the impact energy rises to 15.1 J,the target has critical failure.And a projectilewith 17.2 J impact energy is powerful enough to punch the Ti/CERP/Ti sandwich structure.

    Eig.7 Damage morphology of plate impacted by energy of 17.2 J

    As shown in Eigs.6—7,the area near the impact contact point presents shear plugging and plastic deformation.This is because the front plate is directly impacted by the projectile,and the deformation of the front plate is restricted by the core composites.Therefore,the front sheets are inclined to exhibit shear plugging,and the damage region is limited within the impact zone. Thus,the response of the front titanium sheets is a local failure response.

    Different from the small damage area of the front sheets,the rear titanium plates are damaged seriously.The main failure mode of the rear titanium plates is ripping failure.This is because the existence of the front plate and the core composites lowers the projectile speed,and the fiber attached to the surface of the projectile enlarges the contact area.When the impact energy is high,the shear plugging will appear.Therefore,the response of the rear titanium sheets is a local failure response.

    Moreover,the rear plate impacts with energy of 12.7 J presents a tear failure of C shape,and the sheet is not destroyed.When the impact energy increases to 17.2 J,the rear sheet on the contact point is totally damaged.The bullet hole and the rattled adhesive can be examined breezily. The projectile residual speeds of the three cases after crossing the front plate and core composites are obviously different.

    2.3 Analysis of damage area

    The damage area of the target plates impacted by projectiles was detected by terminology,a nondestructive testing-infrared testing.Eig.8 shows the damage infrared area of Ti/CERP/Ti sandwiched target boards suffers by different impact energy.The highlight parts in the pictures represent the damaged areas.

    Eig.8 Infrared detection results of plates impacted with different energy

    The Matlab platform was utilized to process the images:The image size was determined by pixels with the external contours as boundaries. The images were captured by a sequence of operations of image grabbing—image smoothing—image enforcing—edge detecting—image segmenting—binary denoising.Eig.9 presents the damage area of Ti/CERP/Ti sandwiched target boards suffer by different impact energies.We can find that the damage areas increase with the increase of impact energy.And the rising slope is abrupt at an initial stage,and then slows down gradually.

    Eig.9 Damage area of Ti/CERP/Ti sandwich structure impacted with different energy

    3 Conclusions

    One launches a high velocity impact test on the Ti/CERP/Ti sandwich target boards and pure CERP plates,and draws the following conclusions:

    (1)The critical penetration velocity of the 2 mmthick Ti/CERP/Ti sandwich structure target boards impacted by ball bearings with 2 mm radius is 341 m/s,while that of the 2 mm thick pure CERP target boards is 203 m/s.The critical breakthrough speed of Ti/CERP/Ti sandwich structure is increased by nearly 70%thanks to the thin titanium alloy sheets.

    (2)The damage mode of the front titanium sheets of the Ti/CERP/Ti sandwich structure is shear plugging and plastic deformation,and that of the reverse sheets is a ripping failure,while the back damage of the pure CERP target boards is serious:the fiber on the back face sheet is uplifted,and the stratification along the fiber direction is slighter.

    (3)The results show that the damage area of target boards increases with the growth of impact energy.The damage area stops enlarging when the target board is punched through.And the damage area is close to a fixed value.

    Acknowledgement

    This work was funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.

    [1] Jorge L,Ramón Z,Carlos N U.Experimental and numerical analysis of normal and oblique ballistic impacts on thin carbon/epoxy woven laminates[J]. Composites Part A:Applied Science and Manufacturing,2008,39(2):374-387.

    [2] Zhang Aying,Zhang Dongxing,Li Dihong,et al. Impact damage of carbon fiber reinforced epoxy laminates[J].Aerospace Materials and Technology,2010(5):1-3.

    [3] Zhang Guangcheng,He Qingkong,Yang Yufang. Study on the mechanical properties of ARALL/aluminium alloy laminates[J].Eiber Composites,2001,19(4):19-21.

    [4] Marissen R.Eatigue crack growth in ARALL:A hybrid aluminium-aramid composite material,crack growth mechanisms and quantitative predictions of the crack growthrate[D].Delft:Delft University of Technology,1988.

    [5] Wang Shiming,Wu Zhongqing,Zhang Zhengjun,et al.Research of glare laminates performance comprehensive evaluation applied to large aircraft[J]. Stanford Materials,2010,17(9):88-95.

    [6] Vogelesang L B.Eiber metal laminates—The development of a new family of hybrid materials[C]// Proceedings ICAE Sr-yarposium.Lucern:[s.n.],2003.

    [7] Nunes L M,Paciornik S,d′Almeida J R M.Evaluation of the damaged area of glass-fiber-reinforced epoxy-matrix composite materials submitted to ballistic impacts[J].Composites Science and Technology,2004,64(7/8):945-954.

    [8] da Silva J E L,Paciornik S,d′Almeida J R M.Evaluation of the effect of the ballistic damaged area on the redusial impact strength and tensile stiffness of glass-fabric composite materials[J].Composites Structures,2004,4(1):123-127.

    [9] Ean Jinjuan,Zhao Xu,Chen Xiaoquan.Compression damage characteristics of composite laminates after low velocity impact[J].Eailure Analysis and Prevention,2006,1(2):33-35.

    [10]Nakatani H,Tatsuro K,Osaka K,et al.Damage characterization of titanium/GERP hybrid laminates subjected to low-velocity impact[J].Composites Part A:Applied Science and Manufacturing,2011,42(7): 772-781.

    [11]Cortés P,Cantwell W J.The impact properties of high temperature fiber metal laminates[J].Journal of Composite Materials,2007,41(5):613-632.

    [12]Chen Changhai,Zhu Xi,Hou Hailiang,et al.An experimental research on low-velocity projectiles perforating fiber and metal combined thin targets[J]. Acta Armamentarii,2012,33(12):1473-1479.

    [13]Chen Changhai,Zhu Xi,Hou Hailiang,et al.Influence of structure configuration on perforation-resistance of a warship topside composite armor system[J].Journal of Vibartion and Shock,2013,32(14): 58-63.

    [14]Lee S W R,Sun C T.Dynamic penetration of graphite/epoxy laminates impacted by a blunt-ended projectile[J].Composites Science and Technology,1993,49(4):369-380.

    [15]Ellert E P,Cimpoeru S J,Woodward R L.A study of the effect of target thickness on the ballisticperforation of glass-fibre-reinforced plastic composites[J]. International Journal of Impact Engineering,2000,24(5):445-456.

    [16]Jin Ziming,Sui Jinling,Zhang Hanying,et al.Study of ballistic performance and research process of fiber reinforced composite bulletproof plate[J].Glass Eiber Reinforced Plastic,2001,(1):1-6.

    [17]Chen Xiaoquan,Kou Changhe,Li Zhengneng.Study on damage of composite honeycomb core sandwich panels under low velocity impact[J].Acta Materiae Compositae Sinica,1998,15(3):124-128.

    (Executive editor:Zhang Tong)

    O324 Document code:A Article ID:1005-1120(2015)01-0121-07

    *Corresponding author:Huan Dajun,Lecturer,E-mail:huandj@nuaa.edu.cn.

    How to cite this article:Huan Dajun,Ding Bing,Li Yong,et al.High velocity impact experiment on Ti/CERP/Ti sandwich structure[J].Trans.Nanjing U.Aero.Astro.,2015,32(1):121-127.

    http://dx.doi.org/10.16356/j.1005-1120.2015.01.121

    (Received 7 November 2014;revised 5 January 2015;accepted 12 January 2015)

    猜你喜歡
    李勇大軍
    Reciprocal transformations of the space–time shifted nonlocal short pulse equations
    Mild moxibustion plus loratadine tablets for children with allergic rhinitis: a randomized controlled trial
    小天使·一年級語數(shù)英綜合(2021年11期)2021-11-23 02:48:57
    組圖:豐收中國
    李勇作品選
    齊魯藝苑(2019年5期)2019-11-09 02:57:58
    Wave-current i*mpacts on surface-piercing structure based on a fully nonlinear numerical tank
    李勇:不再有一顆糾結(jié)的心
    人體免疫大軍之神經(jīng)元
    人體免疫大軍之皮膚
    人體免疫大軍之淋巴結(jié)
    最近最新免费中文字幕在线| 人妻久久中文字幕网| 国产成年人精品一区二区| 久久午夜亚洲精品久久| www.色视频.com| 亚洲经典国产精华液单| 成人一区二区视频在线观看| 亚洲欧美精品综合久久99| 舔av片在线| 国产伦精品一区二区三区视频9| 日本黄色视频三级网站网址| 波多野结衣巨乳人妻| aaaaa片日本免费| 久久99热6这里只有精品| 日韩人妻高清精品专区| 国产探花在线观看一区二区| 国产美女午夜福利| 国产午夜福利久久久久久| 一级黄片播放器| 一个人免费在线观看电影| 日韩欧美精品v在线| 久久国产乱子免费精品| 国产亚洲精品av在线| a级一级毛片免费在线观看| 中国美白少妇内射xxxbb| 国产aⅴ精品一区二区三区波| 精品人妻熟女av久视频| 亚洲精华国产精华精| 国产精品自产拍在线观看55亚洲| 搞女人的毛片| 国产在线精品亚洲第一网站| 久久久久精品国产欧美久久久| 国内久久婷婷六月综合欲色啪| 美女 人体艺术 gogo| 色综合婷婷激情| 午夜久久久久精精品| 久久6这里有精品| 淫秽高清视频在线观看| 欧美bdsm另类| 亚洲精品亚洲一区二区| 免费观看在线日韩| 一个人看的www免费观看视频| 亚洲va日本ⅴa欧美va伊人久久| 老熟妇乱子伦视频在线观看| av天堂中文字幕网| 午夜久久久久精精品| 一个人免费在线观看电影| 性色avwww在线观看| 99久久无色码亚洲精品果冻| 国产精品一及| 国产伦在线观看视频一区| 观看免费一级毛片| 国产精品人妻久久久影院| 性插视频无遮挡在线免费观看| 香蕉av资源在线| 日日啪夜夜撸| 亚洲经典国产精华液单| 又黄又爽又刺激的免费视频.| 内地一区二区视频在线| 亚洲男人的天堂狠狠| 国产美女午夜福利| 久久国内精品自在自线图片| 久久久久久久久久黄片| 88av欧美| 3wmmmm亚洲av在线观看| 我的老师免费观看完整版| 日本-黄色视频高清免费观看| 亚洲国产日韩欧美精品在线观看| 直男gayav资源| 欧美国产日韩亚洲一区| 桃色一区二区三区在线观看| 别揉我奶头~嗯~啊~动态视频| 禁无遮挡网站| 午夜福利在线观看吧| 99国产精品一区二区蜜桃av| 舔av片在线| 国产男人的电影天堂91| 色综合站精品国产| 此物有八面人人有两片| 成人特级黄色片久久久久久久| 婷婷亚洲欧美| av黄色大香蕉| 日本 欧美在线| 欧美激情在线99| 97人妻精品一区二区三区麻豆| 人人妻人人看人人澡| 国内久久婷婷六月综合欲色啪| 特大巨黑吊av在线直播| 国产欧美日韩一区二区精品| 免费观看人在逋| 亚洲综合色惰| 日本五十路高清| 中文亚洲av片在线观看爽| 韩国av一区二区三区四区| 亚洲人成网站高清观看| 成人亚洲精品av一区二区| 久久久久性生活片| 亚洲精品久久国产高清桃花| 国内毛片毛片毛片毛片毛片| 亚洲欧美清纯卡通| 久久久久性生活片| 麻豆精品久久久久久蜜桃| 狂野欧美白嫩少妇大欣赏| 18禁在线播放成人免费| 日本与韩国留学比较| 欧美+日韩+精品| xxxwww97欧美| 国产高清有码在线观看视频| 色噜噜av男人的天堂激情| 色综合色国产| 乱码一卡2卡4卡精品| 三级毛片av免费| 深爱激情五月婷婷| 国产主播在线观看一区二区| 999久久久精品免费观看国产| 人妻丰满熟妇av一区二区三区| 乱系列少妇在线播放| 中文字幕熟女人妻在线| www日本黄色视频网| 真人做人爱边吃奶动态| 午夜视频国产福利| 最近在线观看免费完整版| 亚洲性夜色夜夜综合| 无遮挡黄片免费观看| 日韩在线高清观看一区二区三区 | 国产久久久一区二区三区| 一进一出好大好爽视频| 中文字幕人妻熟人妻熟丝袜美| 嫩草影院新地址| 亚洲欧美日韩无卡精品| 黄色一级大片看看| 99久久成人亚洲精品观看| 国产精品美女特级片免费视频播放器| 国产精品爽爽va在线观看网站| 成人三级黄色视频| 精品福利观看| 欧美国产日韩亚洲一区| 久久午夜亚洲精品久久| 国产av不卡久久| 午夜福利18| 欧美最新免费一区二区三区| 久久精品国产亚洲av天美| www.www免费av| 久久中文看片网| 国产高潮美女av| 久久久久久久久中文| 干丝袜人妻中文字幕| 最近最新免费中文字幕在线| 久久中文看片网| 三级国产精品欧美在线观看| 99热这里只有是精品50| 精品欧美国产一区二区三| 国产一区二区三区av在线 | 亚洲中文日韩欧美视频| 极品教师在线视频| 性色avwww在线观看| 精品久久久久久久久av| 成人三级黄色视频| 国产高清不卡午夜福利| 天堂av国产一区二区熟女人妻| 韩国av在线不卡| 亚洲熟妇中文字幕五十中出| 久久久午夜欧美精品| 亚洲色图av天堂| 久久精品国产亚洲av涩爱 | 国语自产精品视频在线第100页| 亚洲性久久影院| 在线国产一区二区在线| 久久久久久久久中文| 人人妻人人看人人澡| 色综合婷婷激情| 欧美日本视频| a级一级毛片免费在线观看| 免费一级毛片在线播放高清视频| 日日夜夜操网爽| 欧美不卡视频在线免费观看| 久久精品国产亚洲av涩爱 | 偷拍熟女少妇极品色| 亚洲av一区综合| 日本免费a在线| 亚洲av一区综合| 国产精品久久久久久av不卡| 色播亚洲综合网| 久久午夜福利片| 欧美xxxx黑人xx丫x性爽| 最后的刺客免费高清国语| 午夜免费激情av| 99久久精品国产国产毛片| 日本一二三区视频观看| 国内精品宾馆在线| 久9热在线精品视频| 麻豆成人午夜福利视频| 1024手机看黄色片| 51国产日韩欧美| 少妇人妻精品综合一区二区 | 亚洲午夜理论影院| 亚洲午夜理论影院| 国产免费男女视频| 欧美不卡视频在线免费观看| 三级男女做爰猛烈吃奶摸视频| 久久香蕉精品热| 人人妻,人人澡人人爽秒播| 国内精品美女久久久久久| 国内少妇人妻偷人精品xxx网站| 国内少妇人妻偷人精品xxx网站| 欧美一区二区精品小视频在线| 国产精品伦人一区二区| 高清毛片免费观看视频网站| 日本一二三区视频观看| 成人性生交大片免费视频hd| 99热6这里只有精品| 桃色一区二区三区在线观看| 老司机午夜福利在线观看视频| 国产精品久久电影中文字幕| 午夜久久久久精精品| 国产探花在线观看一区二区| 色综合婷婷激情| 少妇熟女aⅴ在线视频| 精品福利观看| 永久网站在线| 久久欧美精品欧美久久欧美| 亚洲欧美日韩无卡精品| 一a级毛片在线观看| 久久精品国产清高在天天线| 久久精品夜夜夜夜夜久久蜜豆| 一进一出好大好爽视频| 久久人人爽人人爽人人片va| 有码 亚洲区| 琪琪午夜伦伦电影理论片6080| 国产精品自产拍在线观看55亚洲| 最近中文字幕高清免费大全6 | 热99re8久久精品国产| 桃色一区二区三区在线观看| 干丝袜人妻中文字幕| 在线播放国产精品三级| 亚洲av成人精品一区久久| 18+在线观看网站| 成人国产综合亚洲| 熟女电影av网| 男人舔奶头视频| 日韩精品有码人妻一区| 亚洲自偷自拍三级| 99九九线精品视频在线观看视频| 亚洲aⅴ乱码一区二区在线播放| 禁无遮挡网站| 国产中年淑女户外野战色| 99久国产av精品| 中文字幕人妻熟人妻熟丝袜美| 亚洲av中文字字幕乱码综合| 日韩精品中文字幕看吧| 国产一级毛片七仙女欲春2| 免费看a级黄色片| 成人国产麻豆网| 亚洲av成人av| 搡老妇女老女人老熟妇| 99riav亚洲国产免费| 非洲黑人性xxxx精品又粗又长| 一卡2卡三卡四卡精品乱码亚洲| 国产色爽女视频免费观看| 亚洲国产日韩欧美精品在线观看| 一个人看的www免费观看视频| 国产女主播在线喷水免费视频网站 | 99视频精品全部免费 在线| 99久久久亚洲精品蜜臀av| 18禁黄网站禁片免费观看直播| 在线免费观看的www视频| 成年女人永久免费观看视频| 一夜夜www| 熟女人妻精品中文字幕| 亚洲人成网站高清观看| 精品人妻偷拍中文字幕| 最新中文字幕久久久久| 有码 亚洲区| 日本 欧美在线| 国产美女午夜福利| 校园春色视频在线观看| 国内精品久久久久精免费| 亚洲最大成人中文| 日本黄大片高清| 欧美又色又爽又黄视频| 国产伦精品一区二区三区视频9| 亚洲精品国产成人久久av| 久久6这里有精品| 最近在线观看免费完整版| 一级黄片播放器| 国产综合懂色| 亚洲va日本ⅴa欧美va伊人久久| 亚洲成人久久性| 男女做爰动态图高潮gif福利片| 色综合站精品国产| 一边摸一边抽搐一进一小说| 夜夜夜夜夜久久久久| 黄色欧美视频在线观看| 亚洲国产日韩欧美精品在线观看| 一级黄色大片毛片| 午夜福利在线在线| 我的女老师完整版在线观看| 观看美女的网站| 一本一本综合久久| 亚洲男人的天堂狠狠| 色综合婷婷激情| 免费观看在线日韩| 一a级毛片在线观看| 露出奶头的视频| 国产亚洲av嫩草精品影院| 久久草成人影院| 成人精品一区二区免费| 三级男女做爰猛烈吃奶摸视频| 午夜福利18| 女生性感内裤真人,穿戴方法视频| 久久天躁狠狠躁夜夜2o2o| 国产亚洲欧美98| 日日夜夜操网爽| 久久香蕉精品热| 少妇丰满av| 99久久精品一区二区三区| 欧美最新免费一区二区三区| 村上凉子中文字幕在线| 男女边吃奶边做爰视频| 一本久久中文字幕| 精品午夜福利视频在线观看一区| 赤兔流量卡办理| 全区人妻精品视频| avwww免费| 少妇裸体淫交视频免费看高清| 99精品久久久久人妻精品| 天堂影院成人在线观看| 看免费成人av毛片| 成人国产一区最新在线观看| 色综合亚洲欧美另类图片| 国产高清有码在线观看视频| 在线看三级毛片| 窝窝影院91人妻| 小说图片视频综合网站| 少妇被粗大猛烈的视频| 欧美性感艳星| 国产真实乱freesex| 中文字幕人妻熟人妻熟丝袜美| 黄色配什么色好看| 中亚洲国语对白在线视频| 韩国av在线不卡| 日日摸夜夜添夜夜添小说| 村上凉子中文字幕在线| 国产精品久久视频播放| 色av中文字幕| 变态另类成人亚洲欧美熟女| 日韩精品青青久久久久久| 国产av不卡久久| 欧美在线一区亚洲| 男人狂女人下面高潮的视频| 亚洲精华国产精华液的使用体验 | 中亚洲国语对白在线视频| 色av中文字幕| 不卡视频在线观看欧美| 国产三级在线视频| 国国产精品蜜臀av免费| 午夜精品久久久久久毛片777| 久久国产精品人妻蜜桃| 又紧又爽又黄一区二区| 搡女人真爽免费视频火全软件 | av在线观看视频网站免费| 精品久久国产蜜桃| 精品欧美国产一区二区三| 久久国产精品人妻蜜桃| 在线观看免费视频日本深夜| 久久婷婷人人爽人人干人人爱| 久久久久久久精品吃奶| 婷婷丁香在线五月| 欧美激情国产日韩精品一区| 亚洲自拍偷在线| av在线天堂中文字幕| 国产视频内射| 欧美日韩国产亚洲二区| 最好的美女福利视频网| 亚洲性夜色夜夜综合| aaaaa片日本免费| 91在线观看av| 人人妻人人澡欧美一区二区| 俄罗斯特黄特色一大片| 99热6这里只有精品| 看黄色毛片网站| 99国产极品粉嫩在线观看| 亚洲最大成人av| 夜夜夜夜夜久久久久| 国产伦一二天堂av在线观看| 国产午夜精品久久久久久一区二区三区 | 高清在线国产一区| 亚洲av五月六月丁香网| 欧美bdsm另类| 啪啪无遮挡十八禁网站| 亚洲美女搞黄在线观看 | 一个人看视频在线观看www免费| 自拍偷自拍亚洲精品老妇| 欧美日韩乱码在线| 久久草成人影院| 欧美激情久久久久久爽电影| 日本色播在线视频| 欧美成人性av电影在线观看| 如何舔出高潮| 亚洲av二区三区四区| 日日撸夜夜添| 给我免费播放毛片高清在线观看| 成人美女网站在线观看视频| 成人av一区二区三区在线看| 久久精品综合一区二区三区| 午夜激情福利司机影院| 国产成人一区二区在线| 五月伊人婷婷丁香| 欧美黑人巨大hd| 九色国产91popny在线| 日本黄大片高清| 国国产精品蜜臀av免费| 国产日本99.免费观看| 国产午夜精品论理片| 日韩欧美精品v在线| 欧美在线一区亚洲| 精品人妻一区二区三区麻豆 | 别揉我奶头 嗯啊视频| 麻豆成人av在线观看| 国产精品一区二区三区四区久久| 亚洲人与动物交配视频| 日日摸夜夜添夜夜添av毛片 | 久99久视频精品免费| 日韩大尺度精品在线看网址| 一区二区三区高清视频在线| 琪琪午夜伦伦电影理论片6080| 97超级碰碰碰精品色视频在线观看| 麻豆一二三区av精品| 国产一区二区三区av在线 | 国产激情偷乱视频一区二区| av中文乱码字幕在线| 69av精品久久久久久| 在线播放国产精品三级| 不卡一级毛片| 九九热线精品视视频播放| 欧美精品国产亚洲| 久久精品国产亚洲网站| 亚洲午夜理论影院| 久久国产乱子免费精品| 一区二区三区免费毛片| 免费在线观看日本一区| 亚洲真实伦在线观看| 一区二区三区四区激情视频 | 一级a爱片免费观看的视频| 欧美黑人巨大hd| 精品国内亚洲2022精品成人| 国产精品久久久久久亚洲av鲁大| 狠狠狠狠99中文字幕| 国产精品久久电影中文字幕| 免费观看在线日韩| a级毛片a级免费在线| 如何舔出高潮| 动漫黄色视频在线观看| 日韩强制内射视频| 亚洲久久久久久中文字幕| 日本黄大片高清| 国产精品女同一区二区软件 | 精品人妻视频免费看| 日韩高清综合在线| 国产精品野战在线观看| 18禁黄网站禁片免费观看直播| 一本久久中文字幕| 亚洲午夜理论影院| 黄色女人牲交| 国产精品一区www在线观看 | 国产伦精品一区二区三区视频9| 一区二区三区免费毛片| 成人欧美大片| 五月伊人婷婷丁香| 毛片女人毛片| 久久久久久久久久成人| 99久久中文字幕三级久久日本| 狂野欧美白嫩少妇大欣赏| 色综合色国产| 男女边吃奶边做爰视频| 校园春色视频在线观看| 99久久久亚洲精品蜜臀av| 最近中文字幕高清免费大全6 | 亚洲经典国产精华液单| 女生性感内裤真人,穿戴方法视频| 亚洲欧美精品综合久久99| 夜夜看夜夜爽夜夜摸| av在线天堂中文字幕| 国产又黄又爽又无遮挡在线| 精品人妻1区二区| 性色avwww在线观看| 亚洲国产日韩欧美精品在线观看| 精品一区二区免费观看| 午夜激情福利司机影院| av天堂中文字幕网| 狂野欧美激情性xxxx在线观看| 精品99又大又爽又粗少妇毛片 | 国模一区二区三区四区视频| 色综合婷婷激情| 国产精品一及| 性欧美人与动物交配| 国产一区二区三区视频了| 亚洲av一区综合| 啦啦啦观看免费观看视频高清| 五月伊人婷婷丁香| 熟女人妻精品中文字幕| 欧美最新免费一区二区三区| 噜噜噜噜噜久久久久久91| 高清在线国产一区| 免费看a级黄色片| 亚洲av免费高清在线观看| 看免费成人av毛片| 琪琪午夜伦伦电影理论片6080| 欧美国产日韩亚洲一区| 日韩人妻高清精品专区| 成人无遮挡网站| 国产精品不卡视频一区二区| 欧美黑人欧美精品刺激| 国产单亲对白刺激| 国内精品美女久久久久久| 免费人成视频x8x8入口观看| 午夜日韩欧美国产| 日日撸夜夜添| 国产精品久久久久久久久免| 亚洲成人久久性| 午夜福利在线观看吧| 久久久久久久久久成人| 床上黄色一级片| 天堂影院成人在线观看| 美女大奶头视频| 国产人妻一区二区三区在| 日韩精品中文字幕看吧| 露出奶头的视频| 天堂网av新在线| 国产精品久久久久久精品电影| 又爽又黄无遮挡网站| 久久久久久九九精品二区国产| 性插视频无遮挡在线免费观看| av在线亚洲专区| 亚洲精品粉嫩美女一区| 乱码一卡2卡4卡精品| 男人舔女人下体高潮全视频| 国产成人av教育| 不卡一级毛片| 午夜福利在线观看吧| 亚洲最大成人中文| 国产一区二区三区在线臀色熟女| 亚洲av成人精品一区久久| 久久精品国产自在天天线| 在线看三级毛片| 国产乱人视频| 一本一本综合久久| 在线观看免费视频日本深夜| 欧美zozozo另类| 国产精品亚洲美女久久久| 亚洲熟妇熟女久久| 十八禁国产超污无遮挡网站| 精品国产三级普通话版| 中出人妻视频一区二区| 日本五十路高清| 51国产日韩欧美| 精品一区二区三区视频在线观看免费| 男女视频在线观看网站免费| 两性午夜刺激爽爽歪歪视频在线观看| 精品久久久久久久久av| 久久久久久久亚洲中文字幕| 色综合亚洲欧美另类图片| 一卡2卡三卡四卡精品乱码亚洲| 国产男靠女视频免费网站| 黄色视频,在线免费观看| 国产精品伦人一区二区| 国产精品久久久久久亚洲av鲁大| 夜夜爽天天搞| 成人美女网站在线观看视频| 九九久久精品国产亚洲av麻豆| 特大巨黑吊av在线直播| 国产午夜精品久久久久久一区二区三区 | 白带黄色成豆腐渣| 日本免费a在线| 国产精品亚洲美女久久久| 听说在线观看完整版免费高清| 午夜视频国产福利| 国产精品三级大全| 欧美一级a爱片免费观看看| 亚洲一级一片aⅴ在线观看| 久久久久久久亚洲中文字幕| 免费电影在线观看免费观看| 亚洲欧美精品综合久久99| 久久国产乱子免费精品| 成人鲁丝片一二三区免费| 国产精品福利在线免费观看| 麻豆精品久久久久久蜜桃| 又粗又爽又猛毛片免费看| 国产美女午夜福利| 精品人妻偷拍中文字幕| 乱系列少妇在线播放| 国产爱豆传媒在线观看| 日韩亚洲欧美综合| 999久久久精品免费观看国产| 亚洲四区av| 亚洲一区二区三区色噜噜| 一本一本综合久久| 人妻夜夜爽99麻豆av| 精品一区二区三区视频在线| 日本黄大片高清| 99在线视频只有这里精品首页| 人妻夜夜爽99麻豆av| 成人av在线播放网站| 久久热精品热| 精品无人区乱码1区二区| 又粗又爽又猛毛片免费看| 午夜激情福利司机影院| 日日啪夜夜撸| 性欧美人与动物交配| 美女免费视频网站| 亚洲男人的天堂狠狠| 色噜噜av男人的天堂激情| 日本三级黄在线观看| 我的女老师完整版在线观看| 日本一本二区三区精品|