• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Flight Dynamic Analysis of Hypersonic Vehicle Considering Liquid-Solid Coupling

    2015-11-21 07:09:07XuXiaodong徐曉東HuangYimin黃一敏CaiXiaobin蔡曉斌

    Xu Xiaodong(徐曉東),Huang Yimin(黃一敏),Cai Xiaobin(蔡曉斌)

    1.College of Automation Engineering,Nanjing University of Aeronautics and Astronautic,Nanjing 210016,P.R.China;

    2.Research Institute of UAV,Nanjing University of Aeronautics and Astronautic,Nanjing 210016,P.R.China;

    3.95835 PLA Troops,Malan 841700,P.R.China

    Flight Dynamic Analysis of Hypersonic Vehicle Considering Liquid-Solid Coupling

    Xu Xiaodong(徐曉東)1,2*,Huang Yimin(黃一敏)1,Cai Xiaobin(蔡曉斌)3

    1.College of Automation Engineering,Nanjing University of Aeronautics and Astronautic,Nanjing 210016,P.R.China;

    2.Research Institute of UAV,Nanjing University of Aeronautics and Astronautic,Nanjing 210016,P.R.China;

    3.95835 PLA Troops,Malan 841700,P.R.China

    With the liquid propellant making up 60%—70%of the takeoff weight of the hypersonic vehicle,the dynamic load caused by great propellant sloshing interacts with the flexible structure of the aircraft.Therefore,the dynamic model displays characteristics of strong coupling with structure/control and nonlinearity.Based on the sloshing mass dynamic simplified as a spring-mass-damping model,a rigid-flexible-sloshing model is constructed. Moreover,the effect on the dynamic performance of the coupled model is analyzed with changing frequency and damping.The results show that propellant sloshing dynamics significantly affects the rigid body motion modes,especially flexible mode and short mode.The right half plane pole(RHP)moves far from the imaginary axis with the consumption of the propellant.The flexible mode attenuates with the increase of the sloshing damping,and the coupling becomes stronger when sloshing frequency is close to the short mode frequency or the flexible frequency of the beam.

    hypersonic vehicles;liquid propellant sloshing;coupling model;structure vibration

    0 Introduction

    Air-breathing hypersonic vehicle(AHV)such as X51 using the scramjet engine or a combination of multi-engines is a promising and costefficient technology for launching low-earth-orbit satellites and providing rapid global-response capabilities,which has received much attention especially in commercial and military fields.It has also become a key issue in the next generation of hypersonic space transportation[1-2].

    The hypersonic vehicle is normally considered as the lifting-body configuration.The design is such that the forward fuselage of aircraft creates a bow shock that acts as a compression system for the scramjet engine.The structural modes of this kind of vehicles also play an important role.Besides,the pressure on the fore body produces lift and a nose-up pitching moment.Downstream of the scramjet engine,the aircraft is shaped such that there is an external expansion of the exhaust gases[3].The pressure on the aft body is a function of the pressure of the exhaust gas as it exits the scramjet engine and this pressure contributes to the lift of the vehicle.The vibrating of fuselage effectively changes the pressure distribution over the aircraft,and then brings additional perturbations with thrust,lift,drag,and pitching moment as well.Therefore,the dynamics of airbreathing hypersonic vehicles include great coupling between the scramjet propulsion and flight dynamics,in addition to the interactions between flexible and rigid modes.

    Studies have shown that the hypersonic vehi-cle generally uses a combination of rockets and scramjet.The liquid propellant carried by the AHV makes up 60%—70%of the total weight[4].Elight maneuvering causes great liquid propellant sloshing and induces hydraulic load,which has more impact on the structure and creates larger disturbance to the control system with the increasing proportion of the propellant to the total mass of the vehicle.On the one hand,a great deal of liquid propellant brings a large disturbing force and moment,which,once outside the limit that the control system can adjust,will cause the instability of flight;on the other hand,the hypersonic aircraft configuration like″waverider″with large slenderness ratio has a small mass coefficient of the fuselage structure and lower frequency of structure simultaneously[5].When the vehicle vibration frequency is close to the liquid propellant sloshing frequency in the tank,the coupling effect may produce the fluid solid coupling vibration(such as POGO vibration)and then affect aircraft stability.Therefore it is necessary to establish a hypersonic flight dynamics model of multi physical field coupling,taking into account the effect of deformation and the dynamic coupling effect of the propellant mass distribution,consumption and periodic motion on the control system.

    In recent years,a large amount of theoretical work has been carried out in this field to meet modern requirements for elaborate AHV model oriented to control system design.A comprehensive analytical model of the longitudinal dynamics of an AHV with an emphasis on dynamic/structure/propulsion was proposed[5].The linearized aircraft dynamics is found to be unstable and exhibits non-minimum phase behavior.The two-dimensional simplified motion model with the propulsion coupling is constructed and based on the analysis of the scramjet,hypersonic aircraft short period mode and aero-servo-elasticity effect.The control-oriented model with the coupling with rigid/flexible mode was established and the influence of the coupling on the nonlinear control system was analyzed[6-7].Liu established a parameterized model of hypersonic vehicles,which took into account the multidisciplinary integration including aerodynamic,propulsion and structure[8].Bolender and Doman analyzed the influence of aerodynamic heating on the bending stiffness and elastic modulus affected by the aerodynamic heating effect[9-10].But these studies do not consider the coupling effects of dynamic behavior of liquid propellant sloshing on hypersonic vehicle structure and the stability of flight.

    An elaborate rigid/flexible/liquid/control dynamic model is built in this paper,which considers the periodic motion of liquid propellant.Then the vibration modes are compared and analyzed based on an equivalent model,an elastic beam model involving propellant sloshing.Einally the impact of propellant mass and the changes in the damping and frequency of propellant vibration on hypersonic dynamic stability is analyzed.

    1 Structure Characteristics of Hypersonic Vehicle

    The present paper takes an AHV as the research object,the geometric configuration of which is shown in Eig.1,where Lfis the length of fore-body,Lnthe nominal nacelle length,and Lathe length of aft-body.Other parameters are listed in Ref.[3].

    Eig.1 Hypersonic vehicle structure model

    The geometric configuration is a typical representative of AHV:the scramjet engine is arranged in the lower abdomen of body.The fore body,as the inlet compression section,can make the gas experience multi-stage pre-compression. After the compression,inlet flow density and pressure can be increased;the lower wall of the aft body,as the external expansion section of thenozzle,can improve aerodynamic lift and propulsive efficiency without inducing drag.Due to the use of″waverider″aerodynamic characteristics of the aircraft body,the cross section from the nose to the middle of the fuselage gradually increases and that from the middle to the rear of the fuselage gradually decreases.Therefore the section moment of inertia changes gradually and the effect on body flexible modes should not be neglected. According to the description in Ref.[11],mission equipment layout of AHV is shown in Eig.2.

    Eig.2 Notional internal volume layout

    Different from the hypothesis in Ref.[11],AHV fuselage structure will be equivalent to the beam with variable rectangle hollow section,the principal inertia axis of which is taken as the centroid to y.Based on the integrated design strategy of structure/thrust,the layout of the structure is as follows:the propulsion system is placed at the middle of the vehicle,and the head and rear parts serve as the additional structure of the compression and expansion sections of the propulsion system,respectively.So the section stiffness EI gradually changes in the longitudinal direction,as shown in Eig.3.

    Eig.3 Change of cross-section EI along longitudinal

    The main parameters run as follows

    The additional aerodynamic and structural parameters were described in Ref.[11].The vehicle body was simplified as a cantilever beam with mass center fixed.

    2 Nonlinear Coupling Model of Hypersonic Vehicle

    Eor liquid propellant dynamics,usually only the lower order is considered and the sloshing mass of the second order is only 3%of that of the first order.Also in the case of higher orders,the dynamics inside the liquid will produce turbulent disturbances and thus damping surge.Therefore the orders above the second can be ignored[12]. Assuming the liquid propellant is ideal incompressible fluid,equivalent mechanical model is generally used to analyze the dynamic behavior of liquid propellant.The model has the same kinetic behavior as the corresponding order sloshing.The aim of this paper is to analyze the effects of propellant dynamics on the structure and control system based on spring-mass-damping equivalent model.

    Two kinds of strategy have been adopted to introduce the dynamic characteristics of liquid sloshing into elastic structure:(1)The propellant and flexible aircraft are modeled independently. Then the parameters of the sloshing dynamics,such as stiffness,damping and inertia are derived and coupled to a system model in the generalized coordinates,which is solved simultaneously.This approach is complex and can leak items easily;(2)In the analysis of the elastic deformation of the vehicle vibration,the influence of the characteristics of propellant sloshing is introduced to the model of flexible structure.Therefore,the deformation of elastic beam vibration with multiple sloshing mass distribution on the structure is calculated.In this paper,the conclusion is based on the second way and the vibration mode of elasticbeam containing sloshing mass is calculated with finite element method(EEM).The AHV equivalent model with liquid sloshing is described in Eig.4,where m1,m2are the equivalent mass coefficients;k1,k2the equivalent stiffness coefficients,and c1,c2the equivalent damping coefficients,respectively.

    Eig.4 AHV with liquid sloshing and its equivalent mechanical model

    The continuous system of the equivalent free beam structure corresponding with the mass,the section moment of inertia and the elastic modules is divided into 500 beam elements along the longitudinal direction.The liquid propellant is simplified as concentrated mass with shaking,and the establishment of spring element,mass element and damping element is deduced.The inertial force and aerodynamic force are put on the unit as the load,and then the element equilibrium equation represented by nodal displacement is obtained.

    where m is the mass matrix,c the damping matrix,k the stiffness matrix,δthe displacement matrix,and F the load matrix.

    Through coordinate transformation,the local differential equations of unit are assembled into an equilibrium equation under the global coordinate and the global variable matrixes are capitalized

    The generalized eigenvalue problem is solved with the calculus of variations for energy and the natural frequency and modal shape of the sloshing mass free beam are obtained.Eig.5 shows the first three-order modes of the two beams,with one characterized by even distribution without coupling and the other containing sloshing mass coupling.

    Eig.5 Comparison of the first three mode shape

    The first three modes are compared in the two cases:even mass distribution[11]and equivalent elastic beam as mass-spring model,as shown in Table 1.The first three-order vibration frequency of equivalent elastic beam including liquid sloshing increases by about 16%and is closely related to the mass distribution.The elaborate AHV model must consider the liquid sloshing because the sloshing changes the mode of vibration of the elastic beam and thus indirectly affects the vehicle dynamics.It is necessary to establish a nonlinear dynamic model coupled with rigid/flexible body-liquid-control,which can describe the complex dynamic behavior of hypersonic airplane system.

    Table 1 Comparison of frequencies of the first three modes

    The analysis is based on the following hypotheses:

    (1)The frequency of rigid body moving in a wide range rarely couples with elastic beam,and the effect is mainly imposed through the interaction between structure deformations and that between loads.

    (2)The tank of propellant is rigid and propellant sloshing does not couple with the rigid tank.The dynamic load derived from propellant sloshing acts on the aircraft structure.

    With the aircraft flexible mode and propellant sloshing coupling aerodynamic taken into account,the hypersonic aircraft flight dynamics model is expressed by Eq.(3)

    Andδ(x-xi)is Dirac function,which is satisfied for

    The aerodynamic force,moment and thrust were calculated with the fitted model given in Ref.[13],which used the oblique shock theory based on the Rayleigh flow principle to estimate the hypersonic scramjet engine thrust.And the lift,drag and pitch moment were obtained with the Prandtl-Meyer expansion theory.The calculation formula is as follows

    The above modeling process shows that,when the AHV states change,the additional item of inertia force caused by sloshing is added to the flexible model,which reflects the dynamic characteristics of elastic aircraft more accurately.

    3 Analysis of Hypersonic Nonlinear Dynamics Model

    To study the open-loop dynamics,the vehicle is trimmed in level flight at Mach 8 and altitude of 25.9 km.The balance states and dynamic characteristics are analyzed with the nonlinear dynamics model with the assumption that the mass of the rigid beam is distributed evenly and that equivalent elastic beam contains liquid sloshing mass. u=[δe,φ]Tis the control input,whereδeis elevator angle andφequivalent fuel ratio.The output variable y=[V,γ]Tis the speed and flight path angle.By trimming the open-loop transfer function,poles and zeros are calculated and shown in Table 2.

    The analysis of Table 2 shows:in contrast with the rigid body model,in the elastic coupling model three elastic vibration equations are added and it has nine eigenvalues representing highly modal,phugoid period mode,short period modeand aeroelastic modes.Time-varying state of aircraft movement is the superposition of all the modes.Table 3 gives the corresponding transfer function zeros and there is a non minimum phase zero inherent in the dynamic system.

    Table 2 Open-loop poles at Mach 8 in 25.9 km level flight

    Table 3 Open-loop zeros at Mach 8 in 25.9 km level flight

    The static stability and dynamic characteristics of a vehicle are determined by the zeros/poles′position of closed-loop system.If the liquid propellant sloshing is considered,the dynamic characteristics,especially the minimum phase of hypersonic vehicle system have changed.Through poles comparison,the poles of long period mode and the unstable poles of short period mode are increasing sequentially for rigid beam,even mass equivalent beam and the sloshing mass equivalent beam.Also the pole of the height modal moves close to the imaginary axis gradually and the stabilization time of height modal increases.In order to improve the maneuverability of the aircraft,it is necessary to relax static stability so that the vehicle has the right half plane poles(RHPs),whose position determines the lower limit of the bandwidth of the closed-loop control system.If the liquid sloshing effect is taken into consideration,the frequencies of the first to the third order of the aeroelastic modal decrease.The elastic vibration and rigid motion are coupled greatly. When the aeroelastic vibration frequency decreases,it narrows the bandwidth of the closed loop control system and may result in the bandwidth overlapping between structure and actuator,thus leading to control system instability.In addition,as the effect of liquid sloshing is concerned,the right half plane zero moves slightly towards the imaginary axis.To track the guidance signal,the control system is usually required to have cut-off frequency more than three times high as that of the guidance loop[14-17].Therefore,the left-shifting zero of the closed-loop system reduces the frequency range,which is unfavorable to the stability of the system.

    To evaluate the effect of the mass of liquid propellant consumption on the dynamic characteristics of the aircraft,the state equations are linearized with a cruise stage different separately with the fuel consumption ratio as a constant.The poles and zeros are calculated under the condition that liquid fuel consumption satisfies the linear distribution.The analytical results are shown in Eig 6.

    Eig.6 Effect of poles/zeros due to liquid fuel consumption

    The sloshing behavior of the liquid propellant affects the vibration modes of the elastic beam. Suppose further that 50%the liquid propellant remains,the zeros and poles are obtained by changing the damping and frequency of liquid sloshing in the finite element model.The zeros and poles of the distribution of the linear model are shown in Eigs.7,8.

    Conclusions can be drawn from Eigs.6—8:

    (1)With the decrease of liquid propellant mass,the modal frequency of vehicle vibration increases and the short period mode poles move slightly to the right half axis plane.The RHP zeros close to the imaginary axis move gradually away from the imaginary axis,having little effect on the stability of the open loop of the vehicle.At the same time,the RHP zeros have weaker control over the control system.All these increase the response speed of the system to a certainextent.

    Eig.7 Effect of poles/zeros due to liquid propellant sloshing damping

    Eig.8 Effect of poles/zeros due to liquid propellant sloshing frequency

    (2)The influence of liquid propellant sloshing on the elastic vibration of the vehicle is analyzed.When the damping varies from 0.05 to 0.3,the zero moves away from the imaginary axis substantially.Damping increase can quickly stabilize the aircraft flexible mode and therefore reduce the coupling effect with rigid mode with limited impact on the other modes.

    (3)Whenω=5 rad/s,the sloshing frequency of equivalent spring mass model is similar to that of the short period mode.The poles of short period mode move gradually close to the imaginary axis,which indictes that the coupling effects between the sloshing and the first-order short period mode.When the frequency continues to increase,the poles of short period change little.When the frequency increases toω≥20 rad/s,the poles of the first-order flexible mode move to the left and the stable time is reduced.When the right half plane zero shifts towards the imaginary axis,the bandwidth of the system is narrowed and therefore affects the stability significantly.Consequently enough attention must be paid to the bandwidth in the design of control system.

    4 Conclusions

    A nonlinear model involving aerodynamics,propulsion system and structural dynamics for airbreathing hypersonic vehicles has been presented,which considers variable section moment of inertia of elastic beam and liquid propellant sloshing influence.The vibration mode of equivalent elastic beam including the liquid sloshing is calculated with numerical method.The zeros and poles are compared under different conditions,and the following conclusions are drawn:

    (1)Liquid propellant motion affects the dynamic characteristics of AHV short period when the sloshing frequency is lower than the natural frequency.With the reduction of the propellant and the increase of the damping of liquid propellant sloshing,the zero on the right half plane moves away from the imaginary axis gradually,but the variation is slow and the zero remains close to the imaginary axis,which limits the bandwidth of the control system.

    (2)When the frequency of the propellant sloshing is close to that of the vibration,the poles of short period move towards the imaginary axis and may lead to serious instability.When the sloshing frequency increases further,the poles of the first-order elastic modal shift to the left and the stable response time is reduced.In the meantime the right half plane zero shifts close to the imaginary axis and the bandwidth of the control system is decreased.Therefore,in the conceptual design of hypersonic aircrafts great attention must be paid to the undesirable effects of the liquid propellant sloshing on the flight dynamic characteristics.

    Eurther research will consider the effects of the disturbance and changes in the zeros and polescaused by the propellant sloshing in the system. A modern robust controller will be designed to meet the strict requirements for the bandwidth and stability of the AHV system.

    Acknowledgement

    This work was supported by the Eundamental Research Eunds for the Central Universities(No. NS2015097).

    [1] Eiorentini L,Serrani A,Bolender M A,et al.Nonlinear robust adaptive control of flexible air-breathing hypersonic vehicles[J].Journal of Guidance,Control,and Dynamics,2009,32(2):401-416.

    [2] Su E L,Luo J J.Modeling and analysis of hypersonic vehicle considering variable cross-section moment of inertia and aerodynamics heating[J].Journal of Astronautics,2012,33(6):690-697.(in Chinese)

    [3] Bolender M A,Doman D B.Nonlinear longitudinal dynamics model of an airbreathing hypersonic vehicle[J].Journal of Spacecraft and Rockets,2007,44(2): 374-386.

    [4] Abramson H N.The dynamic behavior of liquids in moving containers[R].NASA SP-106,1966.

    [5] Wu Z G,Chu L E,Yang C,et al.Study on aeroservoelasticity of hypersonic vehicle with thrust coupling[J].Acta Aeronoutica et Astronautica Sinica,2012,33(8):1555-1363.(in Chinese)

    [6] Sigthorsson D O.Control-oriented modeling and output feedback control of hypersonic air-breathing vehicles[D].Ohio:The Ohio State University,2008.

    [7] Rodriguez A A,Dickeson J J,Srid-haran S,et al. Control-relevant modeling,analysis,and design for scramjet-powered hypersonic vehicles[R].AIAA Paper 2009-7287,2009.

    [8] Xiao Dibo,Liu Yanbin,Lu Yuping,et al.Optimization on design of integrated control for hypersonic vehicles[J].Journal of Nanjing University of Aeronautics and Astronautics,2012,45(6):752-762.(in Chinese)

    [9] Williams T,Bolender M A,Doman D B,et al.An aero-thermal flexible mode analysis of a hypersonic vehicle[C]∥Proc of AIAA Atmospheric Elight Mechanics Conference and Exhibit.Colorado,USA: AIAA,2006:21-24.

    [10]Bolender M A,Doman D B.Modeling unsteady heating effects on the structural dynamics of a hypersonic vehicle[C]∥Proc of AIAA Atmospheric Elight Mechanics Conference and Exhibit.Colorado:AIAA,2006:21-24.

    [11]Li J L,Tang Z G,Eeng Z W,et al.Modeling and analysis of a hypersonic vehicle with aeroelastic effect[J].Journal of National University of Defense Technology,2013,35(1):7-11.(in Chinese)

    [12]Xu Y W.Control system(Part 2)[M].Beijing:Astronautics Press,1989:489-496.

    [13]Xiang J W,Zeng K C,Nie L.Elastic effects on flight mechanics of waverider[J].Journal of Beijing University of Aeronautics and Astronautics,2012,38(10): 1306-1310.(in Chinese)

    [14]Yang Jun,Yang Chen,Duan Chaoyang.Modern guided missile control system[M].Beijing:Aviation Industry Press,2005:29-30.

    [15]Poulain E,Chatillon O.Nonlinear control of airbreathing hypersonic vehicle[C]∥16th AIAA/DLR/ DGLR Inter-national Space Planes and Hypersonic Systems and Technologies Conference.Bremen,Germany:[s.n.],2009:19-22.

    [16]Clark A D,Mirmirani Maj Dean,Wu C,et al.An aero-propulsion integrated elastic model of a generic airbreathing hypersonic vehicle[R].AIAA Paper 2006-6560,2006.

    [17]Doyle J,Erancis B,Tannenbaum A.Eeedback control theory[M].London,UK:McMillan Publishing Co.,1990:159-164.

    (Executive editor:Zhang Tong)

    V271.9 Document code:A Article ID:1005-1120(2015)01-0081-08

    *Corresponding author:Xu Xiaodong,Associate Researcher,E-mail:xdxu@nuaa.edu.cn.

    How to cite this article:Xu Xiaodong,Huang Yimin,Cai Xiaobin.Elight dynamic analysis of hypersonic vehicle considering liquid-solid coupling[J].Trans.Nanjing U.Aero.Astro.,2015,32(1):81-88.

    http://dx.doi.org/10.16356/j.1005-1120.2015.01.081

    (Received 4 November 2014;revised 24 December 2014;accepted 25 December 2014)

    h日本视频在线播放| 国产成人欧美在线观看| 国产亚洲精品av在线| 午夜两性在线视频| 日本 av在线| 我要看日韩黄色一级片| 非洲黑人性xxxx精品又粗又长| 人妻丰满熟妇av一区二区三区| 亚洲国产精品合色在线| av在线观看视频网站免费| 有码 亚洲区| 最近最新免费中文字幕在线| 国产av一区在线观看免费| 色5月婷婷丁香| 嫩草影视91久久| 天堂√8在线中文| 亚洲黑人精品在线| 在线播放国产精品三级| 动漫黄色视频在线观看| 久久精品影院6| 国产亚洲av嫩草精品影院| 又爽又黄a免费视频| 成年版毛片免费区| 午夜a级毛片| 午夜亚洲福利在线播放| 老司机午夜十八禁免费视频| 搞女人的毛片| 此物有八面人人有两片| 淫秽高清视频在线观看| 色视频www国产| 看黄色毛片网站| 午夜福利高清视频| 乱人视频在线观看| 如何舔出高潮| 欧美最新免费一区二区三区 | 久9热在线精品视频| 国产综合懂色| 悠悠久久av| 国产精品一区二区三区四区久久| 久久九九热精品免费| 国产 一区 欧美 日韩| 在线观看免费视频日本深夜| 美女黄网站色视频| 毛片女人毛片| 国产在线男女| 国产精品野战在线观看| 欧美又色又爽又黄视频| 少妇裸体淫交视频免费看高清| 老司机午夜十八禁免费视频| 亚洲,欧美,日韩| 欧美日本亚洲视频在线播放| 丝袜美腿在线中文| 内地一区二区视频在线| 在线a可以看的网站| 久久精品国产亚洲av香蕉五月| 欧美zozozo另类| 精品日产1卡2卡| 成人高潮视频无遮挡免费网站| 丁香欧美五月| 97热精品久久久久久| 精品人妻一区二区三区麻豆 | 又爽又黄a免费视频| av天堂中文字幕网| 精品午夜福利在线看| 一本一本综合久久| 亚洲午夜理论影院| 亚洲精品成人久久久久久| 51午夜福利影视在线观看| 国产精品亚洲av一区麻豆| 一本综合久久免费| 国产主播在线观看一区二区| 久久性视频一级片| 在线国产一区二区在线| 少妇被粗大猛烈的视频| 十八禁人妻一区二区| 国产大屁股一区二区在线视频| 日韩中文字幕欧美一区二区| 国产免费av片在线观看野外av| 久久午夜福利片| 黄色丝袜av网址大全| 麻豆成人av在线观看| 丰满人妻一区二区三区视频av| 性色avwww在线观看| 最近最新中文字幕大全电影3| 熟女电影av网| 久久久久久久午夜电影| 久久草成人影院| 欧美激情久久久久久爽电影| 久久久成人免费电影| 一边摸一边抽搐一进一小说| 最近最新中文字幕大全电影3| 亚洲精品在线美女| 国产黄a三级三级三级人| 日韩 亚洲 欧美在线| 天堂av国产一区二区熟女人妻| 中文字幕av成人在线电影| 舔av片在线| 国产单亲对白刺激| 一级黄色大片毛片| 长腿黑丝高跟| 男人狂女人下面高潮的视频| 婷婷精品国产亚洲av| 国产免费av片在线观看野外av| 嫁个100分男人电影在线观看| 亚洲在线自拍视频| 亚洲乱码一区二区免费版| 69人妻影院| 内地一区二区视频在线| 国产爱豆传媒在线观看| 91在线精品国自产拍蜜月| 亚洲人成网站在线播| av天堂中文字幕网| 色综合站精品国产| 亚洲男人的天堂狠狠| 国产老妇女一区| 国产精品一区二区三区四区久久| 97超级碰碰碰精品色视频在线观看| 久久久久久久久久成人| 91麻豆精品激情在线观看国产| 男人和女人高潮做爰伦理| 啦啦啦韩国在线观看视频| 午夜福利在线在线| 免费搜索国产男女视频| 亚洲天堂国产精品一区在线| 国产三级中文精品| 亚洲aⅴ乱码一区二区在线播放| 久久伊人香网站| 熟女电影av网| 听说在线观看完整版免费高清| 久久草成人影院| 在线观看66精品国产| 深夜精品福利| 欧美色欧美亚洲另类二区| 国产精品乱码一区二三区的特点| 88av欧美| 亚洲一区高清亚洲精品| 日韩精品中文字幕看吧| 一二三四社区在线视频社区8| 精品无人区乱码1区二区| 特级一级黄色大片| 88av欧美| 如何舔出高潮| 12—13女人毛片做爰片一| 99国产综合亚洲精品| 中文字幕免费在线视频6| 国产精品亚洲一级av第二区| 色哟哟·www| 99热这里只有是精品在线观看 | 欧美乱妇无乱码| 在线国产一区二区在线| 亚洲av.av天堂| 最近在线观看免费完整版| 午夜日韩欧美国产| 一进一出好大好爽视频| 日本黄色片子视频| 亚洲中文字幕日韩| 69人妻影院| 国产色爽女视频免费观看| 大型黄色视频在线免费观看| 久久久久久久精品吃奶| a级一级毛片免费在线观看| 日韩成人在线观看一区二区三区| 欧美成人一区二区免费高清观看| 亚洲中文日韩欧美视频| 亚洲片人在线观看| 中文字幕精品亚洲无线码一区| 国内精品一区二区在线观看| 国产三级黄色录像| 精品午夜福利视频在线观看一区| 一进一出抽搐gif免费好疼| 免费大片18禁| 国内精品久久久久精免费| 成人国产一区最新在线观看| 欧美zozozo另类| 亚洲在线观看片| 亚洲精品在线观看二区| 久久性视频一级片| 国产免费男女视频| 丰满人妻一区二区三区视频av| 午夜激情福利司机影院| 日本黄色视频三级网站网址| 性色av乱码一区二区三区2| 国产av一区在线观看免费| 日韩人妻高清精品专区| 久久久久国内视频| 伊人久久精品亚洲午夜| 一二三四社区在线视频社区8| 久久久国产成人精品二区| 男人舔女人下体高潮全视频| 国产精品美女特级片免费视频播放器| 99国产精品一区二区三区| 美女黄网站色视频| 婷婷丁香在线五月| 1000部很黄的大片| or卡值多少钱| 99热这里只有是精品50| 国产真实伦视频高清在线观看 | 国内精品久久久久精免费| 村上凉子中文字幕在线| 欧美日韩福利视频一区二区| 久久国产精品影院| 嫩草影院精品99| 级片在线观看| av国产免费在线观看| 久久午夜福利片| 中文字幕av在线有码专区| 欧美在线黄色| 久久久久性生活片| 九九在线视频观看精品| 一区二区三区四区激情视频 | 性色av乱码一区二区三区2| 国产在线精品亚洲第一网站| av欧美777| 亚洲成人久久爱视频| 精品福利观看| 免费看美女性在线毛片视频| 国产成人a区在线观看| 亚洲成人精品中文字幕电影| 久99久视频精品免费| 伦理电影大哥的女人| 变态另类丝袜制服| 精品久久久久久成人av| av在线观看视频网站免费| 高清毛片免费观看视频网站| 亚洲一区二区三区不卡视频| 变态另类丝袜制服| 久久国产精品人妻蜜桃| 午夜福利18| 一边摸一边抽搐一进一小说| 日韩精品中文字幕看吧| 超碰av人人做人人爽久久| 亚洲在线观看片| 国产一区二区在线观看日韩| 亚洲欧美激情综合另类| 两个人的视频大全免费| 午夜免费激情av| 欧美乱色亚洲激情| 亚洲av日韩精品久久久久久密| 色尼玛亚洲综合影院| 神马国产精品三级电影在线观看| 男人和女人高潮做爰伦理| 黄色一级大片看看| 90打野战视频偷拍视频| 怎么达到女性高潮| 香蕉av资源在线| 在线看三级毛片| 国产午夜福利久久久久久| 一区二区三区四区激情视频 | 色精品久久人妻99蜜桃| 一个人看视频在线观看www免费| 天堂√8在线中文| 亚洲精品乱码久久久v下载方式| 好男人电影高清在线观看| 久久久久国内视频| 精品福利观看| 岛国在线免费视频观看| 搡老熟女国产l中国老女人| 亚州av有码| 中文字幕免费在线视频6| 欧美又色又爽又黄视频| 亚洲成人久久爱视频| 99视频精品全部免费 在线| 一个人免费在线观看电影| 国产成人a区在线观看| 在线观看一区二区三区| 亚洲欧美精品综合久久99| 在线观看av片永久免费下载| 日韩亚洲欧美综合| 日韩中文字幕欧美一区二区| 国模一区二区三区四区视频| 日韩精品中文字幕看吧| 偷拍熟女少妇极品色| 国产探花在线观看一区二区| 美女高潮喷水抽搐中文字幕| 99久久成人亚洲精品观看| 国产野战对白在线观看| aaaaa片日本免费| 国产一级毛片七仙女欲春2| 日韩av在线大香蕉| 亚洲欧美日韩东京热| 亚洲av日韩精品久久久久久密| av在线老鸭窝| 久久精品国产清高在天天线| 日韩欧美在线二视频| av在线观看视频网站免费| 99精品久久久久人妻精品| av天堂中文字幕网| 色精品久久人妻99蜜桃| 网址你懂的国产日韩在线| 欧美一区二区亚洲| 美女被艹到高潮喷水动态| 国产精品,欧美在线| 91麻豆av在线| 18禁黄网站禁片免费观看直播| 欧美乱妇无乱码| av天堂中文字幕网| 久久天躁狠狠躁夜夜2o2o| 亚洲最大成人中文| а√天堂www在线а√下载| 亚洲中文日韩欧美视频| 丰满乱子伦码专区| 少妇的逼水好多| 波多野结衣高清作品| 尤物成人国产欧美一区二区三区| 日本 av在线| 男人狂女人下面高潮的视频| 国产真实伦视频高清在线观看 | 国产午夜精品论理片| 久久久久久国产a免费观看| 国产aⅴ精品一区二区三区波| 少妇被粗大猛烈的视频| 午夜福利成人在线免费观看| av国产免费在线观看| 成年免费大片在线观看| 亚洲真实伦在线观看| 能在线免费观看的黄片| 久久热精品热| 国产精品美女特级片免费视频播放器| 亚洲最大成人中文| 国产精品免费一区二区三区在线| 免费观看的影片在线观看| 国产精品不卡视频一区二区 | 51午夜福利影视在线观看| 可以在线观看的亚洲视频| 免费av不卡在线播放| 亚洲无线在线观看| 淫妇啪啪啪对白视频| 亚洲精品在线观看二区| 午夜福利视频1000在线观看| 亚洲欧美日韩东京热| 国产成人福利小说| 老司机午夜福利在线观看视频| 亚洲av二区三区四区| 露出奶头的视频| 亚洲欧美日韩高清在线视频| 人人妻人人澡欧美一区二区| 午夜老司机福利剧场| 国产激情偷乱视频一区二区| 男人舔女人下体高潮全视频| 欧美成人a在线观看| 久久久精品大字幕| 久久国产乱子免费精品| 国产精华一区二区三区| 亚洲avbb在线观看| 97碰自拍视频| 欧美成人a在线观看| 亚洲中文日韩欧美视频| 香蕉av资源在线| 最新在线观看一区二区三区| 日本黄色视频三级网站网址| 天美传媒精品一区二区| 窝窝影院91人妻| 亚洲成人精品中文字幕电影| 最后的刺客免费高清国语| 国产亚洲精品av在线| 亚洲精品日韩av片在线观看| 午夜福利在线观看吧| 精品久久久久久久久久免费视频| 亚洲精品在线观看二区| 久久久久国内视频| 搞女人的毛片| 无遮挡黄片免费观看| 久久久色成人| 看黄色毛片网站| 一二三四社区在线视频社区8| 亚洲天堂国产精品一区在线| 久久精品国产自在天天线| 成人性生交大片免费视频hd| 三级男女做爰猛烈吃奶摸视频| 天美传媒精品一区二区| 日韩大尺度精品在线看网址| 嫩草影视91久久| 日本 欧美在线| 亚洲中文日韩欧美视频| 99久久精品热视频| 高清毛片免费观看视频网站| 国产激情偷乱视频一区二区| 亚洲综合色惰| 一级黄片播放器| 变态另类成人亚洲欧美熟女| 亚洲最大成人av| 高清在线国产一区| eeuss影院久久| 最后的刺客免费高清国语| 欧美日韩国产亚洲二区| 美女免费视频网站| 最新在线观看一区二区三区| 精品一区二区三区视频在线观看免费| 免费观看人在逋| netflix在线观看网站| 国产91精品成人一区二区三区| 国产成人aa在线观看| 九九在线视频观看精品| 欧美日韩乱码在线| 欧美潮喷喷水| 国产一区二区在线观看日韩| 国产日本99.免费观看| 久久精品91蜜桃| 国产黄色小视频在线观看| 脱女人内裤的视频| 丰满人妻一区二区三区视频av| 热99re8久久精品国产| 午夜两性在线视频| 欧美在线一区亚洲| 久久久久免费精品人妻一区二区| 国产伦精品一区二区三区视频9| 桃色一区二区三区在线观看| 国产精品一区二区三区四区免费观看 | 网址你懂的国产日韩在线| 草草在线视频免费看| 99在线视频只有这里精品首页| 一个人看的www免费观看视频| 偷拍熟女少妇极品色| 国产精品野战在线观看| 97人妻精品一区二区三区麻豆| 国产中年淑女户外野战色| 在线a可以看的网站| 国产精品女同一区二区软件 | 观看免费一级毛片| 午夜福利18| 国产亚洲av嫩草精品影院| 免费av观看视频| av中文乱码字幕在线| 亚洲欧美清纯卡通| 天天一区二区日本电影三级| 国产精品av视频在线免费观看| 亚洲欧美精品综合久久99| 深夜a级毛片| 女人被狂操c到高潮| 老熟妇仑乱视频hdxx| 久9热在线精品视频| 动漫黄色视频在线观看| 一边摸一边抽搐一进一小说| 欧美精品啪啪一区二区三区| 国产一区二区激情短视频| 国产又黄又爽又无遮挡在线| 午夜免费成人在线视频| 精品一区二区三区视频在线| 日本成人三级电影网站| av视频在线观看入口| 国产精品野战在线观看| 国产伦精品一区二区三区视频9| 中出人妻视频一区二区| 熟女电影av网| 日本a在线网址| 日日摸夜夜添夜夜添av毛片 | 男人舔女人下体高潮全视频| 成年免费大片在线观看| 精品一区二区三区人妻视频| 90打野战视频偷拍视频| 精品99又大又爽又粗少妇毛片 | 国产精品影院久久| 真人一进一出gif抽搐免费| 99视频精品全部免费 在线| 18美女黄网站色大片免费观看| 免费看光身美女| 精华霜和精华液先用哪个| 精品久久久久久久久久久久久| 欧美+亚洲+日韩+国产| 久久天躁狠狠躁夜夜2o2o| 国产成+人综合+亚洲专区| 久久久久久大精品| 又黄又爽又刺激的免费视频.| 久久这里只有精品中国| 夜夜夜夜夜久久久久| 日韩欧美 国产精品| 亚洲七黄色美女视频| 亚洲三级黄色毛片| 欧美bdsm另类| 亚洲成人久久爱视频| 国产精品久久久久久久电影| 一级毛片久久久久久久久女| 窝窝影院91人妻| 91麻豆精品激情在线观看国产| 亚洲美女搞黄在线观看 | 99热这里只有是精品50| 亚洲av美国av| 久久精品国产亚洲av天美| 亚洲精品成人久久久久久| 精品日产1卡2卡| 午夜a级毛片| 精品久久久久久久久久久久久| 精品人妻偷拍中文字幕| 男人和女人高潮做爰伦理| 亚洲色图av天堂| 国产高清有码在线观看视频| 国产精品人妻久久久久久| 麻豆国产97在线/欧美| 又黄又爽又刺激的免费视频.| 国内揄拍国产精品人妻在线| 欧美高清性xxxxhd video| 91av网一区二区| 国产69精品久久久久777片| av中文乱码字幕在线| 久久九九热精品免费| 在线观看免费视频日本深夜| 69av精品久久久久久| 日韩国内少妇激情av| 深爱激情五月婷婷| 亚洲中文日韩欧美视频| 久久久久久久久久黄片| 欧洲精品卡2卡3卡4卡5卡区| 嫩草影视91久久| 久久6这里有精品| 欧美不卡视频在线免费观看| 性色av乱码一区二区三区2| 欧美日本视频| 波多野结衣高清作品| 亚洲天堂国产精品一区在线| 精品国产三级普通话版| 国产成人啪精品午夜网站| 久久久成人免费电影| 又爽又黄a免费视频| 色吧在线观看| 天堂影院成人在线观看| 搡女人真爽免费视频火全软件 | 99久久99久久久精品蜜桃| 欧美性猛交╳xxx乱大交人| 波多野结衣巨乳人妻| 国产一区二区在线av高清观看| 脱女人内裤的视频| 综合色av麻豆| 老司机深夜福利视频在线观看| 欧美黑人巨大hd| 国产视频一区二区在线看| 亚洲av免费高清在线观看| 日本黄色视频三级网站网址| 1024手机看黄色片| 国产高清视频在线播放一区| 国产美女午夜福利| 国内少妇人妻偷人精品xxx网站| 99在线视频只有这里精品首页| 亚洲 国产 在线| 又爽又黄无遮挡网站| 亚洲精品日韩av片在线观看| 亚洲欧美精品综合久久99| 97人妻精品一区二区三区麻豆| 亚洲第一欧美日韩一区二区三区| 无遮挡黄片免费观看| 成人鲁丝片一二三区免费| 人人妻人人澡欧美一区二区| 国产亚洲欧美98| 亚洲国产精品sss在线观看| 亚洲一区高清亚洲精品| 午夜福利欧美成人| 成人亚洲精品av一区二区| 3wmmmm亚洲av在线观看| 色综合欧美亚洲国产小说| avwww免费| 99热这里只有是精品50| 久久久久久久久久黄片| 亚洲在线自拍视频| 国产精品一区二区三区四区久久| 国产色爽女视频免费观看| 日本精品一区二区三区蜜桃| 精品久久久久久久人妻蜜臀av| 中文字幕熟女人妻在线| 国产免费男女视频| 99久久无色码亚洲精品果冻| 久久国产精品影院| 午夜精品在线福利| 我的老师免费观看完整版| 久9热在线精品视频| 2021天堂中文幕一二区在线观| 成熟少妇高潮喷水视频| 色噜噜av男人的天堂激情| 色尼玛亚洲综合影院| 在线免费观看的www视频| 99精品在免费线老司机午夜| 最近视频中文字幕2019在线8| 亚洲av中文字字幕乱码综合| 舔av片在线| 天天一区二区日本电影三级| 欧美成人a在线观看| 人妻夜夜爽99麻豆av| 97超级碰碰碰精品色视频在线观看| 人人妻人人澡欧美一区二区| 两人在一起打扑克的视频| 国产真实伦视频高清在线观看 | 亚洲国产精品久久男人天堂| 久久久成人免费电影| 直男gayav资源| 九九久久精品国产亚洲av麻豆| 精品一区二区三区av网在线观看| 久久人人爽人人爽人人片va | 久久国产乱子免费精品| 别揉我奶头 嗯啊视频| 国产高清视频在线观看网站| netflix在线观看网站| 一区二区三区四区激情视频 | 少妇人妻一区二区三区视频| 亚洲不卡免费看| 欧美黑人欧美精品刺激| 赤兔流量卡办理| 日日干狠狠操夜夜爽| 国产精品亚洲一级av第二区| 欧美日韩福利视频一区二区| 亚洲自拍偷在线| 在线播放国产精品三级| 99在线人妻在线中文字幕| 国产伦一二天堂av在线观看| 色播亚洲综合网| 国产一区二区三区视频了| 国产视频内射| 久久精品国产亚洲av香蕉五月| 精品一区二区三区av网在线观看| or卡值多少钱| 精品福利观看| 欧美色视频一区免费| 亚洲美女黄片视频| 精品久久久久久久久久久久久| 国产成人福利小说| 两性午夜刺激爽爽歪歪视频在线观看| 国模一区二区三区四区视频| 国内少妇人妻偷人精品xxx网站|