• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Gyroscope Fault Diagnosis Using Fuzzy SVM to Unbalanced Samples

    2015-11-21 07:08:55LuoQiufeng羅秋鳳ZhangRui張銳LiYong李勇YangZhongqing楊忠清
    關(guān)鍵詞:張銳李勇

    Luo Qiufeng(羅秋鳳),Zhang Rui(張銳),Li Yong(李勇),Yang Zhongqing(楊忠清)

    1.UAV Research Institute,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,P.R.China;

    2.Department of Automation,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,P.R.China

    whereφ(xi)is the mapping function from sample

    Gyroscope Fault Diagnosis Using Fuzzy SVM to Unbalanced Samples

    Luo Qiufeng(羅秋鳳)1*,Zhang Rui(張銳)1,Li Yong(李勇)2,Yang Zhongqing(楊忠清)1

    1.UAV Research Institute,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,P.R.China;

    2.Department of Automation,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,P.R.China

    A novel fuzzy support vector machine based on unbalanced samples(ESVM-US)is proposed to solve the high false positive rate problem since the gyroscope output is susceptible to unmanned aerial vehicle(UAV)airborne electromagnetic environment and the gyroscope abnormal signal sample is rather rare.Eirstly,the standard deviation of samples projection to normal vector for SVM classifier hyper plane is analyzed.The imbalance feature expression reflecting the hyper plane shift for the number imbalance between samples and the dispersion imbalance within samples is derived.At the same time,the denoising factor is designed as the exponential decay function based on the Euclidean distance between each sample and the class center.Secondly,the imbalance feature expression and denoising factor are configured into the membership function.Each sample has its own weight denoted the importance to the classifier.Einally,the classification simulation experiments on the gyroscope fault diagnosis system are conducted and ESVM-US is compared with the standard SVM,ESVM,and the four typical class imbalance learning(CIL)methods.The results show that ESVM-US classifier accuracy is 12%higher than that of the standard SVM.Generally,ESVM-US is superior to the four CIL methods in total performance.Moreover,the ESVM-US noise tolerance is also 17%higher than that of the standard SVM.

    fault diagnosis;gyroscope;fuzzy support vector machine(ESVM);unbalanced samples;membership function

    0 Introduction

    Gyroscope is a key airborne sensor for unmanned aerial vehicle(UAV)[1].It is reported that about 60%flight faults are associated with the gyroscope in an inertial navigation system. The gyroscope fault brings great risks into the flight safety of UAV.The main methods for sensor fault diagnosis are based on hardware redundancy,analytical redundancy,signal processing or artificial intelligence algorithmic techniques[2-6].Support vector machines(SVM)is one of the artificial intelligence learning algorithms[7-8],and it has been successfully applied to many real-world classification problems from various domains.The gyroscope fault datasets are far less than the normal datasets.In addition,the airborne gyroscope output signals are blended with noise signals or outlier from the UAV airborne complex electromagnetic environment where radio signals,engine working radiation,radar signals and radio interference signals often exist synchronously.Although SVM often deals effectively with balanced datasets,it could produce suboptimal results when faced imbalanced datasets. The SVM classification hyper-plane would shift to the minority(positive)dataset when it is applied to noises and unbalanced datasets[9].Its classifi-cation accuracy greatly drops,and the majority(negative)dataset is over fitting.

    Two main methods are addressed to solve the unbalanced dataset problem.One is based on the data preprocessing techniques such as over sampling,under sampling,and synthetic minority over sampling technique(SMOTE)[10-12].The other is about the algorithmic modifications such as the kernel function improvement and different error costs(DEC)[13-15].The SVM classification performance is enhanced to some degree when the number of the positive dataset and negative dataset is changed by resampling techniques,but the dataset structure and its integrity are damaged. Resampling techniques are adopted to tackle the imbalance problem between datasets,while it takes into few consideration the imbalance and noise problem within datasets.The fuzzy support vector machine(ESVM)algorithm is proposed in this paper to solve the number imbalance between datasets,dispersion imbalance within datasets,and noises from the UAV airborne electromagnetic environment when the imbalanced feature weights and denoising parameters are applied to the membership function.The gyroscope fault diagnosis system on fuzzy SVM for unbalanced samples is constructed.

    1 SVM Algorithms

    1.1 Standard SVM

    SVM is a kind of classifier developed from statistical learning theory[7].Eor a given dataset{(x1,y1),(x2,y2),…,(xi,yi),…},where xi∈Rnrepresents an n-dimensional data point,yi∈{-1,+1}is a sample label.The goal of the SVM learning algorithm is to find a separating hyper plane that separates these datasets into two classes.According to the Mercer theorem,if the dataset is linearly separable,the optimal hyper plane can be transformed into a minimum target optimization problem asattribute to high-dimensional feature space,ξthe slack variable,parameter C the trade-off between training accuracy and generalization,ωthe weight vector that defines a direction perpendicular to the hyper plane of the decision function,b the bias that moves the hyper plane parallel to itself.

    whereφ(xi)is the mapping function from sample

    When an SVM classifier is trained using an imbalanced dataset,it can obtain a classification hyper plane bias toward the minority class.If the number between two class samples is roughly equivalent,the classification hyper plane will shift to the more scattered class.The classification hyper plane bias situation for imbalance dataset is shown in Eigs.1,2,where H is the classifier hyper plane,and H1,H2are the support vector planes.

    Eig.1 Bias situation for the number imbalance

    Eig.2 Bias situation for the dispersion imbalance

    1.2 Fuzzy SVM algorithm

    Euzzy technology is applied to SVM to reduce the effect of noise samples(or outliers)on SVM classification[16].According to the effect of each sample during the SVM training,each sample is given a different membership value.Assuming that each sample(xi,yi)is assigned a membership value si,the parameter S={(x1,y1,s1),(x2,y2,s2),…,(xi,yi,si)}forms a fuzzy training set.After a nonlinear transformationφ: Rn→H is defined,input space can be transformed into high dimensional Hilbert space H,x→φ(x). The problem of the optimal hyper plane for ES-VM model is deformed into the following optimization problems

    where the membership si(i=1,2,…,l)represents the degree of training points(xi,yi,si)belonging to a certain class.The larger the value of siis,the less likely the corresponding samples are misclassified;and vice versa.

    2 Fuzzy Membership Function Construction

    The key of ESVM-US design is the construction of membership function.According to the working environment of the gyroscope,the design of membership function should solve two problems.One is to suppress the disturbance of noise and outlier in the class,and the other is to inhibit the imbalance of samples size and dispersion which affects the classification hyper plane shift.A membership function is represented by

    2.1 Imbalanced feature weight

    Dispersion can be represented by the standard deviation of projection toωvector direction of classification hyper plane,the standard deviation of the positive class and the negative class samples point are

    where∑+,∑-are the covariance matrixs of the positive and negative classes in high-dimensional Hilbert space,respectively;andφ(x)is a kernel function to substitute the dot product of mapping function.After initial training,SVM can obtain the vectorωof the classifier hyper plane.l+,lare the numbers of the positive class samples and negative class samples,respectively.To correct the offset caused by the different number of samples,the positive samples should be assigned higher weights than the negative ones.The weight is set inversely proportional to the number of samples.

    Besides,due to the classification bias toward the larger dispersion class,the larger dispersion class should have a higher weight.The weights of the dispersion imbalance within class can be set as

    Einally the imbalanced feature weight is designed as

    2.2 Denoising factor design

    Denoising factor reflects the importance of sample within class.Assuming o1and o2are the centers of two class samples shown in Eig.3,respectively,obviously the sample x1and x2are away from their respective class center for noise properties.To reduce this noise interference,ESVM algorithm assigns a less weight for samples away from their center.

    The Euclidean distance between samples and the class center is written as

    Then denoising factor can be calculated by the exponential decay function

    Eig.3 SVM classifier of noise pollution dataset

    3 Gyroscope Fault Diagnosis System

    3.1 Gyroscope signal feature extraction

    Pitch angle output sample data are from the gyroscope in a certain UAV real flight with the signal sampling period of 20 ms.The main fault types of gyroscope include complete fault,constant bias fault,drift fault and periodic interference fault.The three-layer db4 wavelet method is used to decompose signal samples,and the corresponding frequency band energy as a feature vector is obtained.

    3.2 Imbalance classification algorithm evaluation criteria

    Generally,the accuracy rate of minority class samples as fault event attracts more attention in practice.The classifier generalization performance evaluation criteria for imbalanced dataset mainly take geometric means(g-means)metric and E-measure.A slightly improved g-means criteria is adopted in this paper since g-means criteria is used for the binary classification events. The gyroscope fault detection classification belongs to multi-classifier events.To reflect the imbalanced data classification,the four fault abnormal samples are regarded as a positive class.The confusion matrix of the dataset is shown in Table 1.

    Table 1 Confusion matrix of dataset

    In Table 1,TP,EP denote the correctly classified and misclassified numbers for positive samples,respectively.Likewise,TN,EN are defined for negative samples.The classification accuracy rate for positive samples is

    The classification accuracy rate for negative samples is defined as

    Moreover,the geometric average is

    3.3 Simulation

    Classification program of SVM is compiled on Libsvm-weights-3.17 toolbox developed by Dr. Lin.The dataset imbalanced ratio is 5 with 400 sets of normal samples to 80 sets of each kind gyroscope fault sample.The kernel function in the experiment is Gaussian radial basis function k(xi,xj)=exp(-γ‖xi-xj‖2),and grid searching method and cross-validation method are synthesized to select the optimal kernel parameterγand penalty parameter C.The two-parameter optimization process is shown in Eig.4.

    Eig.4 Parameter optimization process of grid searching method and cross-validation method

    3.3.1 Standard SVM,ESVM and ESVM-US experiments

    The classifier experiment of ESVM-US is conducted.Compared with standard SVM(SVC)and ESVM,the results are shown in Eig.5.

    Eig.5 Experimental results of three diagnostic machines on unbalanced samples

    Erom Eig.5,the performance of ESVM-US classifier is generally better than those of traditional ESVM and SVM,whose fault diagnostic accuracy rates are 81.4%and 86.4%,respectively.Highly unbalanced samples result in classifier hyper plane bias toward the minority class,and the minority class has a high misclassification loss.The fault diagnostic accuracy rate of ESVMUS reaches 91.5%,5%higher than that of the standard ESVM,and 10%higher than that of SVM approximately.The geometric average on ESVM-US is up to 93.2%,increases by appoximately 5.6%and 4.7%relative to the standard SVM and ESVM,respectively.The experiment results indicate that the ESVM-US can increase the diagnosis accuracy and weaken the classifier shift influence resulted from unbalanced dataset effectively.

    3.3.2 Experiment on five-class imbalanced learning algorithms

    The above experimental results show that the ESVM-US is superior to the standard SVM and traditional ESVM.With respect to the algorithms specially dealing with the unbalanced problem in Introduction,the advantage of ESVMUS is still not sure.Hence,several typical unbalanced learning algorithms,such as under sampling,over sampling,SMOTE and DEC,are compared with the algorithm proposed in this paper.The comparison results are shown in Eig.6.

    In Eig.6,the five-class imbalanced learning algorithms obviously increase the classifier accuracy rate for fault samples compared with the standard SVM.The geometric average on ESVMUS algorithms is still 2%higher than the best one,SMOTE methods,and much higher than other class imbalanced learning algorithms.

    3.3.3 ESVM-US noise tolerance capability experiment

    Eig.6 Experimental results of five-class imbalanced learning

    To verify noise tolerance capability of ESVM-US,one adds Gaussian white noise whose amplitude mean is 0,variance is 0.5 to signal samples of gyroscope.Different attenuation coefficientβin denoising fuzzy function is given as{0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1}.The results are shown in Eig.7.

    Eig.7 ESVM-US diagnosis results with differentβ

    Eig.7 demonstrates that different attenuation coefficient has great influences on the diagnostic accuracy of the algorithm.Whenβis equivalent to 0.7,the ESVM-US performance is optimum. The gyroscope fault diagnosis experiment is performed on SVM,ESVM and ESVM-US under the condition ofβ=0.7.

    Eig.8 Results of three diagnosis models under noise condition

    Erom Eig.8,the diagnostic accuracy of standard SVM is the worst,i.e.72.3%when noises are add-ed to the imbalanced samples,it is reduced by 10%relative to the one without noise.Luckily,the accuracies of the traditional ESVM and ESVM-US are 87.5%and 89.2%,only reduced by 1%—4%,compared with those in the situation without noise.

    4 Conclusions

    The classification accuracy of the traditional SVM is decreased because it is susceptible to the influence of noise pollution and unbalanced samples.ESVM-US algorithm is similar to most existing algorithms in considering of the sensitivity of classifier hyper plane to the quantity imbalance between negative and positive class samples.Moreover,it also considers the sensitivity to the dispersion imbalance with the same class samples,as well as the one to the noise pollution in trained samples.The experiment results show that the ESVM-US classification accuracy is improved obviously,and the proposed algorithm has strong robustness.Its fault accuracy performance has many advantages in general.

    Theoretically,the gyroscope fault diagnosis system based on ESVM-US can sharply reduce the risk of UAV flight safety.The work on ESVM-US algorithm will be transplanted to hardware platform for the further investigation on its engineering practice.

    Acknowledgement

    This work was supported by the Eundamental Research Eund for the Central Universities(No. 56XZA12017).

    [1] Guo Xiuzhong.Theory of gyro inertial navigation system[M].Beijing:National Defence Industry Press,1996.(in Chinese)

    [2] Wang Xiaomeng,Zhang Ren.A sensor fault diagnosis method research based on wavelet transform and Hilbert-Huang transform[C]∥Eifth Conference on Measuring Technology and Mechatronics Automation.[S.l.]:IEEE,2013:81-84.

    [3] Mirzaee A,Salahshoor K.Eault diagnosis and accommodation of nonlinear systems based on multiplemodel adaptive unscented Kalman filter and switched MPC and H-infinity loop-shaping controller[J]. Journal of Process Control,2012(22):626-634.

    [4] Zhu Daqi,Liu Yongan.Information fusion method for fault diagnosis[J].Control and Decision,2007,22(12):1321-1328.

    [5] Xiao Lizhi,Sun Dexiang,Liu Yuwei,et al.A combined method based on expert system and BP neural network for UAV systems fault diagnosis[C]∥2010 International Conference on Artificial Intelligence and Computational Intelligence.[S.l.]:IEEE,2010:3-6.

    [6] Zhang Yalin,Wei Min,Chen Pengzhang,et al. Overview on sensor fault diagnosis technology[J]. Transducer and Microsystem Technologies,2009,28(1):4-12.(in Chinese)

    [7] Vapnik V.The nature of statistical learning theory[M].New York:Springer Verlag,2000.

    [8] Yu Jun,Lou Peihuang,Wu Xing,et al.Automated guided vehicle cross path recognition based on rough set and hierarchical support vector machine[J].Journal of Nangjing University of Aeronautics&Astronautics,2013,45(1):62-69.(in Chinese)

    [9] Akbani R,Kwek S,Japkowicz N.Applying support vector machines to imbalanced datasets[C]∥15th European Conference on Machines Learning.Berlin: Springer Verlag,2004:39-50.

    [10]He Haibo,Garcia E A.Learning from imbalanced data[J].IEEE Transactions on Knowledge and Data Engineering,2009,21(9):1262-1284.

    [11]Chawla N,Bowyer K,Kegelmeyer P.SMOTE: Synthetic minority oversampling technique[J].Journal of Artificial Intelligence Research,2002(16):321-357.

    [12]Tao Xinmin,Liu Eurong,Tong Zhijing,et al.Novel fault detection method based on SVM with unbalanced datasets[J].Journal of Vibration and Shock,2010,29(10):8-12.(in Chinese)

    [13]Veropoulos K,Campbell C,Cristianini N.Controlling the sensitivity of support vector machines[C]∥Proc Int Joint Conf Artif Intell.Stockholm,Sweden:[s.n.],1999:55-60.

    [14]Li Zhongguo,Hou Jie,Wang Kai,et al.Application of fuzzy support vector machine on road type recognition[J].Journal of Data Acquisition and Processing,2014,29(1):146-151.(in Chinese)

    [15]Li P,Chan K,Eang W.Hybrid kernel machine ensemble for imbalanced datasets[C]∥Proceedings of the 18th International Conference on Pattern Recognition.[S.l.]:IEEE Computer Society,2006:1108-1111.

    [16]Lin C E,Wang S D.Euzzy support vector machines[J].IEEE Transactions on Neural Network,2002,13(3):466-471.

    (Executive editor:Zhang Tong)

    V240;O321 Document code:A Article ID:1005-1120(2015)01-0016-07

    *Corresponding author:Luo Qiufeng,Researcher,E-mail:yqwl2002@126.com.

    How to cite this article:Luo Qiufeng,Zhang Rui,Li Yong,et al.Gyroscope fault diagnosis using fuzzy SVM to unbalanced samples[J].Trans.Nanjing U.Aero.Astro.,2015,32(1):16-21.

    http://dx.doi.org/10.16356/j.1005-1120.2015.01.016

    (Received 13 November 2014;revised 11 January 2015;accepted 12 January 2015)

    猜你喜歡
    張銳李勇
    Invariable mobility edge in a quasiperiodic lattice
    Mild moxibustion plus loratadine tablets for children with allergic rhinitis: a randomized controlled trial
    小天使·一年級(jí)語(yǔ)數(shù)英綜合(2021年11期)2021-11-23 02:48:57
    Plasmonic properties of graphene on uniaxially anisotropic substrates?
    組圖:豐收中國(guó)
    李勇作品選
    齊魯藝苑(2019年5期)2019-11-09 02:57:58
    Boundary states for entanglement robustness under dephasing and bit flip channels*
    生死挑贊
    激發(fā)民間投資熱情亟需政策精準(zhǔn)發(fā)力
    Wave-current i*mpacts on surface-piercing structure based on a fully nonlinear numerical tank
    久久亚洲国产成人精品v| 亚洲国产av影院在线观看| 精品人妻一区二区三区麻豆| 免费黄色在线免费观看| 午夜福利影视在线免费观看| 国产免费视频播放在线视频| 久久久久人妻精品一区果冻| 18禁裸乳无遮挡动漫免费视频| 蜜臀久久99精品久久宅男| 人人妻人人澡人人爽人人夜夜| 天天影视国产精品| 久久人人爽人人片av| 狂野欧美激情性bbbbbb| 婷婷色综合www| www.色视频.com| 国产熟女欧美一区二区| 国产女主播在线喷水免费视频网站| 欧美精品一区二区免费开放| 国产精品一区二区在线不卡| 熟女人妻精品中文字幕| 久久精品熟女亚洲av麻豆精品| 日韩,欧美,国产一区二区三区| 成人毛片a级毛片在线播放| 亚洲欧美成人综合另类久久久| 精品一区在线观看国产| 一本大道久久a久久精品| 嘟嘟电影网在线观看| 日韩视频在线欧美| 全区人妻精品视频| 国产精品一国产av| 一级毛片电影观看| 水蜜桃什么品种好| 国产高清三级在线| 久久精品人人爽人人爽视色| 国产熟女午夜一区二区三区 | 狂野欧美激情性bbbbbb| 男人添女人高潮全过程视频| 亚洲成色77777| 久久久精品免费免费高清| 国产免费现黄频在线看| 亚洲精品久久久久久婷婷小说| 国产欧美另类精品又又久久亚洲欧美| 91久久精品国产一区二区成人| 亚洲精品第二区| 亚洲精品乱码久久久v下载方式| 久久久精品免费免费高清| av.在线天堂| 最黄视频免费看| 亚洲精品国产色婷婷电影| 国产精品熟女久久久久浪| 99久久人妻综合| 在线精品无人区一区二区三| 91aial.com中文字幕在线观看| 国产亚洲午夜精品一区二区久久| 国内精品宾馆在线| 国产色婷婷99| 亚洲国产精品一区二区三区在线| 午夜激情久久久久久久| 国产高清国产精品国产三级| 啦啦啦在线观看免费高清www| 国产精品国产三级国产av玫瑰| 女人精品久久久久毛片| 99久久中文字幕三级久久日本| 日韩av在线免费看完整版不卡| 亚洲美女黄色视频免费看| av免费观看日本| 在线观看三级黄色| 中文精品一卡2卡3卡4更新| 日韩av免费高清视频| 制服人妻中文乱码| 青青草视频在线视频观看| 啦啦啦中文免费视频观看日本| 好男人视频免费观看在线| av在线播放精品| 亚洲综合精品二区| 久久国产亚洲av麻豆专区| 成人黄色视频免费在线看| 国产精品久久久久久精品古装| 国产精品嫩草影院av在线观看| 亚洲婷婷狠狠爱综合网| 亚洲国产最新在线播放| 嫩草影院入口| 欧美少妇被猛烈插入视频| 国产免费又黄又爽又色| 午夜影院在线不卡| 中文字幕免费在线视频6| 亚洲不卡免费看| 日本欧美视频一区| 亚洲国产精品999| 国产白丝娇喘喷水9色精品| 亚洲av欧美aⅴ国产| 亚洲精品日韩av片在线观看| 亚洲,一卡二卡三卡| 欧美丝袜亚洲另类| a级片在线免费高清观看视频| 永久网站在线| 最近最新中文字幕免费大全7| 久久99热这里只频精品6学生| 国产老妇伦熟女老妇高清| 蜜桃久久精品国产亚洲av| 国产在线视频一区二区| 婷婷色综合大香蕉| 美女福利国产在线| 丝袜喷水一区| 精品熟女少妇av免费看| 日本猛色少妇xxxxx猛交久久| 99久久精品国产国产毛片| 高清毛片免费看| 国产精品一区二区三区四区免费观看| 少妇丰满av| 国产高清国产精品国产三级| 人人妻人人添人人爽欧美一区卜| 丝袜美足系列| 九色亚洲精品在线播放| 狠狠精品人妻久久久久久综合| 国产深夜福利视频在线观看| 亚洲精品久久成人aⅴ小说 | 人妻制服诱惑在线中文字幕| 国产成人精品久久久久久| 国产免费一级a男人的天堂| 成人毛片a级毛片在线播放| 欧美日韩成人在线一区二区| 亚洲欧洲国产日韩| 国产精品国产三级国产av玫瑰| 一边亲一边摸免费视频| 91在线精品国自产拍蜜月| 亚洲高清免费不卡视频| 国产成人aa在线观看| 国产乱来视频区| 国产精品久久久久久精品古装| 国产爽快片一区二区三区| 极品少妇高潮喷水抽搐| 少妇被粗大的猛进出69影院 | 晚上一个人看的免费电影| 天堂俺去俺来也www色官网| 国产深夜福利视频在线观看| 亚洲第一区二区三区不卡| 成人国语在线视频| 一本久久精品| 国产亚洲av片在线观看秒播厂| 国产男女超爽视频在线观看| 各种免费的搞黄视频| av电影中文网址| 国产亚洲精品第一综合不卡 | 久久精品国产亚洲av天美| 不卡视频在线观看欧美| 国产成人91sexporn| 亚洲色图综合在线观看| 亚洲精品乱码久久久v下载方式| .国产精品久久| 五月伊人婷婷丁香| 美女cb高潮喷水在线观看| 久久久a久久爽久久v久久| 人体艺术视频欧美日本| 国产亚洲午夜精品一区二区久久| 韩国高清视频一区二区三区| 亚洲成色77777| 69精品国产乱码久久久| 少妇人妻久久综合中文| 国产免费一区二区三区四区乱码| 伊人久久国产一区二区| 全区人妻精品视频| 多毛熟女@视频| 春色校园在线视频观看| 久久精品熟女亚洲av麻豆精品| 天天操日日干夜夜撸| 搡女人真爽免费视频火全软件| 久久99热这里只频精品6学生| 中文字幕制服av| 日韩熟女老妇一区二区性免费视频| 亚洲av成人精品一二三区| 亚洲情色 制服丝袜| 97精品久久久久久久久久精品| 久久久欧美国产精品| 交换朋友夫妻互换小说| 国产黄片视频在线免费观看| 一个人免费看片子| 伊人久久精品亚洲午夜| 日韩一本色道免费dvd| 亚洲伊人久久精品综合| 99久久中文字幕三级久久日本| 黄色怎么调成土黄色| 亚洲欧美清纯卡通| 嘟嘟电影网在线观看| 亚洲国产av新网站| 久久精品久久久久久噜噜老黄| 少妇人妻 视频| 各种免费的搞黄视频| 搡女人真爽免费视频火全软件| 久久久久人妻精品一区果冻| 日韩欧美精品免费久久| 欧美97在线视频| 亚洲av欧美aⅴ国产| 成人18禁高潮啪啪吃奶动态图 | 日韩在线高清观看一区二区三区| 日本-黄色视频高清免费观看| 亚洲精品美女久久av网站| 夜夜骑夜夜射夜夜干| 好男人视频免费观看在线| 国模一区二区三区四区视频| 久久99热6这里只有精品| 精品一区二区三卡| av有码第一页| 免费人妻精品一区二区三区视频| 亚洲精品色激情综合| 美女国产高潮福利片在线看| 在线精品无人区一区二区三| 精品国产一区二区久久| 亚洲国产色片| 免费大片黄手机在线观看| 亚洲美女视频黄频| 国产片特级美女逼逼视频| 国产不卡av网站在线观看| 制服诱惑二区| 我要看黄色一级片免费的| 日韩视频在线欧美| 制服诱惑二区| 在线 av 中文字幕| 在线播放无遮挡| 日韩伦理黄色片| 中文字幕精品免费在线观看视频 | 国产成人freesex在线| 九九久久精品国产亚洲av麻豆| 日本欧美国产在线视频| 伊人久久精品亚洲午夜| 国产亚洲欧美精品永久| 999精品在线视频| 国产男女超爽视频在线观看| 中国国产av一级| 亚洲美女搞黄在线观看| 三级国产精品欧美在线观看| 综合色丁香网| 黄色欧美视频在线观看| av福利片在线| 卡戴珊不雅视频在线播放| 久久久国产欧美日韩av| 亚洲熟女精品中文字幕| 一级毛片我不卡| 国产淫语在线视频| 69精品国产乱码久久久| av不卡在线播放| 97在线人人人人妻| 两个人的视频大全免费| 高清不卡的av网站| 精品人妻在线不人妻| 制服诱惑二区| 久久久久精品性色| 亚洲经典国产精华液单| av天堂久久9| 中文字幕人妻熟人妻熟丝袜美| 999精品在线视频| 国产淫语在线视频| 制服丝袜香蕉在线| 日韩大片免费观看网站| 久久午夜福利片| 熟妇人妻不卡中文字幕| 日韩,欧美,国产一区二区三区| 91aial.com中文字幕在线观看| 国产视频首页在线观看| 精品一区二区三区视频在线| 国产色爽女视频免费观看| 99精国产麻豆久久婷婷| 国产一区二区在线观看av| 一二三四中文在线观看免费高清| 亚洲成人一二三区av| 亚洲,欧美,日韩| 欧美精品一区二区免费开放| 久久久久久久精品精品| 丰满饥渴人妻一区二区三| 秋霞伦理黄片| 高清黄色对白视频在线免费看| 国产欧美另类精品又又久久亚洲欧美| 好男人视频免费观看在线| 亚洲不卡免费看| 国产男女超爽视频在线观看| 国产精品女同一区二区软件| 午夜福利视频在线观看免费| 亚洲色图 男人天堂 中文字幕 | 久久国内精品自在自线图片| 成年人免费黄色播放视频| 大码成人一级视频| 国产精品一区www在线观看| kizo精华| 少妇猛男粗大的猛烈进出视频| 国内精品宾馆在线| 日韩精品免费视频一区二区三区 | 美女福利国产在线| 国产无遮挡羞羞视频在线观看| 日韩,欧美,国产一区二区三区| 亚洲经典国产精华液单| av.在线天堂| 免费高清在线观看日韩| 全区人妻精品视频| 在线看a的网站| 国产极品天堂在线| 国产黄频视频在线观看| 欧美日韩精品成人综合77777| 久久精品久久久久久噜噜老黄| 亚洲精品久久午夜乱码| 色吧在线观看| 少妇的逼好多水| 午夜久久久在线观看| 在线观看三级黄色| 搡老乐熟女国产| 国产黄片视频在线免费观看| 性色avwww在线观看| 欧美精品亚洲一区二区| 热re99久久精品国产66热6| 久久精品国产亚洲av天美| 黄色一级大片看看| 女人精品久久久久毛片| 精品人妻熟女av久视频| 国产有黄有色有爽视频| 久久综合国产亚洲精品| 亚洲三级黄色毛片| 五月伊人婷婷丁香| 欧美3d第一页| 天天操日日干夜夜撸| av卡一久久| 国产精品人妻久久久久久| 我的女老师完整版在线观看| 黑人巨大精品欧美一区二区蜜桃 | 亚洲伊人久久精品综合| 久久久久久久国产电影| 国产精品成人在线| 狂野欧美激情性bbbbbb| 91久久精品电影网| 精品卡一卡二卡四卡免费| 亚洲性久久影院| 日韩av免费高清视频| 日日啪夜夜爽| 亚洲美女视频黄频| 国产无遮挡羞羞视频在线观看| 久久久久久久久久久久大奶| av电影中文网址| 日韩,欧美,国产一区二区三区| 桃花免费在线播放| 麻豆精品久久久久久蜜桃| 制服丝袜香蕉在线| 最近手机中文字幕大全| 国产精品一区二区在线观看99| 成人漫画全彩无遮挡| 久久狼人影院| 亚州av有码| 免费黄网站久久成人精品| 日本与韩国留学比较| 简卡轻食公司| 天堂中文最新版在线下载| 精品少妇内射三级| www.av在线官网国产| 搡老乐熟女国产| 久久精品熟女亚洲av麻豆精品| 一级毛片 在线播放| 日本黄色片子视频| 2022亚洲国产成人精品| 亚洲精品第二区| 高清黄色对白视频在线免费看| 能在线免费看毛片的网站| 十八禁网站网址无遮挡| 天堂8中文在线网| 美女中出高潮动态图| 亚洲欧洲国产日韩| 精品99又大又爽又粗少妇毛片| 一区二区三区精品91| 成年人午夜在线观看视频| 欧美日韩综合久久久久久| 91在线精品国自产拍蜜月| 日日摸夜夜添夜夜添av毛片| 久久久久人妻精品一区果冻| 国产精品人妻久久久久久| 日韩av免费高清视频| 国产一区有黄有色的免费视频| 精品一区二区免费观看| 麻豆精品久久久久久蜜桃| 一级毛片黄色毛片免费观看视频| 一区二区三区乱码不卡18| 性高湖久久久久久久久免费观看| 久久精品久久精品一区二区三区| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 久久久久久久久久成人| 久久午夜综合久久蜜桃| 赤兔流量卡办理| 亚洲av福利一区| 97在线人人人人妻| 免费人妻精品一区二区三区视频| 人妻人人澡人人爽人人| 18+在线观看网站| av福利片在线| 黄色视频在线播放观看不卡| 性高湖久久久久久久久免费观看| 男女边吃奶边做爰视频| 久久精品国产亚洲av天美| 亚洲精品aⅴ在线观看| 色视频在线一区二区三区| 精品人妻一区二区三区麻豆| 只有这里有精品99| 99久久精品国产国产毛片| 97超碰精品成人国产| 国产欧美日韩综合在线一区二区| 色婷婷久久久亚洲欧美| 国产成人一区二区在线| 日产精品乱码卡一卡2卡三| 综合色丁香网| 精品99又大又爽又粗少妇毛片| 免费观看av网站的网址| 日本av手机在线免费观看| 内地一区二区视频在线| 一级,二级,三级黄色视频| 久久久久久久精品精品| 免费少妇av软件| 国语对白做爰xxxⅹ性视频网站| 亚洲三级黄色毛片| av播播在线观看一区| 亚洲国产最新在线播放| 久久精品国产亚洲av涩爱| 欧美少妇被猛烈插入视频| 免费看av在线观看网站| 国产午夜精品久久久久久一区二区三区| 美女国产高潮福利片在线看| 精品熟女少妇av免费看| 日韩亚洲欧美综合| 两个人的视频大全免费| 大香蕉97超碰在线| 亚洲欧美精品自产自拍| 一本大道久久a久久精品| 在线天堂最新版资源| 精品国产国语对白av| 亚洲在久久综合| 精品一区在线观看国产| 国产不卡av网站在线观看| 亚洲精品色激情综合| 在线观看人妻少妇| 日日撸夜夜添| 一级爰片在线观看| 亚洲国产欧美在线一区| 亚洲精品久久成人aⅴ小说 | 秋霞在线观看毛片| 免费人妻精品一区二区三区视频| 性色av一级| 人成视频在线观看免费观看| 久久国内精品自在自线图片| 久久国产精品大桥未久av| 亚洲,欧美,日韩| 亚洲欧洲国产日韩| 狠狠精品人妻久久久久久综合| 男女啪啪激烈高潮av片| 精品一区二区三区视频在线| 中文天堂在线官网| 一级黄片播放器| 三级国产精品欧美在线观看| 精品人妻熟女av久视频| 交换朋友夫妻互换小说| 狂野欧美激情性bbbbbb| 国产黄色免费在线视频| 久久人人爽人人片av| 婷婷色麻豆天堂久久| 久久久久网色| 久久免费观看电影| 一边摸一边做爽爽视频免费| 中文天堂在线官网| a级毛片黄视频| 狠狠婷婷综合久久久久久88av| 国模一区二区三区四区视频| 久久久国产精品麻豆| 综合色丁香网| 精品人妻熟女毛片av久久网站| 亚洲av电影在线观看一区二区三区| 欧美老熟妇乱子伦牲交| 久久久久久久精品精品| 久久毛片免费看一区二区三区| 国产精品一区二区在线不卡| 亚洲三级黄色毛片| 国产亚洲最大av| 80岁老熟妇乱子伦牲交| 国产精品女同一区二区软件| 欧美+日韩+精品| 国产片内射在线| 亚洲欧美成人精品一区二区| 校园人妻丝袜中文字幕| 伊人久久精品亚洲午夜| 一区二区三区四区激情视频| 亚洲人成77777在线视频| 人人妻人人添人人爽欧美一区卜| 不卡视频在线观看欧美| 18禁在线无遮挡免费观看视频| 一个人看视频在线观看www免费| 免费观看性生交大片5| 亚洲人成网站在线观看播放| 中国国产av一级| 秋霞伦理黄片| 黄片播放在线免费| 免费看光身美女| 国产高清有码在线观看视频| 国产欧美亚洲国产| 国产免费一区二区三区四区乱码| 国产有黄有色有爽视频| 免费观看的影片在线观看| 夜夜看夜夜爽夜夜摸| 我要看黄色一级片免费的| 午夜福利网站1000一区二区三区| 日日摸夜夜添夜夜爱| 中国美白少妇内射xxxbb| 日韩中文字幕视频在线看片| 丰满饥渴人妻一区二区三| 欧美三级亚洲精品| 久久97久久精品| 久久这里有精品视频免费| 亚洲欧美成人综合另类久久久| 韩国av在线不卡| 国产有黄有色有爽视频| 日本av手机在线免费观看| 成年女人在线观看亚洲视频| av又黄又爽大尺度在线免费看| 亚洲精品456在线播放app| 亚洲av国产av综合av卡| 老司机亚洲免费影院| 精品酒店卫生间| 激情五月婷婷亚洲| 大又大粗又爽又黄少妇毛片口| 日日撸夜夜添| 99热这里只有精品一区| 日本午夜av视频| 妹子高潮喷水视频| 天堂中文最新版在线下载| 精品国产国语对白av| av视频免费观看在线观看| 一本—道久久a久久精品蜜桃钙片| 日本黄色片子视频| 91aial.com中文字幕在线观看| 久久久久久久大尺度免费视频| 亚洲熟女精品中文字幕| 国产精品一二三区在线看| 亚洲精品,欧美精品| 国产欧美日韩一区二区三区在线 | 国产一级毛片在线| 不卡视频在线观看欧美| 最近中文字幕高清免费大全6| 黄色配什么色好看| 婷婷色综合www| 久久免费观看电影| 久久久久久久国产电影| 欧美精品国产亚洲| 在线观看一区二区三区激情| 成人漫画全彩无遮挡| 91精品三级在线观看| 亚洲综合精品二区| 成人亚洲欧美一区二区av| av电影中文网址| 亚洲精品视频女| 亚洲国产精品成人久久小说| 人成视频在线观看免费观看| 免费观看的影片在线观看| 边亲边吃奶的免费视频| 国产精品一二三区在线看| 亚洲美女黄色视频免费看| 999精品在线视频| 男人操女人黄网站| 老女人水多毛片| 搡老乐熟女国产| 波野结衣二区三区在线| 女性被躁到高潮视频| 制服诱惑二区| 少妇精品久久久久久久| 欧美另类一区| 黄色一级大片看看| 亚洲综合精品二区| 人成视频在线观看免费观看| 如何舔出高潮| 日韩三级伦理在线观看| 成人午夜精彩视频在线观看| 国产国拍精品亚洲av在线观看| 青春草视频在线免费观看| 视频中文字幕在线观看| 久久精品国产亚洲av涩爱| 亚洲高清免费不卡视频| 91久久精品电影网| 精品久久久精品久久久| 国产黄色免费在线视频| 精品99又大又爽又粗少妇毛片| 高清av免费在线| 国产永久视频网站| 国产精品久久久久久精品电影小说| 国产黄频视频在线观看| 老熟女久久久| 国产片内射在线| 波野结衣二区三区在线| 在线 av 中文字幕| 美女主播在线视频| 日韩电影二区| 黄色毛片三级朝国网站| 满18在线观看网站| 亚洲av不卡在线观看| 日韩av免费高清视频| 国产在线免费精品| 曰老女人黄片| 国产欧美日韩综合在线一区二区| 在线观看免费视频网站a站| 黄色毛片三级朝国网站| 22中文网久久字幕| 精品99又大又爽又粗少妇毛片| 国产精品三级大全| 亚洲av二区三区四区| 秋霞在线观看毛片| 桃花免费在线播放| 国产毛片在线视频| 春色校园在线视频观看| 制服诱惑二区| 成人综合一区亚洲| 日日摸夜夜添夜夜爱| 日韩人妻高清精品专区| 老熟女久久久| 在线观看国产h片| 99国产综合亚洲精品| 国产乱来视频区| 一本—道久久a久久精品蜜桃钙片|