• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Microstructural,magnetic and dielectric performance of rare earth ion(Sm3+)-doped MgCd ferrites

    2022-08-01 05:59:32DandanWen文丹丹XiaChen陳霞DasenLuo駱大森YiLu盧毅YixinChen陳一鑫RenpuLi黎人溥andWeiCui崔巍
    Chinese Physics B 2022年7期

    Dandan Wen(文丹丹), Xia Chen(陳霞), Dasen Luo(駱大森), Yi Lu(盧毅),Yixin Chen(陳一鑫), Renpu Li(黎人溥), and Wei Cui(崔巍),?

    1Doctoral Research Station of Chongqing Key Laboratory of Optoelectronic Information Sensing and Transmission Technology,Chongqing University of Post and Telecommunications,Chongqing 400065,China

    2State Key Laboratory of Electronic Thin Films and Integrated Devices,University of Electronic Science and Technology of China,Chengdu 610054,China

    3Chongqing Key Laboratory of Autonomous Navigation and Microsystem,Chongqing University of Post and Telecommunications,Chongqing 400065,China

    Keywords: ferrites,Sm3+ions,substitution,magnetic permeability,dielectric permittivity

    1. Introduction

    With the advent of the 5G era, functional ceramic materials will usher in a new round of rapid development. Ferrites, as functional ceramics, have been extensively used in modern electronic technologies,making them one of the most significant magnetic materials.[1–3]Around the world, ferrite development and research has been very active, and its progress promotes the rapid development of high-tech industries such as electronics, information, machinery, aerospace,communication and the chemical industry.[4–6]Soft ferrite materials not only possess spontaneous magnetization and electrical properties with chemical and thermal stability but are also pertinent magnetic materials having high permeability with low loss, high resistivity, low cost and high mechanical hardness.[7–9]Recently, Mg-based ferrites (MgFe2O4) have been widely studied for their spinel structure,and show interesting structural, electrical and sensing properties.[10,11]The Cd-substituted MgFe2O4system shows a canted spin arrangement on octahedral B-sites such as Cd-substituted mixed ferrites,for example Cu–Cd,[12]Li–Cd,[13]and Ni–Cd.[14]Gadkariet al.reported Mg1-xCdxFe2O4(x=0, 0.2, 0.4, 0.6, 0.8 and 1)with the addition of 5%Y3+or Sm3+by the oxalate coprecipitation technique.[15–17]They investigated the structural,magnetic and DC electrical performance of the MgCdFe2O4system by means of x-ray diffraction (XRD) and magnetic and electrical measurements. They also used Mg–Cd ferrites as gas sensors to detect liquid petroleum gas, Cl2and C2H5OH. Although Mg–Cd ferrites with different cadmium contents have been researched, compared with other widely studied ferrites there is more to be understood.

    It is known that the addition of rare earth elements to ferrites can result in the modification of structural, electrical and magnetic properties.[18–22]Many research groups have researched the effect of rare earth cations in different ferrites to tailor their microstructural, electric and magnetic properties.Bhosaleet al.extensively studied the effect of the addition of Gd3+on the electric and magnetic properties of Mg–Cd ferrite, and the phenomenon of an increase in the lattice constant with increasing Cd2+content was discovered.[20]Wuet al.investigated the effects of RE3+-substituted cobalt ferrite CoFe1.9RE0.1O4(RE=Pr3+, Sm3+, Tb3+, Ho3+) on structural,magnetic and adsorption properties through XRD,transmission electron microscopy, energy dispersive spectroscopy,F(xiàn)ourier transform infrared(FTIR)spectroscopy,Raman spectroscopy and vibrating sample magnetometry.[21]The results indicate that the RE3+substitution leads to a decrease in the particle size,magnetization and coercivity of the CoFe2O4ferrite. The effect of doping with different rare earth elements on spinel Mn–Cr ferrite has been studied by Abdellatifet al.They found that substituted rare earth ions distort the octahedral and tetrahedral sites of the ferrite lattice.[22]

    In this paper, we report the effect of Sm3+substitution on the structural,magnetic and electrical properties of Mg–Cd ferrites prepared by the solid-state sintering method. In this work, Sm3+was substituted intensively at low to high concentrations(0.15), and there were no additional phases in the spinel structure.

    2. Experiments

    Sm-doped Mg–Cd ferrite with the chemical composition Mg0.8Cd0.2Fe2-xSmxO4(0≤x ≤0.15, in steps of 0.03) was synthesized through a solid-state reaction method at high temperature. The pure raw material powders(MgO,CdO,Sm2O3and Fe2O3) were weighed according to their respective stoichiometric ratios and then mixed and ball milled in a planetary mixer with zirconia balls for 18 h. Afterwards,the well-mixed powder was dried and presintered at 1150°C in air for 4 h.The preliminary sintered powder with 3 wt%Bi2O3was ball milled again in deionized water for another 18 h.After the addition of 8 wt%polyvinyl alcohol(PVA)as a binder,the dried powder then ground into particles. High pressure,up to 10 MPa,was applied to press the particles into 2 mm–3 mm thick circular plates. Finally,the molded samples were sintered at 925°C in air for 6 h.

    The crystallography of the samples was measured using XRD (DX-2700, Haoyuan Co., China) with Cu-Kαradiation at aθ–2θgeometric angle from 10°to 70°. The microtopography was captured by scanning electron microscopy(SEM;JEOL JSM-6490,Japan).The magnetization hysteresis loops were obtained using a vibrating sample magnetometer(model BHL-525, Japan) with a direct current magnetic field of±2500 Oe. Saturation magnetization and coercivity were calculated from theM–Hloops. The complex magnetic permeability and dielectric permittivity were measured using an Agilent 4991 impedance analyzer(Agilent Technologies,Palo Alto, CA, USA) at various frequencies ranging from 1 MHz to 1 GHz. The bulk density was measured using Archimedes’principle in an autodensity tester (GF-300D, AND Co.). All measurements were carried out at room temperature.

    3. Results and discussion

    The XRD patterns of Mg0.8Cd0.2Fe2-xSmxO4(x= 0,0.03, 0.06, 0.09, 0.12, and 0.15) with added Sm3+are displayed in Fig. 1. The diffractogram reveals that all the samples crystallized in a normal spinel structure indexed to standard MgFe2O4peaks, referred to as standard PDF card file No. 17-0464. From Fig. 1(a), all the diffraction peaks are in good agreement with the indexed peaks, while no impurity phases were detected,indicating that the phase formation of Mg0.8Cd0.2Fe2-xSmxO4was not interfered with by Sm2O3and Bi2O3oxide. Whenx=0 andx=0.03,there was a small amount ofα=Fe2O3(JCPDS 33-0664) phase in these two samples. The reason for this was uneven mixing during the preparation process. Moreover, a slight shift of the diffraction peaks to a low angle is observed asxincreases from 0 to 0.15,similar to the enlarged figure of the main peak shown in Fig. 1(b). For the main peak [(311)] toward the left, this is due to the increase in the lattice constant as the ionic radius of Sm3+increases compared with Fe3+, and the Sm3+concentration increases. In the case of spinel ferrite, the octahedral sublattice(B-site)contains 16 sites,twice as many as the tetrahedral sublattice(A-site), and is the dominant sublattice.Because Fe3+(ionic radius 0.645 ?A) in the B-site is substituted by the larger ion Sm3+(ionic radius 0.958 ?A),substituting Sm3+causes expansion of the lattice in the B-site, which leads to the diffraction peak shifting overall to the left.Similar research,such as ion doping Mg–Cd[16,20]and Li–Zn,[23]has been reported.

    Fig. 1. The XRD patterns of Sm-doped MgCd ferrites with different Sm3+contents.

    The increase in bulk density first increases with Sm3+content from 4.552 g/cm3to 4.703 g/cm3and then remains stable, as shown in Fig. 2(a). This is because the bulk density is related to the lattice constant and lattice distortion. Lattice constants are calculated using Bragg’s law as a function of Sm3+content in Mg–Cd ferrites,which is shown in Fig.2(b).Moreover, the lattice constant shows nonlinear behavior and increases from 8.375 ?A to 8.415 ?A with increasing Sm3+content, as shown in Fig. 2(b), which may be attributed to the larger ionic radius of Sm3+(0.958 ?A) compared with Fe3+(0.645 ?A). In the Sm-substituted Mg–Cd spinel structure, all Cd2+occupies the tetrahedral A-site and Sm3+occupies the octahedral B-site. Similar behavior was observed in Mg–Cd ferrite with added Sm3+,suggesting that rare earth ions occupied the octahedral B-site.[15]Additionally,the grain size and pores among grains can also affect the bulk density,as shown in Fig.3. Noticeably,the lattice constant and bulk density are important factors in the magnetic and dielectric properties of ferrites.

    Fig. 2. Dependence of bulk density (a) and lattice constant (b) on Sm3+content.

    Fig.3. SEM images of samples with different Sm3+ ion contents.

    Figure 3 shows SEM images of Mg–Cd ferrites with different amounts of added Sm3+(x=0–0.15). It can be concluded that all the Sm-substituted Mg–Cd ferrites have a relatively homogeneous grain distribution. The particle morphology is cubical,and the grain growth accelerates asxincreases from 0 to 0.06. Sm3+has a larger ionic radius than Fe3+,which can explain this phenomenon. Forx ≥0.12, the degree of Sm3+substitution leads to a further increase in the grain size of the ferrite,and a few grain pores begin to appear.Meanwhile,the grain shape gradually changes from polygonal polyhedron to arc polyhedron, and some grains even become spherical. The increase in grain size and the appearance of pores cause the magnetic properties of ferrite to deteriorate,but the dielectric properties are improved. Remarkably, almost all the particle morphology remains polyhedral and the grain size is roughly uniform whenx=0.06,which gives Smsubstituted Mg–Cd ferrite the best magnetic and dielectric performance.

    Figure 4(a)shows the hysteresis loops of the Mg–Cd ferrites with added Sm3+at room temperature. TheM–Hloops of all samples have narrow hysteresis,which displays excellent soft magnetic characteristics. The saturation magnetization and coercivity,derived from theM–Hloops,are also displayed in Fig.4(b). These results are in close agreement with another report for Mg–Cd ferrite.[16]From Fig. 4, it is apparent that the saturation magnetization increases first from 33.8 emu/g(x=0) to the maximum value of 36.8 emu/g (x=0.06) and then decreases with a further increase inxuntil the minimum value of 22.7 emu/g is obtained atx=0.15. Evidently, magnetization is relatively dependent on the Sm3+concentration.This is due to the different magnetic moments between the A and B sublattices,depending on their respective cation distributions. It has been reported that in Sm-supplemented Mg–Cd ferrites, all divalent Cd2+ions occupy the tetrahedral A-site and Sm3+ions occupy the octahedral B-site. Mg2+and Fe3+ions occupy the A-sites and B-sites at random. The total magnetizationMscan be expressed as

    whereMBandMAare the magnetic moments of the A-and Bsites,respectively,andαY–K is the Yafet–Kittel angle. Using the triangle spin arrangement model to calculate the Yafet–Kittel angle can help us understand the degree of spin canting.αY–K decreases with Sm3+substitution forx ≤0.06 and there is an increase in the magnetization of the ferrite. Similar results are found in other works based on FTIR results.[16]In addition,the increase in saturation magnetization is also related to the increase in bulk density. The density increased whenxincreased 0 to 0.06 (Fig. 2(a)), contributing to the saturation magnetization. Forx >0.06, the great mass of paramagnetic Sm3+ions would further replace Fe3+in B-sites. However,a small number of Sm3+ions would prefer to occupy A-sites,leading to a decrease in the magnetic momentnBof ferrite,and hence the totalMswould decrease.

    However, as shown in Fig.4(b), the coercivity gradually decreases and then increases sharply with increasing Sm3+concentration,which displays an inverse trend compared withMs. The coercivity first decreases from 33.6 Oe (atx=0)to 29.2 Oe (atx= 0.06) and then increases to 36.1 Oe (atx=0.15). Brown’s relation could explain this behavior:

    whereK1is the crystalline anisotropy constant.The amount of Fe3+decreases because of the increasing Sm3+content on the B-site. Generally,the anisotropy field of ferrites is caused by the presence of Fe3+.[24]In other words,as the Sm3+content increases, the anisotropy constant decreases, and the magnitude of coercivity also decreases whenx <0.06. With a further increase in Sm3+, the coercivity increases sharply. This is because the Sm–Fe interaction is stronger than the Sm–Sm interaction on the B-site. In addition, according to Eq. (2),the coercivity is positively proportional to the anisotropy constant and inversely proportional toMs. Therefore,the coercive force increases with decreasingMsand increasingK1whenx >0.06. Moreover, the coercivity is also influenced by the internal stress. When the Sm3+ions enter the spinel lattice,due to their electronic configuration the lattice or crystalline field will distort and then generate an internal stress.

    Fig.4. The M–H loops(a)and variation in the saturation magnetization Ms and coercive field Hc of MgCd ferrite with Sm ion contents

    The frequency-dependent trends of the complex magnetic permeability and dielectric permittivity for all samples,whenxincreases from 0 to 0.15,are shown in Fig.5,for change in frequency ranging from 1 MHz to 1 GHz.As seen in Fig.5(a),the real magnetic permeability (μ′) remains at a stable level,and whenxchanges from 0 to 0.06, the real magnetic permeability of Sm-substituted Mg–Cd ferrites first increases and then decreases whenx >0.06. In ferrite materials, the initial permeability mainly relies on the saturation magnetization and first-order anisotropy constant(Ku1),and the relationship is as follows:[25]

    whereλsandδrepresent the saturation magnetization coefficient and internal stress, respectively. In Eq. (3), the value ofλsδis so small (because of the smallδ) that it can be ignored.[26,27]Therefore, a proportional trend holds between the initial permeability andMs. In other words, permeability mainly depends onMs. Therefore, the changing trend ofMsunder different Sm3+contents could account for the phenomenon of real permeability.

    Considerable values (approximately 4–9 for all samples exceptx=0) over the wide frequency range are observed in the imaginary part(μ′′)of the samples in Fig.5(a). Hence,the magnetic tangent tanδμis obtained by the equation

    Compared with other work,[28]this work renders a relatively large order of magnitude of tanδμ(approximately 3×10-1to 5×10-2). In addition, this work also found that the value of the imaginary part can be reduced by adding Sm3+.

    Figure 5(b) shows that the dielectric permittivity (ε′andε′′)of the samples depends on the Sm3+doping content. The real part of the dielectric permittivity(ε′)increases from 7 to 23 with Sm3+content increasing from 0 to 0.15. Note thatε′displays flat responses of nearly 300 MHz. Moreover, the imaginary part of the dielectric permittivity(ε′′)also has a flat response but at low values of nearly 500 MHz. For ferrite,assuming that the mechanism for electrical conduction is similar to that of dielectric polarization, the increase in dielectric permittivity can be explained. Usually, when an electric field is applied on ferrite, hence increasing the polarization,the electronic exchange between Fe2+and Fe3+at the octahedral sites will cause a local displacement.[29]In Mg ferrite, Sm3+occupies octahedral sites (B-sites) because of its larger ionic radius and its electron configuration. The concentration of Fe3+at B-sites decreases gradually with increasing Sm content. Therefore, the probability of hopping between Fe3+and Fe2+ions is improved, which causes the polarization to increase. Consequently, the dielectric permittivity increases with increasing Sm concentration. Moreover,material microstructure, grain size, porosity and impurities also have a great influence on the dielectric properties of materials. The grain size gradually increases then stays stable,and the density had the same trend in Figs. 3 and 2, respectively, which also increases the permittivity.In summary,all ferrite samples with Mg0.8Cd0.2Fe2-xSmxO4show a constant increase in dielectric permittivity,which is consistent with other work.[28]

    Fig.5. Complex magnetic permeability(a)and dielectric permittivity(b)of Mg–Cd ferrites for different Sm3+ contents.

    4. Conclusion

    Sm3+-substituted Mg–Cd ferrites were investigated for Sm3+doping concentrations between 0 and 0.15. Phase formation and surface morphology were changed substantially.Moreover,the magnetic and dielectric properties of the spinel Mg–Cd ferrites were also studied in detail. The saturation magnetization first increases and then decreases;however,the coercivity first decreases and then increases. Whenx=0.06,high saturation magnetization and low coercivity can be obtained. Meanwhile,the permeability and permittivity can also achieve their best values.

    Acknowledgments

    Project supported by the National Key Research and Development Program of China (Grant No. 2018YFE0115500),the National Natural Science Foundation of China (Grant Nos.51902037 and 62005033),the Open Foundation of State Key Laboratory of Electronic Thin Films and Integrated Devices (Grant No. KFJJ201912), the Science and Technology Project Affiliated to the Education Department of Chongqing Municipality (Grant No. KJQN201900615), and the Nature Science Foundation of Chongqing (Grant No. cstc2019jcyjmsxmX0696).

    丁香六月天网| 久久99一区二区三区| 黑人巨大精品欧美一区二区蜜桃| 成人影院久久| 国产成人欧美在线观看 | 欧美少妇被猛烈插入视频| bbb黄色大片| 麻豆国产av国片精品| 视频在线观看一区二区三区| 免费观看人在逋| 欧美日韩中文字幕国产精品一区二区三区 | 亚洲九九香蕉| 免费少妇av软件| 亚洲国产毛片av蜜桃av| 日本五十路高清| 久久久久久久久久久久大奶| 欧美精品高潮呻吟av久久| 欧美日韩亚洲高清精品| 侵犯人妻中文字幕一二三四区| 老司机影院成人| 老司机亚洲免费影院| 成年人午夜在线观看视频| 老司机影院成人| 美女国产高潮福利片在线看| 欧美精品亚洲一区二区| 97精品久久久久久久久久精品| av免费在线观看网站| 国产精品一区二区精品视频观看| 亚洲欧美激情在线| 国产一级毛片在线| 国产无遮挡羞羞视频在线观看| 激情视频va一区二区三区| 午夜两性在线视频| 久久久久国产精品人妻一区二区| 在线观看www视频免费| 日韩中文字幕欧美一区二区| 丝袜在线中文字幕| 国产高清视频在线播放一区 | 人成视频在线观看免费观看| 欧美精品一区二区大全| 男女之事视频高清在线观看| 大陆偷拍与自拍| 免费高清在线观看日韩| 99国产综合亚洲精品| videosex国产| 国内毛片毛片毛片毛片毛片| 叶爱在线成人免费视频播放| 天天操日日干夜夜撸| 国产免费视频播放在线视频| 亚洲av电影在线观看一区二区三区| 9色porny在线观看| 9191精品国产免费久久| www日本在线高清视频| 丰满饥渴人妻一区二区三| 新久久久久国产一级毛片| 久久天堂一区二区三区四区| 国产精品 国内视频| 国产精品欧美亚洲77777| 手机成人av网站| 日韩 欧美 亚洲 中文字幕| 日本a在线网址| 老司机福利观看| 亚洲va日本ⅴa欧美va伊人久久 | 日本wwww免费看| 日日摸夜夜添夜夜添小说| 中文字幕制服av| 岛国毛片在线播放| 一区二区av电影网| 一级毛片精品| 精品亚洲成a人片在线观看| 亚洲性夜色夜夜综合| 菩萨蛮人人尽说江南好唐韦庄| 丝袜美足系列| 啦啦啦免费观看视频1| 欧美xxⅹ黑人| svipshipincom国产片| 国产精品久久久久久精品电影小说| 国产xxxxx性猛交| 永久免费av网站大全| 亚洲avbb在线观看| 亚洲三区欧美一区| 午夜福利,免费看| 免费人妻精品一区二区三区视频| 日日爽夜夜爽网站| 日韩欧美国产一区二区入口| 叶爱在线成人免费视频播放| 高清在线国产一区| 亚洲成人免费电影在线观看| 亚洲久久久国产精品| 国产欧美日韩一区二区精品| 美女福利国产在线| 日韩精品免费视频一区二区三区| 精品福利永久在线观看| 亚洲精品国产色婷婷电影| 又紧又爽又黄一区二区| 岛国毛片在线播放| 极品人妻少妇av视频| 精品久久久精品久久久| 国产又色又爽无遮挡免| 国产国语露脸激情在线看| 午夜日韩欧美国产| 精品人妻在线不人妻| 母亲3免费完整高清在线观看| 法律面前人人平等表现在哪些方面 | 天天躁狠狠躁夜夜躁狠狠躁| 男女边摸边吃奶| 青春草亚洲视频在线观看| 激情视频va一区二区三区| 在线天堂中文资源库| 视频区图区小说| 99久久99久久久精品蜜桃| 无遮挡黄片免费观看| 国产成人精品无人区| 高清在线国产一区| 久久精品国产a三级三级三级| 久久国产精品大桥未久av| 亚洲精品乱久久久久久| 人人妻人人爽人人添夜夜欢视频| 十八禁人妻一区二区| 久久午夜综合久久蜜桃| 国产高清视频在线播放一区 | 狠狠婷婷综合久久久久久88av| 亚洲欧美清纯卡通| 久久久久网色| 欧美激情久久久久久爽电影 | 窝窝影院91人妻| 欧美精品啪啪一区二区三区 | 五月开心婷婷网| 一区二区三区精品91| 各种免费的搞黄视频| 亚洲精品av麻豆狂野| 下体分泌物呈黄色| 精品亚洲乱码少妇综合久久| 在线精品无人区一区二区三| 色精品久久人妻99蜜桃| 首页视频小说图片口味搜索| 窝窝影院91人妻| 黄网站色视频无遮挡免费观看| 国产在线观看jvid| 99精品欧美一区二区三区四区| 大型av网站在线播放| 午夜老司机福利片| 9色porny在线观看| 不卡av一区二区三区| 午夜精品国产一区二区电影| 久久久欧美国产精品| 亚洲欧美一区二区三区黑人| 久久人妻福利社区极品人妻图片| av天堂久久9| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲精品国产一区二区精华液| 9191精品国产免费久久| 天堂俺去俺来也www色官网| 男人添女人高潮全过程视频| www.av在线官网国产| 黄色视频,在线免费观看| 欧美精品一区二区大全| 伊人亚洲综合成人网| 一级片免费观看大全| 一级,二级,三级黄色视频| 99香蕉大伊视频| 亚洲第一欧美日韩一区二区三区 | 人人妻人人澡人人爽人人夜夜| 欧美亚洲 丝袜 人妻 在线| 91麻豆av在线| 亚洲欧美一区二区三区久久| 国产日韩欧美亚洲二区| 岛国毛片在线播放| 国产色视频综合| 欧美大码av| 久久久久网色| 日韩电影二区| 国产精品一区二区在线观看99| a在线观看视频网站| 色综合欧美亚洲国产小说| 国产精品久久久久成人av| 99久久人妻综合| 亚洲精品国产精品久久久不卡| 最新在线观看一区二区三区| 亚洲成人免费电影在线观看| 免费观看av网站的网址| 青青草视频在线视频观看| 国产欧美日韩一区二区三区在线| 69av精品久久久久久 | 久久久久网色| av有码第一页| 法律面前人人平等表现在哪些方面 | 黄色视频,在线免费观看| 欧美另类亚洲清纯唯美| 韩国精品一区二区三区| 国产精品.久久久| 十八禁人妻一区二区| 人人妻人人澡人人看| 亚洲avbb在线观看| 亚洲午夜精品一区,二区,三区| 美女午夜性视频免费| 69av精品久久久久久 | 中文字幕最新亚洲高清| 曰老女人黄片| 国产xxxxx性猛交| 天堂中文最新版在线下载| 十分钟在线观看高清视频www| 免费一级毛片在线播放高清视频 | av又黄又爽大尺度在线免费看| 免费在线观看日本一区| 精品少妇内射三级| 91精品伊人久久大香线蕉| 亚洲欧美一区二区三区久久| 少妇粗大呻吟视频| 国产在线免费精品| 日本一区二区免费在线视频| 国精品久久久久久国模美| 女人被躁到高潮嗷嗷叫费观| 黄频高清免费视频| 高清在线国产一区| 色播在线永久视频| 在线av久久热| 久久ye,这里只有精品| 亚洲欧美精品综合一区二区三区| 国产深夜福利视频在线观看| 欧美日韩中文字幕国产精品一区二区三区 | 考比视频在线观看| 亚洲国产精品999| 国产有黄有色有爽视频| 欧美人与性动交α欧美精品济南到| 亚洲avbb在线观看| 国产精品一区二区精品视频观看| 男女无遮挡免费网站观看| 亚洲成av片中文字幕在线观看| 亚洲人成77777在线视频| 亚洲性夜色夜夜综合| 免费女性裸体啪啪无遮挡网站| 成人手机av| 99久久精品国产亚洲精品| 午夜激情久久久久久久| 女人爽到高潮嗷嗷叫在线视频| 韩国精品一区二区三区| 久久中文字幕一级| 99久久精品国产亚洲精品| 一本综合久久免费| 丝袜在线中文字幕| 精品亚洲乱码少妇综合久久| 一二三四社区在线视频社区8| 久久人妻福利社区极品人妻图片| 精品国产乱码久久久久久小说| 亚洲精品国产色婷婷电影| 黑人操中国人逼视频| 欧美日韩亚洲高清精品| 国产又爽黄色视频| 国产91精品成人一区二区三区 | 在线观看人妻少妇| 亚洲第一av免费看| 视频区欧美日本亚洲| 老司机午夜十八禁免费视频| 一区二区三区乱码不卡18| 国产一区有黄有色的免费视频| 久久99一区二区三区| 日本猛色少妇xxxxx猛交久久| 丝袜脚勾引网站| 久久久久久免费高清国产稀缺| 韩国精品一区二区三区| 他把我摸到了高潮在线观看 | 日本欧美视频一区| 国产免费现黄频在线看| 色婷婷av一区二区三区视频| 欧美 亚洲 国产 日韩一| 久久亚洲精品不卡| 汤姆久久久久久久影院中文字幕| 一级毛片女人18水好多| 亚洲 国产 在线| 亚洲男人天堂网一区| 国产伦理片在线播放av一区| 高清黄色对白视频在线免费看| 亚洲视频免费观看视频| 男女无遮挡免费网站观看| 宅男免费午夜| 国产黄色免费在线视频| 欧美国产精品一级二级三级| 一级黄色大片毛片| 久热这里只有精品99| 欧美xxⅹ黑人| 国产精品秋霞免费鲁丝片| 国精品久久久久久国模美| 亚洲欧美精品综合一区二区三区| 久久毛片免费看一区二区三区| 久久天躁狠狠躁夜夜2o2o| 女人精品久久久久毛片| 久久综合国产亚洲精品| 黄网站色视频无遮挡免费观看| 国产欧美日韩精品亚洲av| 电影成人av| 亚洲国产av新网站| 脱女人内裤的视频| 999久久久精品免费观看国产| 80岁老熟妇乱子伦牲交| 岛国毛片在线播放| 国产成人一区二区三区免费视频网站| 亚洲精品国产色婷婷电影| 黄片播放在线免费| 国产精品熟女久久久久浪| 久久久久久久大尺度免费视频| 国产男女超爽视频在线观看| 久久这里只有精品19| 亚洲成人手机| av天堂在线播放| av网站免费在线观看视频| 成人18禁高潮啪啪吃奶动态图| 手机成人av网站| 欧美av亚洲av综合av国产av| 国产有黄有色有爽视频| 国产成人免费观看mmmm| av不卡在线播放| 成人国产一区最新在线观看| 捣出白浆h1v1| 日本vs欧美在线观看视频| 久久久久网色| 性色av乱码一区二区三区2| 丝袜美足系列| 亚洲人成77777在线视频| 啦啦啦在线免费观看视频4| 久久av网站| 成年女人毛片免费观看观看9 | 搡老熟女国产l中国老女人| 久久人人爽人人片av| 1024香蕉在线观看| 丝袜人妻中文字幕| 成人三级做爰电影| 一本大道久久a久久精品| 成年动漫av网址| 午夜精品久久久久久毛片777| 国产在视频线精品| 国产真人三级小视频在线观看| 国产一区二区三区在线臀色熟女 | 黄频高清免费视频| 久久久精品国产亚洲av高清涩受| 午夜福利视频精品| 狠狠精品人妻久久久久久综合| 大陆偷拍与自拍| svipshipincom国产片| 777久久人妻少妇嫩草av网站| av在线老鸭窝| 狠狠婷婷综合久久久久久88av| 国产熟女午夜一区二区三区| 美女福利国产在线| 久久精品国产a三级三级三级| 丝袜美腿诱惑在线| 爱豆传媒免费全集在线观看| 狂野欧美激情性bbbbbb| 青春草视频在线免费观看| 纵有疾风起免费观看全集完整版| 色婷婷av一区二区三区视频| xxxhd国产人妻xxx| 老司机靠b影院| 亚洲av美国av| 亚洲伊人久久精品综合| 中文字幕精品免费在线观看视频| 涩涩av久久男人的天堂| 久久女婷五月综合色啪小说| av福利片在线| av在线播放精品| 国产xxxxx性猛交| 在线观看免费日韩欧美大片| 国产精品一区二区在线不卡| www.自偷自拍.com| 亚洲美女黄色视频免费看| 久久国产精品人妻蜜桃| 不卡一级毛片| 深夜精品福利| 99热国产这里只有精品6| 啦啦啦在线免费观看视频4| 午夜视频精品福利| 亚洲人成77777在线视频| 人人妻人人澡人人看| 咕卡用的链子| 久久久国产精品麻豆| 亚洲欧美日韩高清在线视频 | 亚洲va日本ⅴa欧美va伊人久久 | 女性生殖器流出的白浆| 国产精品 国内视频| 国产成人欧美在线观看 | 1024视频免费在线观看| 欧美少妇被猛烈插入视频| 9热在线视频观看99| 80岁老熟妇乱子伦牲交| 久久精品亚洲av国产电影网| 我的亚洲天堂| 国产日韩欧美亚洲二区| 亚洲激情五月婷婷啪啪| 免费一级毛片在线播放高清视频 | 免费黄频网站在线观看国产| 亚洲av日韩精品久久久久久密| 国产成人免费观看mmmm| 国产精品一区二区精品视频观看| 他把我摸到了高潮在线观看 | av不卡在线播放| 亚洲精品一二三| 一区二区av电影网| 精品人妻1区二区| 欧美日韩福利视频一区二区| 99久久人妻综合| 桃花免费在线播放| 精品国产一区二区三区四区第35| 欧美另类一区| 免费在线观看完整版高清| 天堂8中文在线网| 亚洲精品美女久久久久99蜜臀| 久久国产精品人妻蜜桃| 国产精品香港三级国产av潘金莲| 国产一区二区三区av在线| 又黄又粗又硬又大视频| 久久天堂一区二区三区四区| 别揉我奶头~嗯~啊~动态视频 | 蜜桃在线观看..| 一区在线观看完整版| a级毛片黄视频| 91成年电影在线观看| 亚洲国产欧美在线一区| 18禁观看日本| 国产一区二区三区av在线| 一级黄色大片毛片| tocl精华| 亚洲专区中文字幕在线| 各种免费的搞黄视频| av欧美777| www.熟女人妻精品国产| 亚洲精品美女久久av网站| 国产成人免费无遮挡视频| 黑丝袜美女国产一区| 欧美人与性动交α欧美软件| 日韩人妻精品一区2区三区| 国产亚洲一区二区精品| 国产成人一区二区三区免费视频网站| 天天影视国产精品| 亚洲欧洲精品一区二区精品久久久| 久久人人爽av亚洲精品天堂| 50天的宝宝边吃奶边哭怎么回事| 国产欧美日韩一区二区三区在线| 国产亚洲精品久久久久5区| 国产激情久久老熟女| 日韩一区二区三区影片| 亚洲av电影在线进入| 美女扒开内裤让男人捅视频| www.自偷自拍.com| 欧美在线一区亚洲| 午夜91福利影院| 日本黄色日本黄色录像| 亚洲精品乱久久久久久| 韩国高清视频一区二区三区| 欧美日韩中文字幕国产精品一区二区三区 | 别揉我奶头~嗯~啊~动态视频 | 国产激情久久老熟女| 宅男免费午夜| 亚洲欧洲精品一区二区精品久久久| 波多野结衣av一区二区av| 欧美人与性动交α欧美精品济南到| 啦啦啦视频在线资源免费观看| 亚洲 国产 在线| 亚洲国产精品一区二区三区在线| 正在播放国产对白刺激| 天天躁夜夜躁狠狠躁躁| a级毛片在线看网站| 91九色精品人成在线观看| 久久久水蜜桃国产精品网| 亚洲成人手机| 天天操日日干夜夜撸| 日韩中文字幕欧美一区二区| 国产成人一区二区三区免费视频网站| av在线app专区| 国产国语露脸激情在线看| 亚洲五月色婷婷综合| 啦啦啦 在线观看视频| 国产成人免费观看mmmm| 日韩一区二区三区影片| 国产精品九九99| 国产精品欧美亚洲77777| 少妇精品久久久久久久| 国产精品偷伦视频观看了| 一边摸一边抽搐一进一出视频| 欧美激情高清一区二区三区| 侵犯人妻中文字幕一二三四区| 69精品国产乱码久久久| 国产在线观看jvid| 国产日韩一区二区三区精品不卡| videosex国产| 欧美日韩av久久| 这个男人来自地球电影免费观看| 久久久久网色| 欧美激情高清一区二区三区| 亚洲精品国产色婷婷电影| 亚洲全国av大片| 日韩大码丰满熟妇| 久久久久久久精品精品| 搡老岳熟女国产| 一本—道久久a久久精品蜜桃钙片| 建设人人有责人人尽责人人享有的| 免费女性裸体啪啪无遮挡网站| 日韩免费高清中文字幕av| 国产精品av久久久久免费| 日日夜夜操网爽| 国产欧美日韩一区二区三 | 成人三级做爰电影| 久久人人爽人人片av| 美女脱内裤让男人舔精品视频| 亚洲精品久久午夜乱码| 国产真人三级小视频在线观看| 国产成人欧美在线观看 | 大片电影免费在线观看免费| 成年av动漫网址| 亚洲激情五月婷婷啪啪| 久久精品亚洲熟妇少妇任你| 人人妻人人澡人人爽人人夜夜| 欧美少妇被猛烈插入视频| av在线app专区| 免费在线观看黄色视频的| 日韩中文字幕欧美一区二区| 这个男人来自地球电影免费观看| 亚洲国产精品成人久久小说| 美女主播在线视频| 久久国产精品男人的天堂亚洲| 黄色a级毛片大全视频| 少妇裸体淫交视频免费看高清 | 精品国产乱子伦一区二区三区 | av福利片在线| 国产精品免费视频内射| 精品国产乱码久久久久久男人| 高潮久久久久久久久久久不卡| av视频免费观看在线观看| 精品欧美一区二区三区在线| 新久久久久国产一级毛片| 男女高潮啪啪啪动态图| 亚洲人成77777在线视频| 一区二区三区乱码不卡18| 亚洲情色 制服丝袜| 久久精品熟女亚洲av麻豆精品| av网站在线播放免费| 在线观看免费视频网站a站| 熟女少妇亚洲综合色aaa.| 一个人免费看片子| 国产精品秋霞免费鲁丝片| 在线观看www视频免费| 久久久久国内视频| 精品福利观看| 亚洲欧美一区二区三区黑人| 午夜91福利影院| 性高湖久久久久久久久免费观看| 黄色怎么调成土黄色| 亚洲国产精品999| 久久久精品94久久精品| 91麻豆精品激情在线观看国产 | 日韩 亚洲 欧美在线| 大型av网站在线播放| 五月天丁香电影| 精品国产一区二区三区久久久樱花| 午夜日韩欧美国产| 亚洲精品粉嫩美女一区| 色视频在线一区二区三区| 午夜福利,免费看| 9色porny在线观看| 老汉色av国产亚洲站长工具| 久久 成人 亚洲| 91成年电影在线观看| 咕卡用的链子| 亚洲欧美一区二区三区黑人| 女人爽到高潮嗷嗷叫在线视频| 性高湖久久久久久久久免费观看| 精品国产乱子伦一区二区三区 | 99久久精品国产亚洲精品| 午夜免费成人在线视频| 在线av久久热| 国产日韩欧美在线精品| 亚洲第一欧美日韩一区二区三区 | 久久狼人影院| 美女福利国产在线| 国产成人影院久久av| 国产精品麻豆人妻色哟哟久久| 老司机福利观看| 在线永久观看黄色视频| 亚洲国产精品一区三区| 美女高潮喷水抽搐中文字幕| 久久影院123| 宅男免费午夜| 91老司机精品| 国产在线视频一区二区| 看免费av毛片| 成人免费观看视频高清| 少妇猛男粗大的猛烈进出视频| av有码第一页| av电影中文网址| 亚洲av欧美aⅴ国产| 国产亚洲av高清不卡| 欧美日韩视频精品一区| 老汉色∧v一级毛片| 欧美日韩福利视频一区二区| 男人舔女人的私密视频| 精品久久久久久电影网| 久久精品国产a三级三级三级| 亚洲av男天堂| 久久精品熟女亚洲av麻豆精品| 男女国产视频网站| 日本精品一区二区三区蜜桃| 少妇猛男粗大的猛烈进出视频| 俄罗斯特黄特色一大片| 岛国在线观看网站| 亚洲精品日韩在线中文字幕| 美女视频免费永久观看网站| 国产欧美日韩综合在线一区二区| 黑人巨大精品欧美一区二区蜜桃| 操美女的视频在线观看| av在线老鸭窝| 免费久久久久久久精品成人欧美视频| 一区二区日韩欧美中文字幕| 欧美大码av| 国产欧美亚洲国产| 我要看黄色一级片免费的| 欧美在线一区亚洲|