• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Voltage control magnetism and ferromagnetic resonance in an Fe19Ni81/PMN-PT heterostructure by strain

    2022-08-01 06:02:34JunRen任軍JunmingLi李軍明ShengZhang張勝JunLi李駿WenxiaSu蘇文霞DunhuiWang王敦輝QingqiCao曹慶琪andYouweiDu都有為
    Chinese Physics B 2022年7期
    關(guān)鍵詞:張勝王敦

    Jun Ren(任軍), Junming Li(李軍明), Sheng Zhang(張勝), Jun Li(李駿), Wenxia Su(蘇文霞),Dunhui Wang(王敦輝),2,?, Qingqi Cao(曹慶琪), and Youwei Du(都有為)

    1National Laboratory of Solid State Microstructures and Jiangsu Key Laboratory for Nano Technology,Nanjing University,Nanjing 210093,China

    2Hangzhou Dianzi University,Hangzhou,Zhejiang 310018,China

    Keywords: voltage control magnetism, magnetoelectric coupling, magnetic anisotropy, ferromagnetic reso

    1. Introduction

    The study of voltage control magnetism has become one of the most popular research areas due to its potential applications in information storage, sensors and some of the new logical spintronic devices.[1–3]Various magnetic parameters,including magnetic anisotropy, coercivity, saturated magnetic moment and Curie temperature, have been regulated in different systems by different mechanisms, such as charge doping,strain effect and exchange coupling.[4–9]Among them,the multiferroic composite heterojunction composed of ferromagnetic (FM) materials and ferroelectric (FE) materials, which combines a piezoelectric effect and piezomagnetic effect and realizes a magnetoelectric coupling (ME) effect through a strain mechanism,is widely regarded as one of the most likely systems to be applied in practice.[10]In recent years,the ferroelectric single crystal Pb(Mg1/3Nb2/3)0.7Ti0.3O3(PMN-PT),formed by relaxor ferroelectric Pb(Mg1/3Nb2/3)O3(PMN)and ordinary ferroelectric PbTiO3(PT),has been widely used as the piezoelectric substrate in the study of voltage control magnetism based on the strain mechanism due to its large piezoelectric coefficients.[11–16]For example, Liet al.demonstrated a reversible magnetization rotation and manipulated the tunneling magnetoresistance at room temperature in CoFeB/AlOx/CoFeB/PMN-PT.[8]Liuet al.showed nonvolatile resonance frequency tuning in an FeCoB/PMNPT heterojunction.[17]In addition, our research group reported the related work of electric-field control magnetism based on a PMN-PT piezoelectric substrate,such as Co/PMNPT,[18]FePt/PMN-PT,[19]and NiCoMnIn/PMN-PT,[20]which achieved some meaningful results. However,due to the strain asymmetry of the piezoelectric substrate itself, most studies based on PMN-PT can only study the influence of a single tensile(or compressive)strain on the magnetic properties. There are very few studies which can simultaneously explore the different effects of tensile and compressive stresses on the magnetic properties in a multiferroic FM/FE composite heterojunction.

    Ferromagnetic resonance (FMR), which is known as the collective spin excitation in ferromagnetic materials, has attracted increasing attention due to its wide potential applications in novel voltage tunable RF/microwave magnetic devices,such as filters,resonators,inductors and phase shifters,as well as possible future spintronic devices.[21,22]Besides the study of magnetization change manipulated by voltage,the voltage regulation of FMR became an important field in the research of voltage control magnetism. According to the LLG equation,[23]the saturation magnetization (MS), magnetic anisotropy field(Hk)and spin wave damping coefficient(α) are the most important parameters used to describe the dynamics of FMR.Permalloy(Py)which possesses high permeability,a high Ms,low coercivity,low magnetic anisotropy and lowα,is a good soft magnetic alloy film suitable for microwave devices.[7,24,25]Therefore, in this work, we prepare the Py/PMN-PT ferromagnetic/ferroelectric composite heterojunctions by magnetron sputtering technology using a permalloy target with the composition ratio of Fe19Ni81and a(011)cut PMN-PT single crystal substrate. Since the substrate has both large tensile and compressive strains, the effects of different strains on the magnetic anisotropy are investigated. In addition,the(011)cut PMN-PT has the characteristics of nonvolatile strain with an applied asymmetric voltage,which provides the possibility of studying the voltage control of FMR.Thus, we demonstrate the effect of non-volatile strain on the ferromagnetic resonance excursion. Our results provide new possibilities for voltage adjustable RF/microwave magnetic devices and spintronic devices.

    2. Experiment

    A (011) cut PMN-PT single crystal (10 mm×5 mm×0.5 mm in size)was used as the substrate,and an Fe19Ni81film with a thickness of 25 nm was deposited on it by sputtering using an alloy target with the composition ratio of Fe19Ni81.The background vacuum of the chamber was less than 1×10-5Pa.During the deposition,the substrate was kept at room temperature and the argon pressure was 0.3 Pa. The DC sputtering power was 16 W. To apply a voltage to the PMN-PT, a layer of Au was deposited on the back of the substrate as the bottom electrode and the Fe19Ni81film was directly used as the top electrode.

    The surface morphology and film thickness of the samples were measured using a scanning probe microscope(AFM). The magnetic properties of the samples were measured using a vibrating sample magnetometer(VSM),and the strain curves of the PMN-PT substrate were measured by the resistance strain gauge on an electrical measuring platform.During the magnetic measurements, a Keithley 2410 voltage source meter was used to apply a voltage to the PMN-PT substrate. FMR spectra measurements were performed using a coplanar waveguide and electromagnet. The electromagnet provides an in-plane magnetic fieldH, which is perpendicular to the microwave fieldh.

    3. Result and discussion

    Figure 1(a) shows a schematic diagram of the Fe19Ni81/PMN-PT/Au sample, in which the electric field is applied along the thickness [011] direction of the PMN-PT.The AFM surface morphology of Fe19Ni81film is shown in Fig. 1(b). It is observed that the surface of the film sample is very smooth, in which the average roughness is less than 0.1 nm and the root mean square roughness is less than 0.3 nm.The good surface quality of the film provides a good base for us to investigate the magnetoelectric(ME)coupling effect.

    Fig.1. (a)A schematic diagram of a typical Fe19Ni81/PMN-PT/Au sample.(b)An AFM image of the sample with an area of 2 μm×2 μm.

    Fig.2.(a)The in-plane strain curve along the[100]direction with symmetric bipolar voltages. The inset shows a schematic diagram of the stress measurement for PMN-PT. (b) Nonvolatile strain curves with different asymmetric bipolar voltages.

    Figure 2 shows a typical schematic diagram of the strain measurement of the PMN-PT substrate.An electric field along the thickness of the substrate is applied and the strain gauge is attached to the surface of an electrode to detect the strain. Figures 2(a)and 2(b)show the relationship between the measured strain and the applied symmetric bipolar and asymmetric bipolar voltages in the direction of [100], respectively. It is clear that the strain–voltage (S–V) curve shows a typical butterfly shape for bipolar strain along the[100]direction in Fig.2(a),which is consistent with earlier reports.[26]Two considerable nonlinear tensile strains are observed along the [100] directions near±70 V, which correspond to the coercive field of the PMN-PT substrate.It is noted that the tensile strain around the coercive field is up to+3000 ppm. When we continue to apply the voltage beyond the coercive field, the strain gradually decreases and then increases in the opposite direction.Two compressive strains reaching up to-2000 ppm are observed around the voltage of±250 V. After slowly removing the electric field, the strains gradually decrease and recover to zero, showing volatile behavior (shown as the A state in Fig.2(b)).When an asymmetric bipolar voltage is applied(i.e.the applied positive voltage is larger than the coercive field and the negative voltage is smaller than the coercive field),in contrast to the situation of the bipolar symmetrical electric field,the substrate strain does not return to the initial zero state and shows a nonvolatile residual strain when the voltage is reduced to zero. More importantly,by applying different negative voltages,different residual strain states can be obtained.As shown in Fig.2(b),three different residual strain states of B,C,and D reaching up to+3000 ppm,+2000 ppm,and+1200 ppm are observed in the S–V curves,corresponding to the asymmetric negative voltages of-70 V,-60 V, and-40 V,respectively.Therefore,by precisely regulating the magnitude of the asymmetric negative voltage, stable and different residual strains can be obtained in the PMN-PT substrate.

    Since both compressive and tensile strains can be simultaneously obtained with the PMN-PT substrate, two distinct deformations can be induced in the sample. Figure 3(a) illustrates the deformation of the sample at different voltages.When a voltage of-70 V is applied to the sample,according to the S–V curve,the sample is equivalent to being stretched in the direction of[100]and compressed in the direction of[01-1], as shown by the dotted line in Fig. 3(a). When a voltage of+100 V is applied,in contrast to the situation at-70 V,the sample is equivalent to being compressed in the direction of[100]and elongated in the direction of[01-1]. Figure 2 shows the S–V curves for both symmetric and asymmetric bipolar voltages of the PMN-PT substrate in the direction of [100].These two different residual strain states are due to different ferroelectric polarization in the PMN-PT substrate. Electricfield-induced ferroelectric polarization switching between the in-plane direction and the out-of-plane directions is clearly demonstrated in Figs. 3(b) and 3(c). There are eight equivalent directions of spontaneous polarization in the rhombohedral PMN-PT single crystal. For the[011]tangential PMN-PT substrate, there are four spontaneous polarization directions pointing out of the plane,and the remaining four spontaneous polarization directions in the plane.When a symmetric bipolar voltage is applied, the out-of-plane ferroelectric polarization may experience a polarization reversal of 109°and 180°. The direction of the ferroelectric polarization still points out of the plane(such as state A shown in Fig.2(b)),which fails to create residual strain in the plane.As the applied voltage continues to increase,the substrate will produce large in-plane anisotropic biaxial strain. This is caused by the linear piezoelectric effect of the PMN-PT substrate.[27]When an asymmetric voltage is applied to the substrate, the ferroelectric polarization undergoes reversals of 71°and 109°,resulting in the dynamic reversal of the ferroelectric polarization from out-of-plane to in-plane.[17]Thus, a residual strain is obtained in the plane,which corresponds to state B in Fig.2(b).

    Fig.3. (a)A schematic diagram of deformation of samples at different voltages. Schematics of domain structures about the (011) PMN-PT under various applied voltages: (b) the residual strain state A with a positive poling state of polarization pointing out of the plane,and(c)the residual strain state B(after applying a negative voltage of-60 V and then switching it off).

    To explore the effect of different compressive and tensile strains on the magnetic properties of the sample, the roomtemperature magnetic hysteresis loops for the Fe19Ni81film under different voltages were measured. Figure 4 shows the in-plane magnetic hysteresis loops(M–H)of the sample under different voltages along the[01-1]direction. It is obvious that theMSof the FeNi film is about 840 emu/cm3,which is comparable to the value in the literature.[28]The coercivity of the sample is less than 5 Oe and the initial magnetic susceptibility is very high, indicating typical soft magnetic behavior of the Fe19Ni81film.When a voltage of+100 V is applied to the substrate, not only does the remanent magnetization (Mr) of the sample increase but the magnetic anisotropy also changes considerably, indicating that the magnetization process becomes easier for the[01-1]direction. In contrast, when a voltage of-70 V is applied,the remanence decreases markedly and the magnetization curve becomes a slant loop. The inset of Fig.4 is an enlarged view of the remanence curve, which allows us to see the variation of theMrunder different voltages more clearly. TheMrof the sample increases to 825 emu/cm3under the voltage of +100 V, which is almost the same as theMS. In contrast, theMrof the sample decreases sharply to 450 emu/cm3when a voltage of-70 V is applied. The relative change inMr(Mr(+100 V)-Mr(-70 V))/Mr(-70 V))reaches 83%. It is worth noting that the saturated magnetization of the sample remains unchanged, despite application of the positive and negative voltages,suggesting that different tensile and compressive strains of the substrate have no effect on the intrinsic magnetic interaction of the permalloy. In the study of voltage control of an FM/FE composite heterojunction, it is generally believed that there are two main mechanisms: the strain mechanism, and the polarization charge mechanism. As we know,the electrostatic shielding length of the metal is within 1 nm, while the thickness of the Fe19Ni81film in this work is about 25 nm. Therefore, the influence of the polarization charge at the interface can be ignored for the film. Here,we believe that the voltage regulation effect of our Fe19Ni81/PMN-PT heterojunction is mainly attributed to the strain caused by the piezoelectric effect of the PMN-PT substrate. Figure 3(a)illustrates the deformation of the sample at different voltages. Due to the influence of strain anisotropy,the sample becomes more easily magnetized in the direction of tensile strain while, in the direction of compression strain,the magnetization of the sample becomes difficult. This is in good agreement with our experimental results. Therefore,the variation ofMris mainly attributed to the change in magnetic anisotropy caused by the strain anisotropy.

    Fig.4. In-plane magnetic hysteresis loops for Fe19Ni81/PMN-PT under different voltages along the [01-1] direction at room-temperature. The inset shows an enlarged view of the Mr curve.

    It is known that the magnetic anisotropy of the sample has a great influence on the microwave performance. Therefore, it is meaningful to study the voltage control FMR of the Fe19Ni81/PMN-PT device. If we want to use the voltageinduced volatile strain to manipulate FMR,the voltage needs to be applied to the device all the time, which is disadvantageous to the FMR measurement. Due to the non-volatile properties of the PMN-PT substrate,the non-volatile behavior of voltage control FMR in the Fe19Ni81film can be investigated in this work. During the measurement, the sample is placed face down on a coplanar waveguide and the measured microwave frequencies are in the range of 6 GHz–10 GHz.An electromagnet provides an in-plane magnetic fieldH,which is perpendicular to the microwave fieldh. The FMR measurement is performed in field-sweeping mode,in which the external bias magnetic field is parallel to the sample surface along the[01-1]direction. Figure 5 shows the normalized FMR absorption spectra of samples in the initial state and non-volatile strain states at different frequencies.It is obvious that,with the increasing voltage,the resonance field shifts to the direction of the high fields and the maximum shift of the FMR field(from 1000 Oe to 1070 Oe) is observed with the applied voltage of-70 V at the frequency of 10 GHz.

    According to Kittel’s formula,[29,30]the resonance frequency of in-plane ferromagnetic resonance can be described as follows:

    wherefis the FMR frequency,γis the gyromagnetic ratio(the value is about 2.8 MHz/Oe),Hris the FMR field andMsis the saturation magnetization. Here,Heffis the effective field induced by the voltage,which could be positive or negative and can be described as:

    Here,λsis the magnetostriction constant of FeNi, andσEis the voltage-induced biaxial stress (compressive along [01-1]and tensile along [100] with the applied voltage of-70 V).According to Eq. (1) and the resonance field data measured at different frequencies,the fitting results are shown in Fig.6,in which the experimental data and theoretical calculation fit well in the frequency range of 6 GHz–10 GHz.

    Fig. 5. The normalized FMR absorption spectra of samples in the initial state and non-volatile strain states at different frequencies when the magnetic field is parallel to the [01-1] direction: (a) f =7 GHz, (b) f =8 GHz, (c)f =9 GHz,and(d) f =10 GHz.

    Fig.6.The resonance frequency as a function of the field for Fe19Ni81/PMNPT.The points are experimental data and the solid lines are fitted to Kittel’s formula.

    In the Fe19Ni81/PMN-PT heterojunction, after treatment at-40 V and-70 V,nonvolatile compressive strains are then generated along [01-1]. As shown in theM–Hcurves of the Fe19Ni81sample with different strain states, the anisotropy field will be enhanced under the strain. According to Eq.(2),the compressive strain along[01-1]will induce a negativeHeff.As a result,the FMR field shows adjustability and shifts to the higher fields,which can be understood using Eq.(1). Furthermore, it is worth noting that the Fe19Ni81film retains strong absorption over a small linewidth of approximatively 40 Oe,even at the high frequency of 10 GHz,indicating a small magnetic loss of the film. This excellent figure of merit is conducive to the practical application of low-loss magnetic tunable microwave devices,such as filters.

    4. Conclusion

    The study of voltage control magnetism in Fe19Ni81/PMN-PT composite heterojunctions is demonstrated in this article. By applying a voltage, the PMN-PT substrate can generate volatile or nonvolatile strains which can transfer to the Fe19Ni81film. The magnetic behavior of the Fe19Ni81film is manipulated through the reverse magnetoelectric coupling effect dominated by the strain mechanism. When a positive voltage is applied to the PMN-PT substrate,the magnetization process becomes easier along the [01-1] direction and theMrincreases. When a small negative voltage not exceeding the coercivity is applied,the rectangular degree of the hysteresis loop along the direction of [01-1] becomes lower,and theMrdecreases significantly. This is attributed to the different in-plane anisotropic biaxial strains caused by different voltages. Moreover, we successfully achieve the regulation of the FMR field of Fe19Ni81films by the nonvolatile strain effect of[011]cut PMN-PT substrate and the resonance field shifts to the direction of the high field with the treatment of the voltage. These research results have potential applications in the development of novel voltage tunable RF/microwave magnetic devices.

    猜你喜歡
    張勝王敦
    探析跟蹤審計在工程造價審計中的應(yīng)用
    CJ-1型齒輪箱箱體強度分析
    扁桃體切除術(shù)后常規(guī)行術(shù)腔縫合對預防術(shù)后出血的療效評價
    小羲之帳中保命
    今日文摘(2018年9期)2018-05-19 04:59:50
    放低姿態(tài)的智慧
    放低姿態(tài)的智慧
    Nonvolatile control of transport and magnetic properties in magnetoelectric heterostructures by electric field?
    內(nèi)心善良,自然陽光
    琴童(2017年3期)2017-04-05 18:14:27
    村長家的狗
    《在詩意中行走》
    文學自由談(2016年1期)2016-03-16 19:39:17
    日本免费一区二区三区高清不卡| 中文字幕久久专区| 国产单亲对白刺激| 99精品久久久久人妻精品| 99riav亚洲国产免费| 亚洲五月婷婷丁香| 国产熟女午夜一区二区三区| 最近最新中文字幕大全电影3 | 波多野结衣高清无吗| www.999成人在线观看| 日韩高清综合在线| xxx96com| 少妇 在线观看| 99国产极品粉嫩在线观看| 老汉色av国产亚洲站长工具| 别揉我奶头~嗯~啊~动态视频| 美女扒开内裤让男人捅视频| 亚洲自偷自拍图片 自拍| www.自偷自拍.com| 嫩草影院精品99| 久99久视频精品免费| 久久久久久久久免费视频了| 老汉色∧v一级毛片| 18禁国产床啪视频网站| 精品久久久久久久久久久久久 | 国产真人三级小视频在线观看| 亚洲狠狠婷婷综合久久图片| 国产成人av教育| 看免费av毛片| 999精品在线视频| 亚洲av美国av| 久久九九热精品免费| 午夜久久久久精精品| 777久久人妻少妇嫩草av网站| 美女大奶头视频| 国产精品av久久久久免费| 中文字幕精品亚洲无线码一区 | 久久久久久久久久黄片| 亚洲成av人片免费观看| 国产精品电影一区二区三区| 神马国产精品三级电影在线观看 | 人人妻人人澡人人看| 怎么达到女性高潮| 此物有八面人人有两片| 国产精品精品国产色婷婷| 在线观看日韩欧美| 亚洲av片天天在线观看| 亚洲国产精品999在线| 叶爱在线成人免费视频播放| 成熟少妇高潮喷水视频| 精品福利观看| 久久婷婷人人爽人人干人人爱| 欧美在线一区亚洲| 国产人伦9x9x在线观看| 欧美亚洲日本最大视频资源| 久久香蕉国产精品| 最新在线观看一区二区三区| 美女国产高潮福利片在线看| 色综合亚洲欧美另类图片| 中亚洲国语对白在线视频| 国产久久久一区二区三区| 免费无遮挡裸体视频| 久久精品夜夜夜夜夜久久蜜豆 | 亚洲色图 男人天堂 中文字幕| 久久热在线av| 国产午夜福利久久久久久| 亚洲国产看品久久| 麻豆av在线久日| 国产片内射在线| 亚洲五月色婷婷综合| 欧美午夜高清在线| 欧美人与性动交α欧美精品济南到| 午夜免费鲁丝| 精品人妻1区二区| 黑丝袜美女国产一区| 国产视频内射| 熟妇人妻久久中文字幕3abv| 国产一区在线观看成人免费| 99riav亚洲国产免费| 两个人看的免费小视频| 亚洲av成人不卡在线观看播放网| 精品免费久久久久久久清纯| 亚洲天堂国产精品一区在线| 一进一出抽搐gif免费好疼| 亚洲中文av在线| 很黄的视频免费| 9191精品国产免费久久| 在线观看一区二区三区| 欧美乱妇无乱码| 看免费av毛片| av天堂在线播放| 91av网站免费观看| 高清在线国产一区| 好男人电影高清在线观看| 一个人免费在线观看的高清视频| 欧美色欧美亚洲另类二区| 好看av亚洲va欧美ⅴa在| 国产在线观看jvid| 啪啪无遮挡十八禁网站| 国产精品永久免费网站| 午夜视频精品福利| 日本a在线网址| 一卡2卡三卡四卡精品乱码亚洲| 亚洲欧美精品综合一区二区三区| 久久久水蜜桃国产精品网| 大香蕉久久成人网| 婷婷丁香在线五月| 日韩大尺度精品在线看网址| 50天的宝宝边吃奶边哭怎么回事| 亚洲一区二区三区不卡视频| 日韩欧美 国产精品| 免费av毛片视频| 男女之事视频高清在线观看| 精品一区二区三区四区五区乱码| 午夜免费鲁丝| 老司机在亚洲福利影院| 亚洲av成人不卡在线观看播放网| 日韩三级视频一区二区三区| 成年人黄色毛片网站| 久久久精品国产亚洲av高清涩受| 欧美中文日本在线观看视频| 午夜久久久在线观看| 久久久久久久久免费视频了| 黑人操中国人逼视频| 日韩国内少妇激情av| 国产亚洲精品久久久久久毛片| 99国产极品粉嫩在线观看| 欧美黑人精品巨大| 天堂√8在线中文| 欧美性猛交╳xxx乱大交人| 亚洲国产欧美一区二区综合| 国产精华一区二区三区| 色综合欧美亚洲国产小说| 国产精品免费视频内射| 久久久久久国产a免费观看| 人人妻人人澡人人看| 两性午夜刺激爽爽歪歪视频在线观看 | 国产伦在线观看视频一区| 国产真人三级小视频在线观看| 欧美成人一区二区免费高清观看 | 精品久久久久久成人av| 在线观看www视频免费| 欧美激情极品国产一区二区三区| www.精华液| 在线观看www视频免费| 视频区欧美日本亚洲| 性欧美人与动物交配| 欧美日韩精品网址| 国产一区二区激情短视频| 性欧美人与动物交配| svipshipincom国产片| 亚洲精品在线美女| 黄频高清免费视频| 日韩欧美在线二视频| 亚洲中文字幕一区二区三区有码在线看 | 欧美日韩黄片免| 成人免费观看视频高清| 日韩欧美在线二视频| 亚洲精品中文字幕在线视频| av在线天堂中文字幕| 一进一出抽搐动态| 最新美女视频免费是黄的| 九色国产91popny在线| 麻豆一二三区av精品| 又紧又爽又黄一区二区| 精华霜和精华液先用哪个| av在线天堂中文字幕| 国产成人影院久久av| 99热这里只有精品一区 | 久久久久久免费高清国产稀缺| 久久国产精品男人的天堂亚洲| 99在线人妻在线中文字幕| 欧美性猛交╳xxx乱大交人| 日韩大码丰满熟妇| 欧美色视频一区免费| 欧美另类亚洲清纯唯美| 精品国内亚洲2022精品成人| 欧美不卡视频在线免费观看 | 巨乳人妻的诱惑在线观看| 99在线人妻在线中文字幕| 国产伦人伦偷精品视频| 别揉我奶头~嗯~啊~动态视频| 级片在线观看| 不卡一级毛片| 精品国产美女av久久久久小说| 免费女性裸体啪啪无遮挡网站| 日韩欧美在线二视频| 黄网站色视频无遮挡免费观看| 18禁国产床啪视频网站| 日韩大码丰满熟妇| 免费观看精品视频网站| av中文乱码字幕在线| 亚洲av熟女| 欧美大码av| 自线自在国产av| 天天添夜夜摸| 亚洲avbb在线观看| 亚洲熟女毛片儿| 成人亚洲精品一区在线观看| 中出人妻视频一区二区| 手机成人av网站| 在线免费观看的www视频| 黄色片一级片一级黄色片| 欧美性长视频在线观看| 韩国精品一区二区三区| 免费电影在线观看免费观看| 一边摸一边抽搐一进一小说| 午夜成年电影在线免费观看| 亚洲va日本ⅴa欧美va伊人久久| 亚洲专区中文字幕在线| 亚洲精品美女久久久久99蜜臀| 日本 欧美在线| 亚洲精品国产一区二区精华液| 亚洲欧洲精品一区二区精品久久久| 国产精品 欧美亚洲| 亚洲天堂国产精品一区在线| 国产又黄又爽又无遮挡在线| 黄色毛片三级朝国网站| 一区二区三区激情视频| 久久中文看片网| 亚洲人成77777在线视频| 这个男人来自地球电影免费观看| 老司机午夜十八禁免费视频| www.精华液| 亚洲国产日韩欧美精品在线观看 | 一级毛片高清免费大全| 一级黄色大片毛片| 久久久国产欧美日韩av| 天堂动漫精品| 欧美日韩乱码在线| 在线观看免费日韩欧美大片| 无人区码免费观看不卡| 国产成人av激情在线播放| 韩国精品一区二区三区| 日韩大码丰满熟妇| 一本大道久久a久久精品| 久久精品国产清高在天天线| 在线看三级毛片| 午夜激情av网站| 亚洲av成人av| svipshipincom国产片| ponron亚洲| 亚洲欧美一区二区三区黑人| 两个人看的免费小视频| 中文字幕人成人乱码亚洲影| bbb黄色大片| 国产精品98久久久久久宅男小说| 一夜夜www| 中文字幕av电影在线播放| 黄色女人牲交| 一卡2卡三卡四卡精品乱码亚洲| 精品电影一区二区在线| 大香蕉久久成人网| 侵犯人妻中文字幕一二三四区| 久久中文字幕一级| 亚洲av片天天在线观看| 国产一区二区在线av高清观看| 特大巨黑吊av在线直播 | 成人亚洲精品av一区二区| 伊人久久大香线蕉亚洲五| 丝袜人妻中文字幕| 99国产精品一区二区三区| 女生性感内裤真人,穿戴方法视频| 日韩欧美在线二视频| 免费看a级黄色片| 欧美色视频一区免费| 黄色成人免费大全| 日韩av在线大香蕉| 超碰成人久久| 欧美日韩乱码在线| 久久久久免费精品人妻一区二区 | 中文字幕最新亚洲高清| 欧美黑人精品巨大| 国产97色在线日韩免费| ponron亚洲| 一本久久中文字幕| 日本成人三级电影网站| 啪啪无遮挡十八禁网站| 757午夜福利合集在线观看| 久久久久久大精品| 亚洲人成网站高清观看| 亚洲第一青青草原| 亚洲成人久久爱视频| 中文亚洲av片在线观看爽| 99国产精品一区二区蜜桃av| 国产亚洲精品av在线| 老汉色av国产亚洲站长工具| 淫妇啪啪啪对白视频| 草草在线视频免费看| 成年女人毛片免费观看观看9| 午夜福利高清视频| 久久香蕉激情| 日本黄色视频三级网站网址| 高清毛片免费观看视频网站| 在线观看66精品国产| 欧美日韩中文字幕国产精品一区二区三区| 日日夜夜操网爽| 久久精品国产清高在天天线| 精品久久久久久久久久久久久 | 国产国语露脸激情在线看| 一边摸一边做爽爽视频免费| 在线观看午夜福利视频| 日本成人三级电影网站| 久久精品成人免费网站| 午夜激情av网站| 精品免费久久久久久久清纯| 老司机深夜福利视频在线观看| 视频区欧美日本亚洲| 人妻丰满熟妇av一区二区三区| 精品国产美女av久久久久小说| 成人亚洲精品av一区二区| 午夜福利18| 三级毛片av免费| 12—13女人毛片做爰片一| 这个男人来自地球电影免费观看| 精品少妇一区二区三区视频日本电影| 1024视频免费在线观看| 亚洲精品一卡2卡三卡4卡5卡| 亚洲av第一区精品v没综合| 在线观看舔阴道视频| 国产精品日韩av在线免费观看| 精品国产乱子伦一区二区三区| 亚洲激情在线av| 熟女少妇亚洲综合色aaa.| 亚洲欧美日韩无卡精品| 久久久久国产一级毛片高清牌| 人人妻,人人澡人人爽秒播| 别揉我奶头~嗯~啊~动态视频| 一区二区三区激情视频| 国产色视频综合| 久久香蕉精品热| a级毛片在线看网站| 婷婷亚洲欧美| av超薄肉色丝袜交足视频| 99国产精品一区二区三区| 欧美日韩亚洲综合一区二区三区_| 精品久久久久久久人妻蜜臀av| 老汉色av国产亚洲站长工具| 99精品在免费线老司机午夜| 国产午夜精品久久久久久| 精品一区二区三区av网在线观看| 亚洲国产欧洲综合997久久, | 亚洲人成77777在线视频| 亚洲av中文字字幕乱码综合 | 国产精品乱码一区二三区的特点| 男女之事视频高清在线观看| 又黄又爽又免费观看的视频| 男女视频在线观看网站免费 | 国产高清激情床上av| 亚洲成国产人片在线观看| 免费看a级黄色片| 日韩一卡2卡3卡4卡2021年| 亚洲 国产 在线| 国产麻豆成人av免费视频| 国产一区二区三区视频了| 亚洲一码二码三码区别大吗| 欧美最黄视频在线播放免费| 国产精品影院久久| 俄罗斯特黄特色一大片| 人人澡人人妻人| 男人舔女人下体高潮全视频| 桃色一区二区三区在线观看| 久热爱精品视频在线9| 亚洲国产欧洲综合997久久, | 久久久国产欧美日韩av| 99久久无色码亚洲精品果冻| 亚洲av中文字字幕乱码综合 | 成人18禁在线播放| 自线自在国产av| 夜夜爽天天搞| 黄色毛片三级朝国网站| 国产高清激情床上av| 日本撒尿小便嘘嘘汇集6| 亚洲一区二区三区色噜噜| 日本a在线网址| 免费一级毛片在线播放高清视频| 国产精品久久久av美女十八| 精品欧美国产一区二区三| 成人欧美大片| 亚洲国产精品999在线| 欧美成人性av电影在线观看| 最新美女视频免费是黄的| 自线自在国产av| 香蕉丝袜av| 国产精品一区二区免费欧美| 日本免费一区二区三区高清不卡| 免费看美女性在线毛片视频| 精品久久蜜臀av无| 精品电影一区二区在线| 免费搜索国产男女视频| 热re99久久国产66热| 少妇被粗大的猛进出69影院| 一进一出抽搐动态| 侵犯人妻中文字幕一二三四区| a级毛片a级免费在线| 久久伊人香网站| 婷婷精品国产亚洲av在线| 黄片大片在线免费观看| 女人爽到高潮嗷嗷叫在线视频| 男女做爰动态图高潮gif福利片| 精品熟女少妇八av免费久了| 两性午夜刺激爽爽歪歪视频在线观看 | 国产精品久久久久久亚洲av鲁大| 两性夫妻黄色片| 国产区一区二久久| 9191精品国产免费久久| 侵犯人妻中文字幕一二三四区| 欧美在线一区亚洲| 最新在线观看一区二区三区| 亚洲全国av大片| 搡老妇女老女人老熟妇| 中文资源天堂在线| 日韩三级视频一区二区三区| 国产片内射在线| 日韩精品青青久久久久久| 国产成人影院久久av| 色婷婷久久久亚洲欧美| or卡值多少钱| 怎么达到女性高潮| 深夜精品福利| 日本三级黄在线观看| 亚洲精品久久成人aⅴ小说| 91麻豆av在线| 欧美av亚洲av综合av国产av| 国产精品亚洲av一区麻豆| 国产精品久久久久久亚洲av鲁大| 禁无遮挡网站| 亚洲国产日韩欧美精品在线观看 | 亚洲七黄色美女视频| 久久 成人 亚洲| 国产免费av片在线观看野外av| 久久久久国产一级毛片高清牌| 人人妻人人澡欧美一区二区| 国产色视频综合| 在线观看免费视频日本深夜| 免费人成视频x8x8入口观看| 欧美黑人巨大hd| 国产男靠女视频免费网站| 欧美日韩一级在线毛片| 欧美激情久久久久久爽电影| 亚洲九九香蕉| 午夜久久久久精精品| www日本黄色视频网| 99精品久久久久人妻精品| 夜夜看夜夜爽夜夜摸| 午夜免费激情av| 精品福利观看| 露出奶头的视频| 高清在线国产一区| 99国产极品粉嫩在线观看| 很黄的视频免费| 亚洲精品在线观看二区| 麻豆成人午夜福利视频| 美女国产高潮福利片在线看| 国内毛片毛片毛片毛片毛片| 精品一区二区三区av网在线观看| 他把我摸到了高潮在线观看| 日本三级黄在线观看| 啦啦啦免费观看视频1| 狂野欧美激情性xxxx| 午夜免费成人在线视频| 国产精品美女特级片免费视频播放器 | 国产av一区二区精品久久| 精品日产1卡2卡| 啦啦啦免费观看视频1| 免费看日本二区| av中文乱码字幕在线| 国产成人av教育| 少妇粗大呻吟视频| 99在线视频只有这里精品首页| 亚洲一区中文字幕在线| 国产精品精品国产色婷婷| 99精品在免费线老司机午夜| 国产私拍福利视频在线观看| 欧洲精品卡2卡3卡4卡5卡区| 国产三级在线视频| 精品无人区乱码1区二区| 欧美亚洲日本最大视频资源| 午夜免费激情av| 女同久久另类99精品国产91| 中亚洲国语对白在线视频| 国产乱人伦免费视频| 欧美在线一区亚洲| 亚洲国产精品合色在线| 制服丝袜大香蕉在线| 香蕉久久夜色| 嫩草影院精品99| 国产亚洲精品av在线| a级毛片a级免费在线| 一区二区三区国产精品乱码| 19禁男女啪啪无遮挡网站| 人妻丰满熟妇av一区二区三区| 免费在线观看完整版高清| 最新美女视频免费是黄的| 久久天堂一区二区三区四区| 精品久久久久久久久久久久久 | 精品久久蜜臀av无| 美女高潮喷水抽搐中文字幕| 一本综合久久免费| 亚洲五月婷婷丁香| 午夜影院日韩av| 成人18禁在线播放| 亚洲无线在线观看| 一级a爱视频在线免费观看| 国产欧美日韩一区二区精品| 亚洲成人精品中文字幕电影| 精品第一国产精品| 亚洲性夜色夜夜综合| 一级黄色大片毛片| 亚洲欧美激情综合另类| 午夜福利一区二区在线看| 国产1区2区3区精品| 国产高清有码在线观看视频 | 亚洲国产毛片av蜜桃av| 两个人看的免费小视频| 精品国产乱码久久久久久男人| 久久香蕉精品热| 亚洲欧美激情综合另类| 久久精品国产清高在天天线| 国产亚洲精品av在线| 视频在线观看一区二区三区| 男人舔女人的私密视频| 免费一级毛片在线播放高清视频| 性色av乱码一区二区三区2| 精品国产亚洲在线| 欧美中文日本在线观看视频| 亚洲第一青青草原| 又黄又粗又硬又大视频| 禁无遮挡网站| 国产成人系列免费观看| 怎么达到女性高潮| 99国产精品一区二区蜜桃av| 午夜福利高清视频| 国产精品 欧美亚洲| 视频区欧美日本亚洲| 国产精品98久久久久久宅男小说| 热99re8久久精品国产| 两个人免费观看高清视频| 久久国产亚洲av麻豆专区| 色播亚洲综合网| 男人舔女人的私密视频| 国内久久婷婷六月综合欲色啪| 久久香蕉国产精品| 国语自产精品视频在线第100页| 日韩有码中文字幕| 久久精品夜夜夜夜夜久久蜜豆 | 激情在线观看视频在线高清| 久99久视频精品免费| 日本 av在线| 亚洲中文日韩欧美视频| www.www免费av| 久久人人精品亚洲av| 成人18禁高潮啪啪吃奶动态图| 香蕉丝袜av| 身体一侧抽搐| 成人三级做爰电影| 美女高潮到喷水免费观看| 777久久人妻少妇嫩草av网站| 美女 人体艺术 gogo| 国产精品久久久久久精品电影 | 精品久久久久久久末码| 午夜福利在线在线| 国产精品一区二区免费欧美| 日日干狠狠操夜夜爽| 日韩欧美 国产精品| 午夜成年电影在线免费观看| 嫩草影院精品99| 亚洲电影在线观看av| 狂野欧美激情性xxxx| 变态另类丝袜制服| 一二三四在线观看免费中文在| 国产成人一区二区三区免费视频网站| 久久99热这里只有精品18| 精品卡一卡二卡四卡免费| 久久久久九九精品影院| 亚洲第一av免费看| 精品久久久久久久人妻蜜臀av| 18美女黄网站色大片免费观看| 欧美日本亚洲视频在线播放| 日本一本二区三区精品| 亚洲一码二码三码区别大吗| 嫩草影视91久久| 久久国产精品人妻蜜桃| 欧美成人性av电影在线观看| 伊人久久大香线蕉亚洲五| 久久午夜综合久久蜜桃| 日日干狠狠操夜夜爽| www.自偷自拍.com| 黑人欧美特级aaaaaa片| 成人午夜高清在线视频 | 亚洲国产精品久久男人天堂| or卡值多少钱| 亚洲精品国产区一区二| 法律面前人人平等表现在哪些方面| 淫秽高清视频在线观看| 欧美三级亚洲精品| 色综合欧美亚洲国产小说| 90打野战视频偷拍视频| 亚洲国产高清在线一区二区三 | 国产三级在线视频| 国产99久久九九免费精品| 麻豆av在线久日| 亚洲国产精品999在线| 国产激情偷乱视频一区二区| 久久久久国内视频| 国产又爽黄色视频| 色播在线永久视频| 在线观看免费日韩欧美大片| 国产又色又爽无遮挡免费看| 国产亚洲精品综合一区在线观看 | 一级毛片精品| 久久亚洲真实| 欧美一区二区精品小视频在线| 精品午夜福利视频在线观看一区| 男女床上黄色一级片免费看|