• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Half-metallicity induced by out-of-plane electric field on phosphorene nanoribbons

    2022-08-01 06:02:24XiaoFangOuyang歐陽小芳andLuWang王路
    Chinese Physics B 2022年7期
    關(guān)鍵詞:王路小芳歐陽

    Xiao-Fang Ouyang(歐陽小芳) and Lu Wang(王路)

    School of Physics and Electrical Information,Shangqiu Normal University,Henan 476000,China

    Keywords: half-metal,antiferromagnetic,two-dimensional materials,spin polarization

    1. Introduction

    Spintronics, which utilizes spin as the carrier for information transportation and processing, is one of the most promising methodologies in achieving high-speed and lowenergy-consuming electronic devices.[1–4]A key challenge in this field is generating fully spin-polarized current around the Fermi level. Half metal, where only one spin channel is conductive while the other is insulating, can resolve this problem.[5]Recently,graphene has attracted extensive research attention because of extraordinary thermal, mechanical, and electrical properties.[6,7]However, the dirac point is difficult to switch on at the room temperature,which impedes applications in spintronics. Therefore, in order to overcome this problem,much effort has been made to find semiconductor with large band gap. Transitional metal sulfide(TMS)with relatively high and adjustable band gap achieved by adjusting the number of layers and components of sulfide, may resolve this problem.[8–11]Moreover,the optical band gap of TMS has been proved to be dependent on the temperature.[12,13]Nevertheless, the carrier mobility of these materials is much lower than 200 cm2/V·s,[14]which hinder their application seriously.

    Compared with the gapless graphene and silicene, black phosphorene has attracted great attention due to the thickdependent band-gap of 0.3 eV–2 eV.[15,16]On the other hand,in comparison with TMS, the black phosphorene has advantages of ultrahigh carrier mobility[17,18]and anisotropic thermal, optical, and electronic transport properties,[19–21]being excellent for application in spintronics.Furthermore,the fieldeffect-transistor(FET)based on few layer black phosphorus is found to have strikingly high on/off ratio of 105and a carrier mobility of 103cm2/V·s at the room temperature,[22]being beneficial for application in nano devices. Thus,phosphorene is becoming a potential material in the field of electronics,optoelectronics and spintronics due to the existence of above novel properties.[23,24]

    It is well-known that the pursuit on controlled magnetism of phosphorene in practise has been persisting goal in the field of spintronics. Many theoretical researches about the magnetism of phosphorene have been proposed to date. The doping black phosphorene with substitutional impurities such as Ti,Cr,Ni,Mn and Fe is a ferromagnetic semiconductor,being the same as dilute magnetic semiconductor (DMS). The spin polarization of 100%is achieved in the phosphorene nanoribbons doped with Ti, Cr, Mn, Co and Fe atoms.[25]Besides,the O2-(Co-phosphorene)[26]and V doped phosphorene[27]show half-metallic characteristics. However, the macroferromagnetism originated from the magnetic atoms is unfavorable for the application in nano devices.[28,29]Spin polarization introduced by non-magnetic impurities in phosphorene may resolve this problem,[30,31]in fact,it is difficult to control the doping site accurately.

    To better understand the effect of magnetism on electronic structure, the intrinsic magnetic properties of ZBPNRs are investigated in detail.[32–34]The antiferromagnetic ground state with ferromagnetic along same edge and antiferromagnetic between two opposite edges is found at the edge of ZBPNRs.[33]In addition, in-plane transverse electrical field has strong influence on the electronic structure of the ZBPNRs,resulting in the formation of topological insulate state.[35,36]Half-metallicity could be achieved in zigzag phosphorene nanoribbons with different groups decoration such as OH-NO2and NH2-NO2,[37]which avoid the drawback of macro-ferromagnetism deriving from the transitional metal atoms. Nevertheless,it is difficult to obtain the selective modification in experiment. Therefore,the study of the half-metal based on black-phosphorene without transitional metals,substitutional doping and magnetic field is utmost imperative.

    In this work,we present a systematic investigation on the electronic and magnetic properties of ZBPNRs by applying density functional theory. The widths of ZBPNRs are classified by the number of P atom across the ribbon width, as shown in Fig. 1(a). In order to obtain the magnetic ground state, non-magnetic and four different magnetic states displayed in Figs. 1(a)–1(d) are considered in the calculations.The ground state of ZBPNRs is dependent on the widths, as shown in Fig. 1(e). As for the narrow widths smaller than 8ZBPNRs,its ground state prefers the AFM1 order. With increasing of widths of ZBPNRs, the degeneracy between the AFM2 and AFM3 is formed, becoming the ground state, as shown in Fig. 1(e). More interesting, the addition of out-ofplane electric field can modulate the magnetic property, resulting in the split of antiferromagnetic degeneracy of AFM1 and realization of half-metal. Our results suggest a new way to obtain half-metal in the absence of transitional metal atoms,magnetic field and edge passivation, which is helpful in the construction of two-dimensional half-metal in spintronics.

    2. Methods

    Our investigation of ZBPNRs is all performed through Viennaab initiosimulation package[38,39]based on the projector augmented wave method.[40]The generalized gradient approximation(GGA)for the exchange–correlation functional are employed with plane wave energy cutoff of 500 eV.[41]The energy convergence criteria for electronic iterations is set to be 10-6eV. In the self-consistent potential calculation under electric field,8ZBPNRs of zigzag sheet with a set of 30×1×1 Monkhorst–Packk-points grid is used for Brillouin-zone integration,and when the density of states(DOS)is calculated,a 60×1×1k-point sampling is used.A vacuum space of at least 15 ?A was included in the unit cell to eliminate the coupling between neighboring cells. The electronic and magnetic properties of ZBPNRs with ranging from 4ZBPNRs to 20ZBPNRs are investigated in detail. The widths of ZBPNRs are referred according to the number of P atoms in the direction perpendicular to the zigzag edge. All atomic positions and the sizes of phosphorene are optimized until the atomic force becomes smaller than 0.01 eV/ ?A.

    Fig.1. (a)FM,(b)AFM1,(c)AFM2,(d)AFM3 are initial magnetic structures adopt for searching magnetic ground state. (e)The energy difference of five magnetic states as a function widths of ZBPNRs.

    3. Results and discussion

    The relaxed lattice constants of monolayer black phosphorene are 3.2989 ?A and 4.6291 ?A,which are in good agreement with other theoretical calculations.[33,34,42]The ZBPNRs is obtained by cutting the monolayer black phosphorene along zigzag direction. For searching the ground state,five different magnetic states including NM,F(xiàn)M,AFM1,AFM2 and AFM3 are calculated by spin-polarized GGA calculation. As shown in Fig.1,AFM1 is ferromagnetic within each edge but antiferromagnetic between two opposite edges. AFM2 is intra-edge antiferromagnetic with inter-edge ferromagnetic,while AFM3 is the state with both intra-edge and inter-edge antiferromagnetic arrangements. The total energies of nonmagnetic(NM),ferromagnetic(FM),and various antiferromagnetic(AFM)orders were calculated, respectively. It was found that the stable magnetic states could be achieved by allowing the system to be spin polarized. Both the AFM and FM configurations are in energy lower than NM state regardless of widths of the nanoribbons,indicating that spin polarization is a possible stabilization mechanism.

    More interesting, the ground state is dependent on the nanoribbon widths. Figure 1(e) shows the energy differenceEtotal-EAFM1per unit cell as a function of widths of nanoribbons. We can see that the AFM1 is ground state for the narrow nanoribbons with ranging from 4ZBPNRs to 8ZBPNRs.With increase of widths, AFM2 and AFM3 form a degenerate state with lowest total energy shown by red and blue line in Fig. 1(e), becoming the magnetic ground state, which manifest the weak interaction between two edges. The NM and FM will never be the ground state due to the dangling bond of edge atoms. The energy difference between the FM and AFM1 antiferromagnetic order marked by black line in Fig. 1(e) decreases with increase of widths and almost vanishes for 14ZBPNRs, because nanoribbon widths exceed the decay length of the spin polarization. Similar result was also found in pristine ZGNRs.[43,44]

    To give a further insight of the magnetism of pristine ZBPNRs, the electronic structures of NM, FM and AFM1 of 16ZBPNRs are calculated in detail. Figure 2(c) shows that two bands from the edge P atoms across the Fermi level result in metallic character of NM state. For analyzing the contribution of edge atoms,the orbital band structure is calculated.As shown in Fig. 2(d), we can see that the states around the Fermi level are mainly contributed by the electrons of pzorbital due to the dangling bonds. In the FM state, the spin up and spin down channels are pushed away from the Fermi level to higher and lower energies, as shown in Fig.2(b). An indirect band gap is realized in the AFM1 state owing to the spilt ofαandβbands, in which the valence band top atΓpoint and the conduction band bottom at theXpoint,as displayed in Fig.2(a).

    Fig.2. The band structure of 16ZBPNRs with AFM1 state(a),F(xiàn)M state(b),NM state(c),and(d)the orbital band structure of NM state.

    The spin density (SD) and partial density of states(PDOS)of 16ZBPNRs with AFM2 state are calculated. In the AFM2 state,theαandβbands are split just above and below the Fermi level, forming a semiconductor shown in Fig.3(c).The SD shown in Fig. 3(a) reveals the spatial distribution of both dangling bond states and the tails of the spin-polarized p-orbital states. It is obvious that the magnetic moment at the edge arises from both dangling bonds as well as edge localized p-orbital states. As shown in Fig. 3(b), the magnetism is mainly contributed by the edge atoms with 0.25μBand-0.25μB, respectively, resulting in a total absolute magnetic moment of 1μB, while the contribution of its adjacent atoms to the local magnetic moments are small with 0.009μBand 0.005μBin a unit cell,respectively.

    For analyzing the effect of electric field on magnetism of ZBPNRs, the electronic structure and magnetic properties of 8ZBPNRs with AFM1 state under electric field are calculated in detail. Table 1 shows that the total magnetic moment increased under the electric field due to the split of degeneracy of magnetic moment between opposite edge atoms, resulting the ferromagnetism of ZBPNRs, while the ferromagnetism disappears until the electric field increases to 4 V/nm. Figures 4(a)–4(c)indicate that the antiferromagnetic degeneracy is split by the out-of-plane electric field perpendicular to the ZBPNRs. As spin splitting energy increases with strength of electric field,the half-metallic ZBPNRs with about 0.2 eV half-metallic gap is achieved under the electric field with 3 V/nm. To further understand the atomic contribution to spin polarization, the PDOS under out-of-plane electric field with 3 V/nm are also calculated. Figure 4(d) shows that the edge atoms contribute significantly to the spin polarization, leading to the realization of half-metal with net spin down magnetic moment.

    Fig.3. The SD(a),the projection of SD on the upper layer(b)(red and blue represent spin up and spin down,respectively),(c)the PDOS of 16ZBPNRs with AFM2 state. The edge atoms are represented as No. 1, 4, 17 and 20,respectively.

    Fig. 4. The band structure of AFM1 state under electric field with 2 V/nm (a), 2.5 V/nm (b) and 3 V/nm (c), respectively. (d) The PDOS of edge atoms under the electric field with 3 V/nm, (e) the SD difference of 8ZBPNRs with AFM1 state under electric field ((ρup-ρdown)3 V/nm-(ρup-ρdown)0 V/nm), (f) the model under electric field. The red and green arrows indicate the spin direction.

    Table 1. Calculated magnetic moment under different electric field: magnetic moment of edge atoms((μ2(μB)),(μ10(μB)),(μ7(μB))and(μ15(μB))),the total magnetic moment of the system(μtot(μB)). Semiconductor and half-metallic structures are denoted as S-con and H-metal,respectively.

    The SD difference of 8ZBPNRs with AFM1 state between 3 V/nm and 0 V/nm is calculated.As shown in Fig.4(e),it is obvious that the spin-up charge density around No.2 and No. 10 decrease, while the spin-up charge density at No. 7 and No.15 atoms increase under the electric field. In order to probe the intrinsic mechanism,the magnetic moment are summarized in Table 1. We can see that when the electric field increase to 3 V/nm,the magnetic moments of No.2 and No.10 decrease from 0.25μBto 0.071μB, while this value of No. 7 and No. 15 reduce from-0.25μBto-0.105μB, resulting in net magnetic moment of about-0.07μBand the realization of half-metal. From Fig. 4(f), we come to a conclusion that the staggered potential applied by out-of-plane electric field are different for the opposite edges owing to the different horizontal plane,inducing the split of spin degeneracy as well as achieving of half-metal.

    The ZBPNRs with intra-edge ferromagnetic state and inter-edge antiferromagnetic order becomes half-metal under the action of out-of-plane electric field. This method is more advantageous in contrast to other complicated requirements such as select modification,transition metal doping,magnetic field, semihydrogenations and nitrogenations. In addition, in comparison with gapless graphene as well as TMS with small carrier mobility,the spintronic devices based on phosphorene have the advantage of high carrier mobility and high on/off ratio.The realization of half-metal based on phosphorene,which is independent on macroscopic ferromagnetism and selective doping,may expand the research scope of spintronic devices.

    4. Conclusions

    In conclusion, we have investigated the intrinsic electronic structure and magnetic properties of the ZBPNRs. We found that the antiferromagnetic state with intra-edge ferromagnetic and inter-edge antiferromagnetic is the ground state for the narrow widths and the half-metallic phosphorene is achieved by applying the out-of-plane electric field other than magnetic metal doping, defects, magnetic field and selective hydrogenation. Our findings may propose a new way to construct the nanoscale spintronic devices based on black phosphorene.

    Acknowledgment

    This work is supported by Key Scientific Research Projects of Colleges and Universities in Henan Province,China(Grant No.21A140022).

    猜你喜歡
    王路小芳歐陽
    Crown evolution kinematics of a camellia oil droplet impacting on a liquid layer
    看有福的人做事,自己也能分得一些運(yùn)氣
    意林彩版(2022年1期)2022-05-03 10:25:07
    “1+X”證書制度下課證融通路徑實(shí)踐探索研究
    Positive unlabeled named entity recognition with multi-granularity linguistic information①
    基于微課的翻轉(zhuǎn)課堂教學(xué)模式應(yīng)用設(shè)計(jì)研究
    我家的健忘老媽
    求婚
    依依送別歐陽鶴先生
    中華詩詞(2019年9期)2019-05-21 03:05:18
    求 婚
    安慰
    www.999成人在线观看| 国产av国产精品国产| 久久久久久亚洲精品国产蜜桃av| 日本撒尿小便嘘嘘汇集6| 亚洲国产av新网站| 国产一区二区在线观看av| 一本—道久久a久久精品蜜桃钙片| 免费不卡黄色视频| 少妇的丰满在线观看| 老司机福利观看| 国产精品久久电影中文字幕 | 动漫黄色视频在线观看| 又紧又爽又黄一区二区| 夜夜骑夜夜射夜夜干| 欧美国产精品va在线观看不卡| av电影中文网址| 久久精品国产综合久久久| 天天躁日日躁夜夜躁夜夜| 超碰成人久久| 夜夜骑夜夜射夜夜干| 国产精品免费视频内射| 不卡一级毛片| 日韩欧美国产一区二区入口| 涩涩av久久男人的天堂| 国产在线一区二区三区精| 日韩 欧美 亚洲 中文字幕| 久久国产精品大桥未久av| 在线观看免费午夜福利视频| 亚洲av成人一区二区三| 亚洲专区字幕在线| 极品少妇高潮喷水抽搐| 十八禁网站免费在线| 精品国产一区二区三区久久久樱花| 久久久国产成人免费| 欧美久久黑人一区二区| 亚洲国产欧美日韩在线播放| 成人亚洲精品一区在线观看| 久久精品国产99精品国产亚洲性色 | 久久青草综合色| 久久久久久免费高清国产稀缺| 亚洲第一青青草原| 欧美精品一区二区免费开放| xxxhd国产人妻xxx| 乱人伦中国视频| videosex国产| av又黄又爽大尺度在线免费看| 夜夜骑夜夜射夜夜干| 午夜福利视频在线观看免费| 亚洲欧美一区二区三区黑人| 男女高潮啪啪啪动态图| 国产无遮挡羞羞视频在线观看| 国产伦理片在线播放av一区| 亚洲人成电影观看| 久久午夜综合久久蜜桃| 少妇粗大呻吟视频| 国产精品自产拍在线观看55亚洲 | 精品高清国产在线一区| 日韩成人在线观看一区二区三区| 精品国产乱码久久久久久男人| 亚洲成a人片在线一区二区| 午夜日韩欧美国产| 久久人妻av系列| 欧美性长视频在线观看| 久久精品国产亚洲av香蕉五月 | 精品久久蜜臀av无| 久热爱精品视频在线9| 一区福利在线观看| 香蕉国产在线看| 亚洲情色 制服丝袜| 亚洲中文字幕日韩| 欧美日韩中文字幕国产精品一区二区三区 | 成人18禁高潮啪啪吃奶动态图| 在线观看66精品国产| 国产免费av片在线观看野外av| 一级,二级,三级黄色视频| 夫妻午夜视频| 黑人巨大精品欧美一区二区mp4| 国产免费av片在线观看野外av| 又大又爽又粗| 亚洲精品av麻豆狂野| 在线亚洲精品国产二区图片欧美| 国产午夜精品久久久久久| 久9热在线精品视频| 我的亚洲天堂| 嫩草影视91久久| 国产成人精品在线电影| 久久久国产一区二区| 国产精品久久久久久精品电影小说| 欧美在线黄色| 最近最新免费中文字幕在线| 精品国内亚洲2022精品成人 | 免费少妇av软件| 大型av网站在线播放| 免费久久久久久久精品成人欧美视频| 精品少妇一区二区三区视频日本电影| 他把我摸到了高潮在线观看 | 天天躁夜夜躁狠狠躁躁| 肉色欧美久久久久久久蜜桃| 丰满人妻熟妇乱又伦精品不卡| 久久国产精品影院| 国产欧美日韩精品亚洲av| 一区在线观看完整版| 99精品在免费线老司机午夜| 国产成人系列免费观看| 十八禁人妻一区二区| 黑人欧美特级aaaaaa片| 国产精品影院久久| 夜夜爽天天搞| 脱女人内裤的视频| 国产精品久久久av美女十八| 嫁个100分男人电影在线观看| 午夜免费鲁丝| 免费看a级黄色片| 一夜夜www| 亚洲欧洲日产国产| 黄色 视频免费看| 色94色欧美一区二区| 在线av久久热| 日本黄色视频三级网站网址 | 视频区图区小说| 丰满少妇做爰视频| 91麻豆精品激情在线观看国产 | 亚洲一区二区三区欧美精品| 91精品国产国语对白视频| av天堂在线播放| 久久99一区二区三区| 黄色丝袜av网址大全| 国产一区二区三区视频了| 日韩熟女老妇一区二区性免费视频| 十分钟在线观看高清视频www| 亚洲一区中文字幕在线| 热99久久久久精品小说推荐| 欧美日韩一级在线毛片| 国产精品国产高清国产av | 最新的欧美精品一区二区| 精品一区二区三区av网在线观看 | 这个男人来自地球电影免费观看| 亚洲中文日韩欧美视频| 亚洲精品久久成人aⅴ小说| 免费人妻精品一区二区三区视频| 一本综合久久免费| 国产伦理片在线播放av一区| 国产97色在线日韩免费| 一级黄色大片毛片| 国产精品.久久久| 亚洲精品乱久久久久久| 亚洲国产欧美日韩在线播放| 肉色欧美久久久久久久蜜桃| 丰满迷人的少妇在线观看| 91字幕亚洲| 亚洲精品中文字幕一二三四区 | 90打野战视频偷拍视频| 在线播放国产精品三级| 亚洲av成人不卡在线观看播放网| 中国美女看黄片| 啦啦啦中文免费视频观看日本| 极品少妇高潮喷水抽搐| 亚洲五月婷婷丁香| 欧美人与性动交α欧美软件| 亚洲久久久国产精品| 一区二区av电影网| 亚洲五月色婷婷综合| 99在线人妻在线中文字幕 | 老司机深夜福利视频在线观看| 在线永久观看黄色视频| 精品久久久久久电影网| 在线观看免费视频日本深夜| 99国产综合亚洲精品| 高清av免费在线| 久久久精品区二区三区| 成在线人永久免费视频| 久久热在线av| 久久久国产欧美日韩av| 中国美女看黄片| 国产成人免费无遮挡视频| 少妇精品久久久久久久| 波多野结衣一区麻豆| 女人爽到高潮嗷嗷叫在线视频| 欧美黑人精品巨大| 99香蕉大伊视频| 超碰成人久久| 天堂动漫精品| 国产激情久久老熟女| 美女视频免费永久观看网站| 国产一区二区三区在线臀色熟女 | 成年女人毛片免费观看观看9 | 男女午夜视频在线观看| 在线观看免费日韩欧美大片| 岛国在线观看网站| 久久精品人人爽人人爽视色| 久久影院123| 国产深夜福利视频在线观看| 啪啪无遮挡十八禁网站| 国产成人精品久久二区二区免费| 免费看十八禁软件| 在线观看舔阴道视频| 久久毛片免费看一区二区三区| 精品熟女少妇八av免费久了| 国产精品久久久久久精品电影小说| 国产一区二区三区综合在线观看| 国产精品欧美亚洲77777| 久久久久久人人人人人| 老鸭窝网址在线观看| 窝窝影院91人妻| avwww免费| 最黄视频免费看| 色老头精品视频在线观看| 欧美日本中文国产一区发布| 丰满人妻熟妇乱又伦精品不卡| 丝瓜视频免费看黄片| 久久精品91无色码中文字幕| 国产精品久久久久成人av| 亚洲成人国产一区在线观看| 欧美日韩亚洲国产一区二区在线观看 | 国产精品国产高清国产av | 三级毛片av免费| 一级a爱视频在线免费观看| 女性生殖器流出的白浆| 夫妻午夜视频| 国产精品影院久久| 69精品国产乱码久久久| 国产视频一区二区在线看| 午夜福利在线免费观看网站| 免费在线观看日本一区| 欧美老熟妇乱子伦牲交| 国产精品亚洲av一区麻豆| 激情视频va一区二区三区| 黄频高清免费视频| 大片免费播放器 马上看| 热99久久久久精品小说推荐| 一级片'在线观看视频| 三上悠亚av全集在线观看| 欧美在线一区亚洲| 一区二区三区国产精品乱码| 十八禁网站网址无遮挡| 欧美国产精品一级二级三级| 午夜免费成人在线视频| 中文欧美无线码| 欧美性长视频在线观看| 99精国产麻豆久久婷婷| 国产精品电影一区二区三区 | 亚洲av国产av综合av卡| 一边摸一边抽搐一进一出视频| 黄色视频不卡| 国产在线精品亚洲第一网站| 国产精品麻豆人妻色哟哟久久| 如日韩欧美国产精品一区二区三区| 老司机亚洲免费影院| 老汉色av国产亚洲站长工具| 国产人伦9x9x在线观看| 久热这里只有精品99| 99久久精品国产亚洲精品| 亚洲三区欧美一区| 久久天躁狠狠躁夜夜2o2o| 久久精品国产综合久久久| 高清视频免费观看一区二区| 高清av免费在线| 丝瓜视频免费看黄片| 国产成人影院久久av| 高清欧美精品videossex| 欧美日本中文国产一区发布| 91老司机精品| 亚洲精品一二三| 中文字幕色久视频| 国产日韩欧美亚洲二区| 午夜老司机福利片| 久久久久久久大尺度免费视频| 一级,二级,三级黄色视频| 一本综合久久免费| 天天添夜夜摸| 真人做人爱边吃奶动态| 黄色视频不卡| 久久青草综合色| 国产欧美日韩一区二区三| 久久久久国产一级毛片高清牌| 久久人人97超碰香蕉20202| 午夜福利在线观看吧| 欧美日韩国产mv在线观看视频| 日本精品一区二区三区蜜桃| 两个人看的免费小视频| 一区二区日韩欧美中文字幕| av网站在线播放免费| 亚洲av成人不卡在线观看播放网| 18禁黄网站禁片午夜丰满| 亚洲三区欧美一区| 日韩大码丰满熟妇| 久久国产精品影院| 最近最新免费中文字幕在线| 欧美日韩av久久| 欧美日韩亚洲综合一区二区三区_| 99精品在免费线老司机午夜| 久久久久精品人妻al黑| 9色porny在线观看| 欧美黄色片欧美黄色片| 欧美中文综合在线视频| 精品国产一区二区三区四区第35| 一本—道久久a久久精品蜜桃钙片| 91字幕亚洲| tocl精华| 免费在线观看影片大全网站| 亚洲熟女精品中文字幕| 妹子高潮喷水视频| 国产精品偷伦视频观看了| 欧美日韩av久久| 精品免费久久久久久久清纯 | 丝袜喷水一区| 夜夜夜夜夜久久久久| 久久人人97超碰香蕉20202| tocl精华| 丝袜在线中文字幕| 久久香蕉激情| 久久久久久久国产电影| 99精品久久久久人妻精品| 日韩中文字幕欧美一区二区| 欧美日韩成人在线一区二区| 亚洲欧美激情在线| 中国美女看黄片| 9热在线视频观看99| 精品免费久久久久久久清纯 | 亚洲国产毛片av蜜桃av| 亚洲免费av在线视频| 大型黄色视频在线免费观看| 三级毛片av免费| 中文字幕制服av| 久久午夜亚洲精品久久| 老司机靠b影院| 黄片大片在线免费观看| 激情视频va一区二区三区| 久久精品成人免费网站| 女同久久另类99精品国产91| 一边摸一边抽搐一进一小说 | 久久天堂一区二区三区四区| 亚洲精品国产色婷婷电影| 国产精品香港三级国产av潘金莲| 欧美另类亚洲清纯唯美| 国产精品香港三级国产av潘金莲| 亚洲欧洲日产国产| 国产精品国产av在线观看| 一级片'在线观看视频| 国产精品麻豆人妻色哟哟久久| 99热网站在线观看| 亚洲成人免费av在线播放| 国产精品秋霞免费鲁丝片| 欧美 日韩 精品 国产| 久久九九热精品免费| 中文亚洲av片在线观看爽 | 丰满迷人的少妇在线观看| 久久毛片免费看一区二区三区| 国产精品 欧美亚洲| 午夜福利乱码中文字幕| 正在播放国产对白刺激| 国产精品免费一区二区三区在线 | 国产成人精品久久二区二区免费| 天天添夜夜摸| 免费在线观看视频国产中文字幕亚洲| 国产成人精品久久二区二区91| 五月天丁香电影| 一夜夜www| 欧美性长视频在线观看| 啪啪无遮挡十八禁网站| 又紧又爽又黄一区二区| 成人手机av| 精品国产亚洲在线| 亚洲天堂av无毛| 欧美亚洲日本最大视频资源| 国产极品粉嫩免费观看在线| 亚洲精品在线观看二区| 亚洲综合色网址| 精品亚洲乱码少妇综合久久| 18禁裸乳无遮挡动漫免费视频| 久久久国产欧美日韩av| 一级片'在线观看视频| 国产不卡一卡二| 国产激情久久老熟女| 亚洲精品久久成人aⅴ小说| 欧美中文综合在线视频| 18禁国产床啪视频网站| 淫妇啪啪啪对白视频| 欧美黄色片欧美黄色片| 亚洲精品av麻豆狂野| av有码第一页| 一区二区三区乱码不卡18| 亚洲九九香蕉| 激情在线观看视频在线高清 | 高清在线国产一区| 国产伦理片在线播放av一区| 国产精品电影一区二区三区 | 精品久久久久久电影网| 欧美av亚洲av综合av国产av| 国产精品久久电影中文字幕 | 久久精品人人爽人人爽视色| 99久久99久久久精品蜜桃| 极品教师在线免费播放| 中文字幕精品免费在线观看视频| 99国产精品一区二区蜜桃av | 久久天堂一区二区三区四区| 黄色怎么调成土黄色| 成年人免费黄色播放视频| 亚洲 欧美一区二区三区| 美女高潮到喷水免费观看| 99国产精品99久久久久| 91av网站免费观看| 777久久人妻少妇嫩草av网站| 麻豆av在线久日| 久久久精品区二区三区| 日本一区二区免费在线视频| 免费看a级黄色片| 成年女人毛片免费观看观看9 | 亚洲精品粉嫩美女一区| 99九九在线精品视频| 狠狠婷婷综合久久久久久88av| 欧美 亚洲 国产 日韩一| 亚洲欧美一区二区三区黑人| 少妇 在线观看| 久久九九热精品免费| 老熟妇仑乱视频hdxx| bbb黄色大片| 精品亚洲乱码少妇综合久久| 亚洲综合色网址| 午夜福利一区二区在线看| 欧美精品av麻豆av| 日韩三级视频一区二区三区| 丰满少妇做爰视频| 亚洲黑人精品在线| 久久久久久免费高清国产稀缺| 亚洲一卡2卡3卡4卡5卡精品中文| av天堂在线播放| 老司机午夜福利在线观看视频 | 亚洲成国产人片在线观看| 欧美在线黄色| 国产日韩一区二区三区精品不卡| 啦啦啦 在线观看视频| 黄色丝袜av网址大全| 免费在线观看完整版高清| 窝窝影院91人妻| 黑丝袜美女国产一区| 亚洲自偷自拍图片 自拍| 国产无遮挡羞羞视频在线观看| 丝袜人妻中文字幕| 老熟妇仑乱视频hdxx| 操美女的视频在线观看| 日韩精品免费视频一区二区三区| 国产精品一区二区免费欧美| 人人妻人人澡人人爽人人夜夜| 夜夜骑夜夜射夜夜干| 欧美精品一区二区大全| 亚洲三区欧美一区| 中文字幕人妻熟女乱码| 精品国产超薄肉色丝袜足j| 亚洲国产欧美一区二区综合| 一本久久精品| 亚洲精品美女久久av网站| bbb黄色大片| 国产av又大| 久久精品国产a三级三级三级| 十分钟在线观看高清视频www| 国产淫语在线视频| 精品第一国产精品| 一个人免费在线观看的高清视频| 国产老妇伦熟女老妇高清| 最新的欧美精品一区二区| 免费在线观看影片大全网站| 国产精品亚洲av一区麻豆| 国产av一区二区精品久久| 黑人欧美特级aaaaaa片| 露出奶头的视频| 亚洲一区中文字幕在线| 欧美成狂野欧美在线观看| 91字幕亚洲| 亚洲第一欧美日韩一区二区三区 | 波多野结衣一区麻豆| 十八禁高潮呻吟视频| 一级片'在线观看视频| 黄片小视频在线播放| 国产成人免费无遮挡视频| 国产亚洲精品久久久久5区| 老司机在亚洲福利影院| 麻豆国产av国片精品| 丁香六月天网| 中文字幕最新亚洲高清| 90打野战视频偷拍视频| 9热在线视频观看99| 如日韩欧美国产精品一区二区三区| 亚洲伊人色综图| 亚洲国产中文字幕在线视频| 99re6热这里在线精品视频| 99久久99久久久精品蜜桃| 亚洲黑人精品在线| 成人av一区二区三区在线看| 首页视频小说图片口味搜索| 国产精品免费一区二区三区在线 | 下体分泌物呈黄色| 国产熟女午夜一区二区三区| 色在线成人网| 精品第一国产精品| 久久中文字幕人妻熟女| 在线观看免费视频日本深夜| 欧美黄色片欧美黄色片| 9191精品国产免费久久| 久久精品91无色码中文字幕| 自线自在国产av| 高清av免费在线| 亚洲成av片中文字幕在线观看| 精品国产国语对白av| 久久免费观看电影| 久久人人97超碰香蕉20202| 高清av免费在线| 亚洲精品美女久久久久99蜜臀| 亚洲午夜理论影院| 日韩人妻精品一区2区三区| 亚洲国产成人一精品久久久| 久久久久国产一级毛片高清牌| 亚洲男人天堂网一区| 黑人操中国人逼视频| 麻豆av在线久日| www.自偷自拍.com| 国产亚洲午夜精品一区二区久久| 在线天堂中文资源库| 欧美精品啪啪一区二区三区| 欧美乱妇无乱码| 精品亚洲成a人片在线观看| 高清在线国产一区| 精品久久久久久久毛片微露脸| 老司机在亚洲福利影院| 18禁黄网站禁片午夜丰满| 成年动漫av网址| av国产精品久久久久影院| 亚洲av第一区精品v没综合| 精品国产超薄肉色丝袜足j| 久久久久久亚洲精品国产蜜桃av| 日韩欧美三级三区| 欧美人与性动交α欧美软件| tocl精华| 午夜福利欧美成人| 国产精品电影一区二区三区 | 在线av久久热| 欧美黑人欧美精品刺激| 亚洲自偷自拍图片 自拍| 欧美乱妇无乱码| 丁香欧美五月| 亚洲 欧美一区二区三区| 国产成人精品无人区| 国产高清视频在线播放一区| 亚洲国产中文字幕在线视频| videosex国产| 在线观看免费视频日本深夜| 桃花免费在线播放| 欧美黑人欧美精品刺激| 欧美精品啪啪一区二区三区| 久久香蕉激情| 久久精品aⅴ一区二区三区四区| 91精品国产国语对白视频| 最近最新免费中文字幕在线| 99国产极品粉嫩在线观看| 成人影院久久| 中文字幕人妻丝袜制服| 国产日韩欧美视频二区| 一本色道久久久久久精品综合| 99re6热这里在线精品视频| 欧美精品啪啪一区二区三区| 国产欧美日韩综合在线一区二区| 日韩欧美一区视频在线观看| 亚洲国产欧美网| 一边摸一边抽搐一进一小说 | 黄频高清免费视频| 丝袜在线中文字幕| 免费久久久久久久精品成人欧美视频| 成人亚洲精品一区在线观看| 麻豆乱淫一区二区| 久久久久视频综合| 国产午夜精品久久久久久| 国产精品98久久久久久宅男小说| 日本撒尿小便嘘嘘汇集6| 亚洲av美国av| 色老头精品视频在线观看| 99久久国产精品久久久| 亚洲精品一二三| 两性午夜刺激爽爽歪歪视频在线观看 | 久久av网站| 99国产精品一区二区三区| av福利片在线| 欧美变态另类bdsm刘玥| 日韩免费高清中文字幕av| 一区在线观看完整版| 国产主播在线观看一区二区| 精品卡一卡二卡四卡免费| 国产精品偷伦视频观看了| 欧美在线黄色| 色综合婷婷激情| 91国产中文字幕| 国产不卡一卡二| 9191精品国产免费久久| 如日韩欧美国产精品一区二区三区| 男女无遮挡免费网站观看| 色播在线永久视频| 91国产中文字幕| 国产不卡一卡二| 久久精品国产综合久久久| 久久午夜亚洲精品久久| h视频一区二区三区| 91九色精品人成在线观看| 亚洲熟女精品中文字幕| 人妻 亚洲 视频| 午夜91福利影院| 免费观看a级毛片全部| 国产主播在线观看一区二区| 欧美乱码精品一区二区三区| 69精品国产乱码久久久| 一进一出好大好爽视频| 99国产精品一区二区三区| 一进一出抽搐动态| 欧美黄色片欧美黄色片| 9热在线视频观看99| 国产区一区二久久| 欧美激情极品国产一区二区三区|