• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Half-metallicity induced by out-of-plane electric field on phosphorene nanoribbons

    2022-08-01 06:02:24XiaoFangOuyang歐陽小芳andLuWang王路
    Chinese Physics B 2022年7期
    關(guān)鍵詞:王路小芳歐陽

    Xiao-Fang Ouyang(歐陽小芳) and Lu Wang(王路)

    School of Physics and Electrical Information,Shangqiu Normal University,Henan 476000,China

    Keywords: half-metal,antiferromagnetic,two-dimensional materials,spin polarization

    1. Introduction

    Spintronics, which utilizes spin as the carrier for information transportation and processing, is one of the most promising methodologies in achieving high-speed and lowenergy-consuming electronic devices.[1–4]A key challenge in this field is generating fully spin-polarized current around the Fermi level. Half metal, where only one spin channel is conductive while the other is insulating, can resolve this problem.[5]Recently,graphene has attracted extensive research attention because of extraordinary thermal, mechanical, and electrical properties.[6,7]However, the dirac point is difficult to switch on at the room temperature,which impedes applications in spintronics. Therefore, in order to overcome this problem,much effort has been made to find semiconductor with large band gap. Transitional metal sulfide(TMS)with relatively high and adjustable band gap achieved by adjusting the number of layers and components of sulfide, may resolve this problem.[8–11]Moreover,the optical band gap of TMS has been proved to be dependent on the temperature.[12,13]Nevertheless, the carrier mobility of these materials is much lower than 200 cm2/V·s,[14]which hinder their application seriously.

    Compared with the gapless graphene and silicene, black phosphorene has attracted great attention due to the thickdependent band-gap of 0.3 eV–2 eV.[15,16]On the other hand,in comparison with TMS, the black phosphorene has advantages of ultrahigh carrier mobility[17,18]and anisotropic thermal, optical, and electronic transport properties,[19–21]being excellent for application in spintronics.Furthermore,the fieldeffect-transistor(FET)based on few layer black phosphorus is found to have strikingly high on/off ratio of 105and a carrier mobility of 103cm2/V·s at the room temperature,[22]being beneficial for application in nano devices. Thus,phosphorene is becoming a potential material in the field of electronics,optoelectronics and spintronics due to the existence of above novel properties.[23,24]

    It is well-known that the pursuit on controlled magnetism of phosphorene in practise has been persisting goal in the field of spintronics. Many theoretical researches about the magnetism of phosphorene have been proposed to date. The doping black phosphorene with substitutional impurities such as Ti,Cr,Ni,Mn and Fe is a ferromagnetic semiconductor,being the same as dilute magnetic semiconductor (DMS). The spin polarization of 100%is achieved in the phosphorene nanoribbons doped with Ti, Cr, Mn, Co and Fe atoms.[25]Besides,the O2-(Co-phosphorene)[26]and V doped phosphorene[27]show half-metallic characteristics. However, the macroferromagnetism originated from the magnetic atoms is unfavorable for the application in nano devices.[28,29]Spin polarization introduced by non-magnetic impurities in phosphorene may resolve this problem,[30,31]in fact,it is difficult to control the doping site accurately.

    To better understand the effect of magnetism on electronic structure, the intrinsic magnetic properties of ZBPNRs are investigated in detail.[32–34]The antiferromagnetic ground state with ferromagnetic along same edge and antiferromagnetic between two opposite edges is found at the edge of ZBPNRs.[33]In addition, in-plane transverse electrical field has strong influence on the electronic structure of the ZBPNRs,resulting in the formation of topological insulate state.[35,36]Half-metallicity could be achieved in zigzag phosphorene nanoribbons with different groups decoration such as OH-NO2and NH2-NO2,[37]which avoid the drawback of macro-ferromagnetism deriving from the transitional metal atoms. Nevertheless,it is difficult to obtain the selective modification in experiment. Therefore,the study of the half-metal based on black-phosphorene without transitional metals,substitutional doping and magnetic field is utmost imperative.

    In this work,we present a systematic investigation on the electronic and magnetic properties of ZBPNRs by applying density functional theory. The widths of ZBPNRs are classified by the number of P atom across the ribbon width, as shown in Fig. 1(a). In order to obtain the magnetic ground state, non-magnetic and four different magnetic states displayed in Figs. 1(a)–1(d) are considered in the calculations.The ground state of ZBPNRs is dependent on the widths, as shown in Fig. 1(e). As for the narrow widths smaller than 8ZBPNRs,its ground state prefers the AFM1 order. With increasing of widths of ZBPNRs, the degeneracy between the AFM2 and AFM3 is formed, becoming the ground state, as shown in Fig. 1(e). More interesting, the addition of out-ofplane electric field can modulate the magnetic property, resulting in the split of antiferromagnetic degeneracy of AFM1 and realization of half-metal. Our results suggest a new way to obtain half-metal in the absence of transitional metal atoms,magnetic field and edge passivation, which is helpful in the construction of two-dimensional half-metal in spintronics.

    2. Methods

    Our investigation of ZBPNRs is all performed through Viennaab initiosimulation package[38,39]based on the projector augmented wave method.[40]The generalized gradient approximation(GGA)for the exchange–correlation functional are employed with plane wave energy cutoff of 500 eV.[41]The energy convergence criteria for electronic iterations is set to be 10-6eV. In the self-consistent potential calculation under electric field,8ZBPNRs of zigzag sheet with a set of 30×1×1 Monkhorst–Packk-points grid is used for Brillouin-zone integration,and when the density of states(DOS)is calculated,a 60×1×1k-point sampling is used.A vacuum space of at least 15 ?A was included in the unit cell to eliminate the coupling between neighboring cells. The electronic and magnetic properties of ZBPNRs with ranging from 4ZBPNRs to 20ZBPNRs are investigated in detail. The widths of ZBPNRs are referred according to the number of P atoms in the direction perpendicular to the zigzag edge. All atomic positions and the sizes of phosphorene are optimized until the atomic force becomes smaller than 0.01 eV/ ?A.

    Fig.1. (a)FM,(b)AFM1,(c)AFM2,(d)AFM3 are initial magnetic structures adopt for searching magnetic ground state. (e)The energy difference of five magnetic states as a function widths of ZBPNRs.

    3. Results and discussion

    The relaxed lattice constants of monolayer black phosphorene are 3.2989 ?A and 4.6291 ?A,which are in good agreement with other theoretical calculations.[33,34,42]The ZBPNRs is obtained by cutting the monolayer black phosphorene along zigzag direction. For searching the ground state,five different magnetic states including NM,F(xiàn)M,AFM1,AFM2 and AFM3 are calculated by spin-polarized GGA calculation. As shown in Fig.1,AFM1 is ferromagnetic within each edge but antiferromagnetic between two opposite edges. AFM2 is intra-edge antiferromagnetic with inter-edge ferromagnetic,while AFM3 is the state with both intra-edge and inter-edge antiferromagnetic arrangements. The total energies of nonmagnetic(NM),ferromagnetic(FM),and various antiferromagnetic(AFM)orders were calculated, respectively. It was found that the stable magnetic states could be achieved by allowing the system to be spin polarized. Both the AFM and FM configurations are in energy lower than NM state regardless of widths of the nanoribbons,indicating that spin polarization is a possible stabilization mechanism.

    More interesting, the ground state is dependent on the nanoribbon widths. Figure 1(e) shows the energy differenceEtotal-EAFM1per unit cell as a function of widths of nanoribbons. We can see that the AFM1 is ground state for the narrow nanoribbons with ranging from 4ZBPNRs to 8ZBPNRs.With increase of widths, AFM2 and AFM3 form a degenerate state with lowest total energy shown by red and blue line in Fig. 1(e), becoming the magnetic ground state, which manifest the weak interaction between two edges. The NM and FM will never be the ground state due to the dangling bond of edge atoms. The energy difference between the FM and AFM1 antiferromagnetic order marked by black line in Fig. 1(e) decreases with increase of widths and almost vanishes for 14ZBPNRs, because nanoribbon widths exceed the decay length of the spin polarization. Similar result was also found in pristine ZGNRs.[43,44]

    To give a further insight of the magnetism of pristine ZBPNRs, the electronic structures of NM, FM and AFM1 of 16ZBPNRs are calculated in detail. Figure 2(c) shows that two bands from the edge P atoms across the Fermi level result in metallic character of NM state. For analyzing the contribution of edge atoms,the orbital band structure is calculated.As shown in Fig. 2(d), we can see that the states around the Fermi level are mainly contributed by the electrons of pzorbital due to the dangling bonds. In the FM state, the spin up and spin down channels are pushed away from the Fermi level to higher and lower energies, as shown in Fig.2(b). An indirect band gap is realized in the AFM1 state owing to the spilt ofαandβbands, in which the valence band top atΓpoint and the conduction band bottom at theXpoint,as displayed in Fig.2(a).

    Fig.2. The band structure of 16ZBPNRs with AFM1 state(a),F(xiàn)M state(b),NM state(c),and(d)the orbital band structure of NM state.

    The spin density (SD) and partial density of states(PDOS)of 16ZBPNRs with AFM2 state are calculated. In the AFM2 state,theαandβbands are split just above and below the Fermi level, forming a semiconductor shown in Fig.3(c).The SD shown in Fig. 3(a) reveals the spatial distribution of both dangling bond states and the tails of the spin-polarized p-orbital states. It is obvious that the magnetic moment at the edge arises from both dangling bonds as well as edge localized p-orbital states. As shown in Fig. 3(b), the magnetism is mainly contributed by the edge atoms with 0.25μBand-0.25μB, respectively, resulting in a total absolute magnetic moment of 1μB, while the contribution of its adjacent atoms to the local magnetic moments are small with 0.009μBand 0.005μBin a unit cell,respectively.

    For analyzing the effect of electric field on magnetism of ZBPNRs, the electronic structure and magnetic properties of 8ZBPNRs with AFM1 state under electric field are calculated in detail. Table 1 shows that the total magnetic moment increased under the electric field due to the split of degeneracy of magnetic moment between opposite edge atoms, resulting the ferromagnetism of ZBPNRs, while the ferromagnetism disappears until the electric field increases to 4 V/nm. Figures 4(a)–4(c)indicate that the antiferromagnetic degeneracy is split by the out-of-plane electric field perpendicular to the ZBPNRs. As spin splitting energy increases with strength of electric field,the half-metallic ZBPNRs with about 0.2 eV half-metallic gap is achieved under the electric field with 3 V/nm. To further understand the atomic contribution to spin polarization, the PDOS under out-of-plane electric field with 3 V/nm are also calculated. Figure 4(d) shows that the edge atoms contribute significantly to the spin polarization, leading to the realization of half-metal with net spin down magnetic moment.

    Fig.3. The SD(a),the projection of SD on the upper layer(b)(red and blue represent spin up and spin down,respectively),(c)the PDOS of 16ZBPNRs with AFM2 state. The edge atoms are represented as No. 1, 4, 17 and 20,respectively.

    Fig. 4. The band structure of AFM1 state under electric field with 2 V/nm (a), 2.5 V/nm (b) and 3 V/nm (c), respectively. (d) The PDOS of edge atoms under the electric field with 3 V/nm, (e) the SD difference of 8ZBPNRs with AFM1 state under electric field ((ρup-ρdown)3 V/nm-(ρup-ρdown)0 V/nm), (f) the model under electric field. The red and green arrows indicate the spin direction.

    Table 1. Calculated magnetic moment under different electric field: magnetic moment of edge atoms((μ2(μB)),(μ10(μB)),(μ7(μB))and(μ15(μB))),the total magnetic moment of the system(μtot(μB)). Semiconductor and half-metallic structures are denoted as S-con and H-metal,respectively.

    The SD difference of 8ZBPNRs with AFM1 state between 3 V/nm and 0 V/nm is calculated.As shown in Fig.4(e),it is obvious that the spin-up charge density around No.2 and No. 10 decrease, while the spin-up charge density at No. 7 and No.15 atoms increase under the electric field. In order to probe the intrinsic mechanism,the magnetic moment are summarized in Table 1. We can see that when the electric field increase to 3 V/nm,the magnetic moments of No.2 and No.10 decrease from 0.25μBto 0.071μB, while this value of No. 7 and No. 15 reduce from-0.25μBto-0.105μB, resulting in net magnetic moment of about-0.07μBand the realization of half-metal. From Fig. 4(f), we come to a conclusion that the staggered potential applied by out-of-plane electric field are different for the opposite edges owing to the different horizontal plane,inducing the split of spin degeneracy as well as achieving of half-metal.

    The ZBPNRs with intra-edge ferromagnetic state and inter-edge antiferromagnetic order becomes half-metal under the action of out-of-plane electric field. This method is more advantageous in contrast to other complicated requirements such as select modification,transition metal doping,magnetic field, semihydrogenations and nitrogenations. In addition, in comparison with gapless graphene as well as TMS with small carrier mobility,the spintronic devices based on phosphorene have the advantage of high carrier mobility and high on/off ratio.The realization of half-metal based on phosphorene,which is independent on macroscopic ferromagnetism and selective doping,may expand the research scope of spintronic devices.

    4. Conclusions

    In conclusion, we have investigated the intrinsic electronic structure and magnetic properties of the ZBPNRs. We found that the antiferromagnetic state with intra-edge ferromagnetic and inter-edge antiferromagnetic is the ground state for the narrow widths and the half-metallic phosphorene is achieved by applying the out-of-plane electric field other than magnetic metal doping, defects, magnetic field and selective hydrogenation. Our findings may propose a new way to construct the nanoscale spintronic devices based on black phosphorene.

    Acknowledgment

    This work is supported by Key Scientific Research Projects of Colleges and Universities in Henan Province,China(Grant No.21A140022).

    猜你喜歡
    王路小芳歐陽
    Crown evolution kinematics of a camellia oil droplet impacting on a liquid layer
    看有福的人做事,自己也能分得一些運(yùn)氣
    意林彩版(2022年1期)2022-05-03 10:25:07
    “1+X”證書制度下課證融通路徑實(shí)踐探索研究
    Positive unlabeled named entity recognition with multi-granularity linguistic information①
    基于微課的翻轉(zhuǎn)課堂教學(xué)模式應(yīng)用設(shè)計(jì)研究
    我家的健忘老媽
    求婚
    依依送別歐陽鶴先生
    中華詩詞(2019年9期)2019-05-21 03:05:18
    求 婚
    安慰
    最新的欧美精品一区二区| 午夜91福利影院| 最近2019中文字幕mv第一页| www.自偷自拍.com| 欧美激情极品国产一区二区三区| 大香蕉久久成人网| 亚洲国产欧美在线一区| av电影中文网址| 99热全是精品| 久久天堂一区二区三区四区| 亚洲第一区二区三区不卡| 国产国语露脸激情在线看| 欧美日韩视频高清一区二区三区二| 免费在线观看视频国产中文字幕亚洲 | 国产精品偷伦视频观看了| 国产精品三级大全| 国产片特级美女逼逼视频| 涩涩av久久男人的天堂| 精品国产一区二区三区久久久樱花| 操出白浆在线播放| 卡戴珊不雅视频在线播放| 国产无遮挡羞羞视频在线观看| 午夜免费男女啪啪视频观看| 免费高清在线观看视频在线观看| 成人影院久久| 久久久精品区二区三区| 久久精品国产亚洲av涩爱| 中文欧美无线码| 国产片内射在线| 热99国产精品久久久久久7| 新久久久久国产一级毛片| 亚洲av日韩精品久久久久久密 | 99热网站在线观看| 婷婷色综合www| 亚洲少妇的诱惑av| 最近最新中文字幕大全免费视频 | 高清欧美精品videossex| 亚洲少妇的诱惑av| 欧美xxⅹ黑人| 亚洲伊人久久精品综合| 国语对白做爰xxxⅹ性视频网站| 久久久久久久大尺度免费视频| 亚洲,欧美,日韩| 亚洲人成电影观看| 中国国产av一级| a 毛片基地| 天天影视国产精品| 亚洲精品日韩在线中文字幕| 久久人人爽av亚洲精品天堂| 老司机靠b影院| 久久久久精品人妻al黑| 少妇人妻 视频| 男男h啪啪无遮挡| 男人舔女人的私密视频| 免费高清在线观看日韩| xxx大片免费视频| 99久国产av精品国产电影| 午夜福利视频在线观看免费| 交换朋友夫妻互换小说| 亚洲av电影在线观看一区二区三区| 亚洲欧美日韩另类电影网站| 老汉色av国产亚洲站长工具| 久久精品久久久久久噜噜老黄| 国产av国产精品国产| 如何舔出高潮| 午夜福利免费观看在线| 亚洲综合色网址| av女优亚洲男人天堂| 精品视频人人做人人爽| 在线观看免费日韩欧美大片| 在线观看免费高清a一片| 欧美成人精品欧美一级黄| 欧美黄色片欧美黄色片| 免费观看a级毛片全部| 校园人妻丝袜中文字幕| www.自偷自拍.com| 肉色欧美久久久久久久蜜桃| 国产精品三级大全| 在线观看人妻少妇| 亚洲成人av在线免费| 亚洲国产av影院在线观看| 色播在线永久视频| 亚洲欧美色中文字幕在线| 一级毛片黄色毛片免费观看视频| 在线观看三级黄色| 9热在线视频观看99| 青春草视频在线免费观看| 国产成人精品无人区| 国产精品三级大全| 日韩中文字幕欧美一区二区 | 色94色欧美一区二区| 国产麻豆69| 日韩欧美精品免费久久| 久久精品aⅴ一区二区三区四区| 男女边摸边吃奶| 亚洲欧洲精品一区二区精品久久久 | 如何舔出高潮| 天天躁夜夜躁狠狠躁躁| 午夜久久久在线观看| 国产精品人妻久久久影院| 在线观看国产h片| 天堂8中文在线网| 9热在线视频观看99| 精品亚洲乱码少妇综合久久| 美女高潮到喷水免费观看| 免费高清在线观看视频在线观看| 亚洲成国产人片在线观看| 制服人妻中文乱码| 久久精品久久精品一区二区三区| 99久久综合免费| 日韩成人av中文字幕在线观看| www.熟女人妻精品国产| 丝袜美足系列| 超碰97精品在线观看| 一区二区日韩欧美中文字幕| 丝袜美腿诱惑在线| 97在线人人人人妻| 欧美老熟妇乱子伦牲交| 亚洲欧美一区二区三区黑人| 又大又爽又粗| 日韩人妻精品一区2区三区| 亚洲第一区二区三区不卡| 波野结衣二区三区在线| 亚洲精品美女久久av网站| 精品国产乱码久久久久久男人| 在线观看免费午夜福利视频| 成人三级做爰电影| 国产福利在线免费观看视频| 亚洲欧美色中文字幕在线| 亚洲精品国产av成人精品| 精品久久久久久电影网| 国产一区二区三区综合在线观看| 精品少妇一区二区三区视频日本电影 | 午夜福利乱码中文字幕| 免费日韩欧美在线观看| 亚洲av男天堂| 久久女婷五月综合色啪小说| 国产亚洲一区二区精品| 国产精品免费大片| 欧美xxⅹ黑人| 国产精品久久久av美女十八| 99久久99久久久精品蜜桃| 亚洲欧洲国产日韩| 人人妻人人爽人人添夜夜欢视频| 在现免费观看毛片| 女人精品久久久久毛片| 国产一区二区激情短视频 | 亚洲av在线观看美女高潮| 色视频在线一区二区三区| 免费高清在线观看视频在线观看| 亚洲人成网站在线观看播放| 97人妻天天添夜夜摸| 一级片'在线观看视频| 黄频高清免费视频| 91成人精品电影| 一本大道久久a久久精品| 最新在线观看一区二区三区 | www日本在线高清视频| 最近最新中文字幕免费大全7| 亚洲人成77777在线视频| 免费黄网站久久成人精品| 久久99热这里只频精品6学生| 黄片无遮挡物在线观看| 一本一本久久a久久精品综合妖精| 麻豆乱淫一区二区| 青春草亚洲视频在线观看| 免费高清在线观看视频在线观看| 亚洲精品一二三| 亚洲欧美激情在线| 人人澡人人妻人| 日本色播在线视频| 成年人免费黄色播放视频| 晚上一个人看的免费电影| 亚洲精品av麻豆狂野| 亚洲美女视频黄频| 亚洲成人av在线免费| 无遮挡黄片免费观看| 99久国产av精品国产电影| 国产激情久久老熟女| 母亲3免费完整高清在线观看| 考比视频在线观看| 国产亚洲一区二区精品| 亚洲色图综合在线观看| 精品一区二区三区四区五区乱码 | 国产精品嫩草影院av在线观看| 中文精品一卡2卡3卡4更新| 国产精品久久久久久人妻精品电影 | 国产精品亚洲av一区麻豆 | 久久青草综合色| 国产国语露脸激情在线看| 国产av精品麻豆| 亚洲欧美精品自产自拍| 男女无遮挡免费网站观看| 在线免费观看不下载黄p国产| 国产一区二区 视频在线| 日本午夜av视频| 久久精品人人爽人人爽视色| 丝袜喷水一区| 国产精品99久久99久久久不卡 | 极品少妇高潮喷水抽搐| 色婷婷久久久亚洲欧美| 成人影院久久| bbb黄色大片| 国产成人精品久久久久久| h视频一区二区三区| 丰满饥渴人妻一区二区三| 久久精品国产综合久久久| 国产精品蜜桃在线观看| 少妇精品久久久久久久| 精品视频人人做人人爽| 亚洲精品一二三| 在线天堂中文资源库| 波野结衣二区三区在线| 久久久久精品久久久久真实原创| av网站免费在线观看视频| 亚洲精品美女久久av网站| 搡老岳熟女国产| 久久久久久免费高清国产稀缺| 99久久综合免费| 激情五月婷婷亚洲| 人人妻人人澡人人看| 欧美在线一区亚洲| 久久鲁丝午夜福利片| 亚洲欧美色中文字幕在线| 黄网站色视频无遮挡免费观看| 嫩草影院入口| 伊人久久大香线蕉亚洲五| 亚洲男人天堂网一区| 五月开心婷婷网| 亚洲七黄色美女视频| 久久精品亚洲av国产电影网| 国产国语露脸激情在线看| xxx大片免费视频| 一二三四中文在线观看免费高清| 麻豆乱淫一区二区| 人妻一区二区av| 欧美黑人精品巨大| 亚洲成人免费av在线播放| 超碰97精品在线观看| 女性被躁到高潮视频| 久久韩国三级中文字幕| 亚洲欧洲精品一区二区精品久久久 | 国产av码专区亚洲av| 亚洲,欧美精品.| 国产免费又黄又爽又色| 欧美亚洲日本最大视频资源| 老司机深夜福利视频在线观看 | www.自偷自拍.com| 秋霞在线观看毛片| 又黄又粗又硬又大视频| 午夜免费鲁丝| 免费久久久久久久精品成人欧美视频| 欧美日韩一级在线毛片| 国产精品 国内视频| 99精国产麻豆久久婷婷| 亚洲在久久综合| 国产精品久久久av美女十八| 女人被躁到高潮嗷嗷叫费观| 下体分泌物呈黄色| 色播在线永久视频| 我的亚洲天堂| 男女高潮啪啪啪动态图| 成人国语在线视频| 欧美人与性动交α欧美精品济南到| 亚洲av日韩在线播放| 国产精品.久久久| 黄片小视频在线播放| 国产免费又黄又爽又色| 老熟女久久久| 美女视频免费永久观看网站| 欧美日韩精品网址| 中文字幕精品免费在线观看视频| 一区二区三区四区激情视频| 男女高潮啪啪啪动态图| 大码成人一级视频| 人人妻人人澡人人看| 如日韩欧美国产精品一区二区三区| 最近最新中文字幕大全免费视频 | avwww免费| 国产精品久久久av美女十八| 99久久人妻综合| 如何舔出高潮| 亚洲av男天堂| 精品国产乱码久久久久久小说| 视频在线观看一区二区三区| 一级毛片黄色毛片免费观看视频| av有码第一页| 高清视频免费观看一区二区| 欧美黑人精品巨大| 日本欧美视频一区| 国产亚洲av片在线观看秒播厂| 亚洲精品国产av蜜桃| 亚洲精品国产区一区二| 国产精品免费视频内射| 中文乱码字字幕精品一区二区三区| 女人爽到高潮嗷嗷叫在线视频| 一二三四中文在线观看免费高清| 观看美女的网站| 9色porny在线观看| 制服人妻中文乱码| 亚洲精品国产色婷婷电影| av福利片在线| 成年美女黄网站色视频大全免费| 91精品三级在线观看| 纯流量卡能插随身wifi吗| 日日摸夜夜添夜夜爱| 夫妻午夜视频| 2018国产大陆天天弄谢| 18禁裸乳无遮挡动漫免费视频| 日本wwww免费看| 一区二区av电影网| 久久久精品国产亚洲av高清涩受| 中文字幕人妻熟女乱码| 制服诱惑二区| 亚洲美女黄色视频免费看| 亚洲av国产av综合av卡| 亚洲一区二区三区欧美精品| 日韩一本色道免费dvd| 日韩人妻精品一区2区三区| av网站免费在线观看视频| 天天操日日干夜夜撸| 男女下面插进去视频免费观看| 亚洲av日韩在线播放| 亚洲av日韩在线播放| 久久99一区二区三区| 欧美在线一区亚洲| 老鸭窝网址在线观看| 亚洲激情五月婷婷啪啪| 亚洲一区二区三区欧美精品| 丝袜人妻中文字幕| 18在线观看网站| 国产精品成人在线| 国产熟女午夜一区二区三区| 制服诱惑二区| 欧美日韩一级在线毛片| 亚洲av成人精品一二三区| av国产久精品久网站免费入址| 欧美黑人精品巨大| 国产成人精品无人区| 18禁裸乳无遮挡动漫免费视频| 亚洲国产欧美网| 中文字幕制服av| 精品少妇黑人巨大在线播放| 亚洲激情五月婷婷啪啪| 波多野结衣一区麻豆| 99久久精品国产亚洲精品| 亚洲精品乱久久久久久| 国产亚洲午夜精品一区二区久久| 亚洲av电影在线观看一区二区三区| 久久久久久久精品精品| av卡一久久| av不卡在线播放| 少妇人妻精品综合一区二区| 婷婷色av中文字幕| 伊人久久大香线蕉亚洲五| 天天躁狠狠躁夜夜躁狠狠躁| 午夜免费观看性视频| 深夜精品福利| 电影成人av| 卡戴珊不雅视频在线播放| 九九爱精品视频在线观看| 久久精品人人爽人人爽视色| 国产极品粉嫩免费观看在线| 国产99久久九九免费精品| 国产亚洲一区二区精品| 18禁国产床啪视频网站| 国产精品国产三级专区第一集| 91老司机精品| 女的被弄到高潮叫床怎么办| av在线老鸭窝| 深夜精品福利| 国产有黄有色有爽视频| 视频在线观看一区二区三区| bbb黄色大片| 国产成人啪精品午夜网站| 观看美女的网站| 日韩免费高清中文字幕av| 免费黄色在线免费观看| 999久久久国产精品视频| 国产精品麻豆人妻色哟哟久久| 18禁国产床啪视频网站| 老司机影院毛片| 一级,二级,三级黄色视频| 亚洲一卡2卡3卡4卡5卡精品中文| 爱豆传媒免费全集在线观看| 亚洲欧洲精品一区二区精品久久久 | 国产欧美日韩综合在线一区二区| 成年女人毛片免费观看观看9 | 成人亚洲精品一区在线观看| 精品免费久久久久久久清纯 | 高清av免费在线| 一区二区三区四区激情视频| 老司机亚洲免费影院| 丰满饥渴人妻一区二区三| 涩涩av久久男人的天堂| 欧美老熟妇乱子伦牲交| 99精国产麻豆久久婷婷| 婷婷色麻豆天堂久久| 日本av手机在线免费观看| 青春草视频在线免费观看| 久久99精品国语久久久| 亚洲一区中文字幕在线| 熟妇人妻不卡中文字幕| 国产av一区二区精品久久| 午夜福利免费观看在线| 亚洲精品日韩在线中文字幕| 菩萨蛮人人尽说江南好唐韦庄| 多毛熟女@视频| 啦啦啦在线观看免费高清www| 制服人妻中文乱码| 我要看黄色一级片免费的| 老司机靠b影院| 日韩欧美一区视频在线观看| 人人妻人人澡人人爽人人夜夜| 18在线观看网站| 国产一区亚洲一区在线观看| 日本爱情动作片www.在线观看| 国产片特级美女逼逼视频| 嫩草影视91久久| 亚洲欧美成人精品一区二区| 黄频高清免费视频| 国产极品粉嫩免费观看在线| 搡老乐熟女国产| 国产老妇伦熟女老妇高清| 18禁观看日本| 亚洲精品一二三| 人成视频在线观看免费观看| 精品国产一区二区久久| 两个人看的免费小视频| av女优亚洲男人天堂| 国产亚洲精品第一综合不卡| 日韩,欧美,国产一区二区三区| 亚洲激情五月婷婷啪啪| 爱豆传媒免费全集在线观看| 黄色毛片三级朝国网站| 韩国高清视频一区二区三区| 日韩精品免费视频一区二区三区| 99精国产麻豆久久婷婷| 狂野欧美激情性xxxx| 黄片播放在线免费| 下体分泌物呈黄色| 无遮挡黄片免费观看| 久久精品人人爽人人爽视色| 国产一区二区三区av在线| 丰满乱子伦码专区| 欧美 亚洲 国产 日韩一| 久久精品国产a三级三级三级| 欧美黑人欧美精品刺激| 这个男人来自地球电影免费观看 | 丝袜在线中文字幕| 亚洲欧美成人精品一区二区| 美女大奶头黄色视频| 七月丁香在线播放| 大片免费播放器 马上看| 女的被弄到高潮叫床怎么办| 99re6热这里在线精品视频| 日韩一本色道免费dvd| 一本—道久久a久久精品蜜桃钙片| xxxhd国产人妻xxx| 亚洲精品成人av观看孕妇| 80岁老熟妇乱子伦牲交| av网站免费在线观看视频| 国产97色在线日韩免费| 亚洲 欧美一区二区三区| 蜜桃国产av成人99| 亚洲,欧美,日韩| 久久性视频一级片| 欧美久久黑人一区二区| 久热爱精品视频在线9| 久久精品aⅴ一区二区三区四区| 天天操日日干夜夜撸| 亚洲一级一片aⅴ在线观看| 美国免费a级毛片| 丝袜喷水一区| 欧美日韩综合久久久久久| 日韩不卡一区二区三区视频在线| 亚洲精品av麻豆狂野| 如何舔出高潮| 黄色一级大片看看| 亚洲一卡2卡3卡4卡5卡精品中文| av国产精品久久久久影院| 国产一区有黄有色的免费视频| 国产一区二区在线观看av| 国产老妇伦熟女老妇高清| 亚洲精品美女久久久久99蜜臀 | 免费观看a级毛片全部| 2021少妇久久久久久久久久久| 亚洲,欧美精品.| 亚洲欧洲国产日韩| 日韩欧美精品免费久久| 无遮挡黄片免费观看| 欧美xxⅹ黑人| 精品一区在线观看国产| 秋霞在线观看毛片| 人妻一区二区av| 最黄视频免费看| 中文字幕高清在线视频| av线在线观看网站| 国产av精品麻豆| 可以免费在线观看a视频的电影网站 | 最近手机中文字幕大全| 亚洲第一av免费看| 美女大奶头黄色视频| 男女国产视频网站| 一区二区三区激情视频| 精品人妻熟女毛片av久久网站| av天堂久久9| 日韩电影二区| 精品一区二区三区四区五区乱码 | 国产亚洲午夜精品一区二区久久| 飞空精品影院首页| 久久久久久久久久久久大奶| 欧美日韩国产mv在线观看视频| 久久久精品免费免费高清| 最新在线观看一区二区三区 | 免费人妻精品一区二区三区视频| 精品一区二区三区av网在线观看 | 操出白浆在线播放| 一区二区三区乱码不卡18| h视频一区二区三区| 青草久久国产| 好男人视频免费观看在线| 国产精品久久久av美女十八| 日韩人妻精品一区2区三区| 黑人欧美特级aaaaaa片| 老熟女久久久| 男女免费视频国产| av天堂久久9| 亚洲国产精品国产精品| 亚洲一码二码三码区别大吗| 国产一区二区 视频在线| 久久久久久久国产电影| 欧美日韩一区二区视频在线观看视频在线| 国产精品 欧美亚洲| 另类精品久久| 美女脱内裤让男人舔精品视频| √禁漫天堂资源中文www| 婷婷色av中文字幕| 99国产综合亚洲精品| 日韩av免费高清视频| 国产精品久久久久久精品古装| 亚洲av日韩精品久久久久久密 | kizo精华| av片东京热男人的天堂| 亚洲欧美一区二区三区国产| 国产精品二区激情视频| 色吧在线观看| 国产精品免费视频内射| 亚洲中文av在线| 夫妻午夜视频| 自线自在国产av| 男女边摸边吃奶| 毛片一级片免费看久久久久| 亚洲国产看品久久| 亚洲一卡2卡3卡4卡5卡精品中文| 我要看黄色一级片免费的| 亚洲男人天堂网一区| 最新在线观看一区二区三区 | 日韩精品有码人妻一区| 女的被弄到高潮叫床怎么办| 亚洲国产av新网站| 丝袜在线中文字幕| 亚洲国产精品一区二区三区在线| 人人澡人人妻人| 日韩视频在线欧美| 哪个播放器可以免费观看大片| 亚洲四区av| 捣出白浆h1v1| av网站在线播放免费| 亚洲美女搞黄在线观看| 亚洲精品视频女| 午夜福利影视在线免费观看| 久久av网站| 自拍欧美九色日韩亚洲蝌蚪91| 午夜精品国产一区二区电影| av网站免费在线观看视频| netflix在线观看网站| 国产又色又爽无遮挡免| 桃花免费在线播放| 欧美 日韩 精品 国产| 人成视频在线观看免费观看| 中文字幕av电影在线播放| 精品一品国产午夜福利视频| 国产一区二区在线观看av| 少妇人妻精品综合一区二区| 人体艺术视频欧美日本| 国产99久久九九免费精品| 亚洲精品久久成人aⅴ小说| 久久这里只有精品19| 热re99久久精品国产66热6| 久久久久久久久久久久大奶| 99九九在线精品视频| 中文字幕人妻丝袜一区二区 | 亚洲精品国产av蜜桃| 亚洲av国产av综合av卡| 欧美人与性动交α欧美软件| 女人久久www免费人成看片| 在线观看国产h片| 日韩 欧美 亚洲 中文字幕| 国产成人免费观看mmmm| 亚洲国产欧美日韩在线播放| 久久天躁狠狠躁夜夜2o2o | 搡老乐熟女国产| 一区二区日韩欧美中文字幕| 日韩大片免费观看网站| 18禁观看日本| 国产熟女午夜一区二区三区| 少妇人妻精品综合一区二区| 国产女主播在线喷水免费视频网站| 好男人视频免费观看在线| 亚洲精品美女久久久久99蜜臀 | 亚洲熟女精品中文字幕| 亚洲精品第二区| 国产精品久久久久久人妻精品电影 | 欧美日本中文国产一区发布|