• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Valley-dependent transport in strain engineering graphene heterojunctions

    2022-08-01 05:59:18FeiWan萬飛Wang王新茹Liao廖烈鴻Zhang張嘉顏Chen陳夢(mèng)南Zhou周光輝Siu蕭卓彬MansoorJalilandYuanLi李源
    Chinese Physics B 2022年7期

    Fei Wan(萬飛), X R Wang(王新茹), L H Liao(廖烈鴻), J Y Zhang(張嘉顏),M N Chen(陳夢(mèng)南), G H Zhou(周光輝), Z B Siu(蕭卓彬),Mansoor B.A.Jalil, and Yuan Li(李源),?

    1Department of Physics,Hangzhou Dianzi University,Hangzhou 310018,China

    2Department of Physics and Key Laboratory for Low-Dimensional Quantum Structures and Manipulation(Ministry of Education),Hunan Normal University,Changsha 410081,China

    3Computational Nanoelectronics and Nano-device Laboratory,Electrical and Computer Engineering Department,National University of Singapore,Singapore 117576,Singapore

    Keywords: strain engineering,valley-dependent separation,graphene,on-site energy

    1. Introduction

    So far,extensive attention[1,2]has been given to graphene systems owing to the unique band structures and properties of graphene since it has been experimentally fabricated.[3,4]Pristine graphene is a zero-gap semiconductor and has a linear dispersion relationship near the Dirac points,[2,5]which cause electrons to behave as relativistic Dirac particles. It has also been experimentally verified that graphene has a remarkably high electron mobility at room temperature,which makes graphene an excellent semiconductor. Because of its exceptional electrical and thermal transport properties, graphene is an important two-dimensional material for exploration of physical phenomena in condensed matter,[2]and is expected to be very useful in the next-generation electronic devices.

    Valley filtering effect is first reported in graphene nanoribbons,[6,7]which has been widely studied in various low-dimensional materials. Based on the semiclassical transport formulas, the valley-contrasting Berry phase effect has been taken into account in graphene nanoribbons.[8]There are also some beyond-graphene candidate materials for valleytronics applications, such as silicene,[9,10]black phosphorus,[11]and Weyl semimetals.[12,13]The interplay of spin and valley in transition-metal dichalcogenides (TMDs)can induce a valley-dependent spin-Hall effect[14]and large valley polarization.[15]

    It is expected to modulate the valley-dependent transport by utilizing mechanical deformation in graphene systems.[16,17]The band structure does not change substantially for realistic strains of up to 15%.[18,19]The effect of long-range strain on electronic properties is a unique feature of graphene.[20,21]At low energies, the effects of strains can be modeled as a gauge field that acts as additional pseudomagnetic field in the momentum operators.[22]The most obvious evidence for the unusual effects of strain on the electronic states comes from scanning tunneling microscope measurements of the electronic local density of states of graphene grown on platinum.[23]An average compression of 10% creates effective fields of the same order of magnitude as the pseudo-magnetic fields observed in experiments.[24]

    Although these previous works have reported many interesting results on the properties of graphene systems under strain, the effect of strain on the valley-dependent transport and separation in graphene systems has not been extensively discussed. In this study, we adopt the tight-binding modematching method and propose an efficient way to separate the Dirac fermions in different valleys by utilizing strain and the on-site energy in graphene systems. Our results show that the electrons can be dispersed by strain and the on-site energy in a valley-dependent manner. The combination of strain and onsite energy can be used to realize the effective modulation of valley-dependent transport without the need for ferromagnetic materials or magnetic fields.This phenomenon provides an alternative route to effectively modulate the valley polarizations of graphene devices.

    The paper is organized as follows: In Section 2,we consider a graphene heterojunction under the influence of strain and an on-site potential applied to the central scattering region.We then calculate the strain-modulated hopping parameters based on the Slater–Koster framework. In Section 3, we analyze the dispersion relations and employ the mode-matching method to investigate the valley-dependent angular transmission. The combined effects of strain and on-site energies on the valley separation are analyzed and discussed. Finally, a summary is given in Section 4.

    2. Model and analysis of strain

    We consider the dynamics of electrons hopping in the honeycomb lattice governed by the nearest-neighbor tightbinding Hamiltonian[25,26]

    Fig. 1. (a) Honeycomb lattice geometry. The vectors δ1, δ2, δ3 connect the A sites(white)to their B-site(black)neighbors. (b)Schematic of the graphene heterojunction with an applied uniaxial strain in the central scattering region. The zigzag direction of the honeycomb lattice(x–y plane)is parallel to the x axis,and the tension is applied at an angle θ relative to the x axis.

    The first term in Eq. (1) is on-site potential energy withΩbeing the magnitude of on-site energy. In practice,the onsite energy can be realized and tuned by applying top or bottom gates on the central graphene sheet. The second term is the nearest-neighbor hopping with the hopping energyt(δi j),where the dependence oftonδi j,the vector between two sites connected byt, is explicitly stated to reflect the fact that the applied strain breaks the isotropy of the honeycomb lattice and that of the coupling strengths between a given lattice site and its three neighbors. In the central scattering region, the graphene sheet is uniformly stretched (or compressed) along the angleθrelative to thexaxis. Noticeably,we assume that there exists no strain outside the central scattering region.

    When the strain is applied to the graphene system, the lattice deformation will result in changes to the vectorsδ?(?=1,2,3). The strain-dependent vectors are given byδ?=(1+ξ)·δ0?,which thus modulate the hopping terms. Accordingly,we obtain the following deformed bond lengths:

    whereξκ,κ′(κ=1,2)are the matrix components of the strain tensorξin Eq.(2),anda0=0.142 nm is the distance between nearest-neighbor lattice sites in unstrained graphene.

    The change in bond lengths leads to different hopping amplitudes between each site and its three nearest neighbors. In the Slater–Koster framework,[28]the hopping terms can be obtained from the dependence of the integralVppπon the interorbital distance. A more convenient assumption is an exponential decay. Thus,we assume that,in graphene,[18]

    wherer?=|δ?|is the bond length,and the hopping energyt0is 2.7 eV. We calculate the conductance of graphene using the Landauer formula[29]

    Utilizing periodic boundary conditions along the transverse direction,an infinite graphene sheet can be modeled using a graphene nanoribbon with the zigzag chain number ofNy=2.[34]There exists an extra hopping term between the sites at the transverse boundaries, which are wrapped around and so as to overlap with each other. Thus we can introduce a Bloch phase factor ei3kya0to modify these hopping terms withkybeing the Bloch wave vector. The incident angle is defined asφ=arcsin(ky/kF),where the Fermi wave vectorkFcan be obtained from the relationkF=2EF/(3a0t).

    3. Numerical results and discussion

    Fig.2. Dispersion relations plotted as a function of the wave vector kx for(a)ε=0.002 and(b)ε=0.02. The other parameters are ν=0.165,θ =45°,Ω =0 and ky=0. The red(blue)curve denotes the presence(absence)of the applied strain.

    3.1. Influence of the strain on band structures

    We investigate the dispersion relation of the infinite-size homogeneous graphene sheet under the influence of the strainε. The dispersion relations atky=0 are shown in Fig. 2. In the absence of strain, there is no band gap in energy bands[see blue curves] atKandK′valleys. Whenε=0.002, the energy difference between the bottom of conduction band and the top of valence band increases to about 80 meV [see red curves in Fig. 2(a)]. With the strength of strain increasing toε=0.02, the energy difference is significantly enlarged to about 308 meV.

    It is natural to ask if the minima of the energy profiles for the two valleys still occur atky= 0 in the presence of strain. To clarify the effect of the strain on Dirac points, we plot equal-energy contours as a function of the wave vectorskxandkyat different strain strengths in Fig.3. We can see that whenε=0, the Dirac points ofKandK′valleys are located at(kx,ky)=(0.667,0)and(1.332,0),respectively. When the strain increases fromε=0 to 0.005 in Fig. 3(b), the Dirac point ofKvalley moves towards smaller value ofkxand negative value ofky,while the Dirac pointK′moves towards the opposite direction. Interestingly,in Figs.3(b)–3(d),the Dirac points ofKandK′valleys gradually deflect from the axis ofky=0 along negative direction as the strain increases fromε=0 to 0.005, 0.015 and 0.03. It is obvious that the valley separation and transverse shifts of Dirac cones increase with the increasing strain. Because the dispersion relations in Fig.2 depict only a cut of the Dirac cone atky=0,the energy difference between the top of valence band and the bottom of conduction band does not refer to the real band gap.

    Fig.3. Contour plot of the energies as a function of the wave vectors kx and ky for different strain strengths: (a)ε=0,(b)ε=0.005,(c)ε=0.015,and(d)ε=0.03. The solid lines are equal-energy contour lines corresponding to energy values of 1.2 eV,2.2 eV,3 eV,and 4 eV. The other parameters are Ω =0,ν =0.165,and θ =45°. The black squares denote the positions of Dirac points of K and K′ valleys with the value of(kx,ky,E).

    3.2. Effect of the strain on the valley-dependent transmission

    Next we further study the effect of strain on the transport properties for the stretched angleθ=30°in the absence of potential energy in the central scattering section. Whenε=0,as shown in Fig.4(a), the transmissions ofKandK′valleys are identical and equal to 1. In this case the graphene system is homogenous in the absence of any impurities and external disturbances, and the electrons are correspondingly completely transmitted without reflection. Whenεis increased to 0.003,the transmission curve ofKvalley is deflected downwards,while that ofK′valley is deflected upwards. Moreover, the maximum value of the transmission is significantly reduced to about 0.15 because of the strain. Because the graphene system is no longer a homogeneous system under the influence of the strain,which leads to the relative shift of two Dirac cones and the non-perfect transmission of electrons in two valleys.These results imply that the strain can be used to separate the Dirac fermions in theKandK′valleys,which is similar to the deflection behavior induced by magnetic fields.[35–37]

    In Fig. 5, we plot the transmissions of valleysKandK′versus the incident angleφfor different stretching anglesθwhenΩ= 0. It is obvious that the transmission curves ofK(K′)valley are deflected downwards(upwards)for positive incident angles fromθ=0°to 30°,as shown in Fig.5. However,as the stretching angle increases,the value of the valleydependent transmission decreases sharply, while the incident angle associated with large values of the transmission basically keeps unchanged. When the angle is changed to negative values ofθ=0°to-30°, the transmission profiles ofKandK′valleys are pushed upwards and downwards, respectively.When the strain is applied along the zigzag (θ=0°) or armchair directionθ=90°(-90°), the transmission profiles of two valleys are symmetrical with respective to the normal incident. The electrons inKandK′valleys therefore cannot be separated at these strain configurations. The results show that the valley-dependent transmission of electrons can be effectively tuned by changing the stretching angle in the absence of the on-site energy.

    Fig.4. Valley-dependent transmission plotted as a function of the incident angle φ for(a)ε =0 and(b)ε =0.003. The other parameters are EF=15 meV,θ =30°,Ω =0 and Lx=123 nm.

    Fig.5. The transmission of(a)K and(b)K′ valleys plotted as a function of the incident angle φ for different stretching angles θ. The other parameters are EF=15 meV,ε =0.003,Ω =0 and Lx=123 nm.

    Fig.6. (a)The K and(b)K′ valley dependence of the transmission versus the incident angle φ for different strengths of the strain. The other parameters are EF=15 meV,θ =30°,Ω =0,and Lx=123 nm.

    To clarify the effect of the strain strength on the valleydependent transport whenΩ=0,we plot the transmission ofKandK′valleys as a function of the incident angleφfor different values of the strain strengths in Fig. 6. We find that the transmission profile ofK(K′) valley is deflected downwards(upwards)by the strain.As the strain increases fromε=0.0024 toε=0.003, the transmission magnitude of the electrons decreases gradually,but the symmetry axes of the transmission lobes are not deflected. The transmission curve ofKvalley remains within the angle interval-75°<φ <-25°[see Fig.6(a)]and that of theK′valley remains within the angle interval 25° <φ <75°over the ranges of strain strengths [see Fig. 6(b)]. These results imply that when the on-site energy is zero, the transmission profile does not exhibit a deflection behavior, and the valley-dependent transmission of electrons decreases with the increasing strain strength.

    Based on the above analysis, whenΩ= 0, strain can effectively cause the separation of the transmission profiles of the electrons in the two valleys, and the valley-dependent transport behavior can be effectively tuned by changing the strength of the strain. However, the symmetry axes of transmission profiles of two valleys remain unchanged when the strain angle or strength of the strain is varied.

    3.3. Combined effect of the strain and on-site energy

    In the above section, we can see that the strength of the strain can be used to effectively tune the valley-dependent transmission,but the change in the symmetry axis of the transmission profile is not obvious. We thus further study the combined effect of the strain and the on-site energy on the transport property. In Fig.7(a),whenΩ=0,the transmission curve ofK(K′)valley is deflected downwards(upwards),and the maximum value of the transmission is about 0.15. In Fig. 7(b),when the on-site energy increases toΩ=25 meV, the transmission lobe ofKvalley is centered aroundφ=-63°,while the transmission lobe ofK′valley is centered aroundφ=63°.Moreover, the addition of the on-site energy significantly increases the maximum value of the transmission to 1. The onsite potential energy results in the formation of an n–p–n type heterojunction, which in turn leads to the recovery of perfect Klein tunneling in the considered system. These results imply that the on-site energy can result in the concentration of the electron transport inKandK′valleys in one special direction and significantly increase the transmission amplitudes,which is similar to the deflection behavior induced by electric fields in silicene systems.[10]

    Fig.7. Valley-dependent transmission plotted as a function of the incident angle φ for(a)Ω =0 and(b)Ω =25 meV. The other parameters are EF=15 meV,θ =30°,ε =0.003,and Lx=123 nm.

    To illustrate the effect of the on-site energy on the valleydependent transport properties,F(xiàn)ig.8 shows the contour plots of the transmission ofKandK′valleys as a function of the on-site energyΩand the transverse wave vectorkyfor different strain strengths. For each subgraph in Fig.8, the left and right panels are respectively associated withKandK′valleys.In this numerical calculation,θ=30°andEF=15 meV. In Fig.8(a),whenε=0,electrons in both valleys undergo perfect transmission through the graphene heterojunction at normal incidence irrespective of the values ofΩ, which is a characteristic of Klein tunneling. It is obvious that the transmission contour plot is symmetrical aboutφ=0. Interestingly, there exists a region at 10<Ω <30 meV in which the incident angle range with large transmission is contracted. As the strain increases fromε=0.001 toε=0.003,the regions with large transmission values for theKvalley gradually becomes tilted downwards,while that ofK′valley moves upwards.This tilted trend is particularly obvious in the contraction region within the interval of 10<Ω <30 meV, which shows a significant effect of the strain and on-site energy.

    Fig.8. Contour plots of the valley-dependent transmission of the graphene heterojunction as a function of the on-site energy Ω and the incident angle φ for different strain strengths: (a)ε =0,(b)ε =0.001,(c)ε =0.002,(d)ε =0.003. The other parameters are ν =0.165,θ =30°,and Lx=123 nm. For each panel,the left and right subgraphs are associated with K and K′ valleys,respectively.

    Fig.9.The transmission of(a)K and(b)K′valleys plotted as a function of the incident angle φ for different stretching angles θ. The other parameters are EF=15 meV,ε=0.003,Ω =25 meV,and Lx=123 nm.

    Correspondingly, we further study the effect of the stretching angleθon the valley-dependent transport atΩ=25 meV, as shown in Fig. 9. We find that the transmission curves ofK(K′) valley are deflected downwards (upwards)fromθ=0°to 30°. However, when the stretching angle is changed to negative values, fromθ=0°to-30°, the transmission profiles ofKandK′valleys are respectively pushed upwards and downwards, respectively. When the stretching angle is increased, the transmission curves shift to larger incident angles. When the strain is applied along the zigzag or armchair direction,i.e.,atθ=0°or 90°(-90°),the transmission profiles of two valleys are symmetrical aboutφ=0°,and there is no deflection behavior, which is a distinct anisotropy behavior for the strain modulation of the valley current. Thus,the electrons ofKandK′valleys are not separated at these strain configurations. It can be seen that the valley polarization can be effectively modulated by changing the stretching angle of the strain.

    Fig. 10. The transmission of (a) K and (b) K′ valleys is plotted as a function of the incident angle φ for different strengths of the strain.The other parameters are EF =15meV, θ =30°, Ω =25 meV, and Lx=123 nm.

    Similar results can be seen in Fig.10. We plot the transmission ofKandK′valleys as a function of the incident angleφfor different strengths of the strain whenΩ=25 meV. We find that the transmission profile ofKvalley is deflected downwards as the strain is increased from 0.001 to 0.003, which differs from the results in Fig.6 in which the incidence angle for the peak transmission is independent of the strain magnitude. For example, whenε=0.002, the incident angles at which electrons will be transmitted is pushed towards the angular region ofφ <-30°[see Fig.10(a)].This implies that theK-valley electrons will be scattered back into the left region if the incident angle is larger than a certain critical angle. The transmission profile ofK′valley is correspondingly deflected upwards under the influence of the strain. TheK′-valley electrons will be deflected back into the incident region when the incident angle is smaller than a certain angle.

    Based on the above analysis, when the on-site energy is not zero, strain can be used to effectively separate electrons from different valleys, and the incident angles with high values of the transmission effectively adjusted by changing the angle and strength of the strain. This finding is of great significance for graphene-based valleytronics devices.

    4. Conclusions

    In summary,we have studied the effects of the strain and on-site energy on the dispersion relation and transport properties of graphene heterojunctions. It is found that the electrons can be dispersed in a valley-dependent manner by the uniaxial strain. When the on-site energy is zero and only strain acts on the graphene system,the transmission profiles are deflected to two opposite transverse directions, resulting in the separation ofKandK′valleys. When the strengths of the strain are changed,the magnitude of the transmission is significantly affected by the strain, but the transport angles associated with large values of the transmission are basically keep unchanged.When an additional on-site energy is applied to the scattering region, not only are the electrons in theKandK′valleys separated into two branches, but the transport angle of the electrons are also changed significantly as the angle and strength of the strain increases. Therefore, by combining the strain and on-site energy,an effective modulation of the valleydependent transport can be achieved by changing the strength and direction of the strain. Our results may be helpful for exploring the transport mechanism of strain-modulated graphene systems and the design of novel types of graphene-based valleytronics devices.

    Acknowledgement

    Project supported by National Natural Science Foundation of China(Grant No.11574067).

    亚洲人成网站在线播| 国产中年淑女户外野战色| 久久鲁丝午夜福利片| 午夜影院在线不卡| 欧美一级a爱片免费观看看| 欧美97在线视频| 午夜精品国产一区二区电影| 男人狂女人下面高潮的视频| 简卡轻食公司| 女性生殖器流出的白浆| 国产伦精品一区二区三区四那| 国产91av在线免费观看| 熟女人妻精品中文字幕| 中文乱码字字幕精品一区二区三区| 午夜91福利影院| 国内少妇人妻偷人精品xxx网站| 欧美激情极品国产一区二区三区 | 午夜激情久久久久久久| 在线观看一区二区三区激情| 亚洲色图综合在线观看| 夫妻午夜视频| 久久ye,这里只有精品| 一级片'在线观看视频| 日韩av免费高清视频| 高清av免费在线| 免费不卡的大黄色大毛片视频在线观看| 精品一区二区免费观看| 69精品国产乱码久久久| 国内揄拍国产精品人妻在线| 欧美日韩在线观看h| av在线观看视频网站免费| 欧美xxⅹ黑人| 大话2 男鬼变身卡| 肉色欧美久久久久久久蜜桃| 汤姆久久久久久久影院中文字幕| 黑人高潮一二区| 午夜久久久在线观看| 日韩大片免费观看网站| 久久人人爽人人爽人人片va| 一边亲一边摸免费视频| 亚洲欧洲精品一区二区精品久久久 | 亚洲熟女精品中文字幕| 欧美精品一区二区免费开放| 欧美日韩精品成人综合77777| av在线观看视频网站免费| 日产精品乱码卡一卡2卡三| 波野结衣二区三区在线| 搡女人真爽免费视频火全软件| 久久久久久久亚洲中文字幕| av黄色大香蕉| 色婷婷久久久亚洲欧美| 久久久国产精品麻豆| 亚洲综合精品二区| 少妇猛男粗大的猛烈进出视频| av福利片在线观看| 国产精品嫩草影院av在线观看| 国产av国产精品国产| 久久国产亚洲av麻豆专区| 大片免费播放器 马上看| 亚洲色图综合在线观看| 免费观看性生交大片5| 女性被躁到高潮视频| 春色校园在线视频观看| av国产久精品久网站免费入址| 插阴视频在线观看视频| 97精品久久久久久久久久精品| 一级av片app| 女的被弄到高潮叫床怎么办| 久久ye,这里只有精品| 国产精品人妻久久久影院| 色婷婷av一区二区三区视频| 秋霞伦理黄片| 欧美高清成人免费视频www| 欧美日韩精品成人综合77777| 少妇人妻一区二区三区视频| 久久久久久久久大av| 国产成人免费观看mmmm| 少妇熟女欧美另类| 插阴视频在线观看视频| 成年美女黄网站色视频大全免费 | 午夜av观看不卡| 亚洲欧美日韩东京热| 男的添女的下面高潮视频| 欧美亚洲 丝袜 人妻 在线| 精品久久久久久久久亚洲| 久久久久久久久大av| 欧美国产精品一级二级三级 | 国产精品人妻久久久久久| 三级经典国产精品| 两个人的视频大全免费| 国产一区二区三区av在线| 观看av在线不卡| 日本wwww免费看| 亚洲内射少妇av| 国产高清有码在线观看视频| 午夜老司机福利剧场| 97精品久久久久久久久久精品| 九九爱精品视频在线观看| 精品亚洲成国产av| 国产在线男女| 欧美人与善性xxx| 中文字幕人妻丝袜制服| 这个男人来自地球电影免费观看 | 国产成人freesex在线| 亚洲欧美精品自产自拍| 婷婷色麻豆天堂久久| 亚洲欧美成人综合另类久久久| 国产成人精品婷婷| 国产av国产精品国产| 下体分泌物呈黄色| 高清毛片免费看| 国产日韩欧美在线精品| 99久久精品一区二区三区| 色5月婷婷丁香| 国产熟女欧美一区二区| 精品人妻偷拍中文字幕| 69精品国产乱码久久久| 精品午夜福利在线看| 丰满迷人的少妇在线观看| av卡一久久| 欧美xxxx性猛交bbbb| 高清毛片免费看| 另类亚洲欧美激情| 日韩熟女老妇一区二区性免费视频| 午夜福利网站1000一区二区三区| 一区二区三区精品91| 国产精品国产三级国产av玫瑰| 偷拍熟女少妇极品色| 午夜福利视频精品| 51国产日韩欧美| 久久99热6这里只有精品| 日日啪夜夜爽| 亚洲精华国产精华液的使用体验| 成人免费观看视频高清| 热re99久久精品国产66热6| 国产精品国产av在线观看| 久久毛片免费看一区二区三区| 欧美人与善性xxx| 国产色爽女视频免费观看| 妹子高潮喷水视频| 精品一区二区三区视频在线| 日日爽夜夜爽网站| 2018国产大陆天天弄谢| 婷婷色综合大香蕉| 日韩免费高清中文字幕av| 国产成人精品久久久久久| 赤兔流量卡办理| 亚洲精品乱码久久久v下载方式| 亚洲成人一二三区av| 色视频www国产| 青春草国产在线视频| av女优亚洲男人天堂| 自线自在国产av| 国产精品人妻久久久久久| 亚洲电影在线观看av| 国产极品粉嫩免费观看在线 | 国产成人免费无遮挡视频| 六月丁香七月| a级一级毛片免费在线观看| 最近中文字幕2019免费版| 亚洲美女视频黄频| 一级毛片电影观看| 国产精品嫩草影院av在线观看| 免费黄色在线免费观看| 纯流量卡能插随身wifi吗| 日韩在线高清观看一区二区三区| 欧美日韩综合久久久久久| 自拍偷自拍亚洲精品老妇| 国产一区二区在线观看日韩| 亚洲国产欧美在线一区| 日日摸夜夜添夜夜爱| 青春草国产在线视频| 亚洲av成人精品一区久久| 免费看光身美女| 日韩一本色道免费dvd| 少妇被粗大猛烈的视频| 夫妻午夜视频| 黄色毛片三级朝国网站 | 国产精品不卡视频一区二区| 成人亚洲欧美一区二区av| 天天躁夜夜躁狠狠久久av| 免费观看a级毛片全部| 欧美另类一区| 人妻少妇偷人精品九色| 蜜桃久久精品国产亚洲av| 不卡视频在线观看欧美| 日韩一本色道免费dvd| 亚洲精品乱久久久久久| 嫩草影院新地址| 99热全是精品| 免费人成在线观看视频色| 人人妻人人爽人人添夜夜欢视频 | 久久精品久久精品一区二区三区| 99久国产av精品国产电影| 女的被弄到高潮叫床怎么办| 少妇精品久久久久久久| 国产精品国产av在线观看| 你懂的网址亚洲精品在线观看| 国产 一区精品| 国国产精品蜜臀av免费| 亚洲成人手机| 丝袜在线中文字幕| 日韩在线高清观看一区二区三区| 日韩人妻高清精品专区| 国产成人精品婷婷| 久久国内精品自在自线图片| 国产视频内射| 国产高清三级在线| 亚洲,欧美,日韩| 国产av精品麻豆| 少妇被粗大猛烈的视频| 国产亚洲最大av| 成年人午夜在线观看视频| 午夜精品国产一区二区电影| 午夜免费男女啪啪视频观看| 国产男女超爽视频在线观看| 日本午夜av视频| 精品久久久久久久久av| 夜夜骑夜夜射夜夜干| 中文字幕制服av| 国产在线男女| 91精品伊人久久大香线蕉| 午夜激情福利司机影院| 亚洲av成人精品一区久久| 九九在线视频观看精品| 欧美日韩精品成人综合77777| 精品久久久久久久久av| 好男人视频免费观看在线| 国产视频内射| 久久这里有精品视频免费| 99精国产麻豆久久婷婷| 亚洲欧洲国产日韩| 欧美另类一区| a 毛片基地| 亚洲av成人精品一区久久| 亚洲久久久国产精品| 久久久亚洲精品成人影院| 黑人猛操日本美女一级片| 色婷婷久久久亚洲欧美| 中文字幕免费在线视频6| 亚洲欧美成人精品一区二区| 人妻夜夜爽99麻豆av| 国内揄拍国产精品人妻在线| 少妇丰满av| 国产男女内射视频| 国产av国产精品国产| 少妇 在线观看| 亚洲第一av免费看| 日本-黄色视频高清免费观看| 26uuu在线亚洲综合色| 中国国产av一级| 97精品久久久久久久久久精品| 久久精品熟女亚洲av麻豆精品| 精品国产一区二区三区久久久樱花| 中文欧美无线码| 美女xxoo啪啪120秒动态图| 国产亚洲一区二区精品| 少妇被粗大的猛进出69影院 | 成人国产av品久久久| 婷婷色综合www| 五月天丁香电影| 秋霞伦理黄片| 亚洲av日韩在线播放| 大码成人一级视频| videossex国产| 老熟女久久久| 精品少妇黑人巨大在线播放| 这个男人来自地球电影免费观看 | 十八禁网站网址无遮挡 | 91精品国产九色| av有码第一页| 少妇丰满av| 少妇猛男粗大的猛烈进出视频| 久久久久久久大尺度免费视频| 99国产精品免费福利视频| 日本-黄色视频高清免费观看| 我的女老师完整版在线观看| 最近手机中文字幕大全| 又爽又黄a免费视频| 精品国产露脸久久av麻豆| 日本色播在线视频| 一级二级三级毛片免费看| 青春草国产在线视频| 欧美老熟妇乱子伦牲交| 欧美精品一区二区免费开放| 国产精品女同一区二区软件| 亚洲精品中文字幕在线视频 | 亚洲精品自拍成人| 国产精品三级大全| 老司机亚洲免费影院| 秋霞伦理黄片| 午夜日本视频在线| 丰满迷人的少妇在线观看| 亚洲成人一二三区av| 看免费成人av毛片| 久久国产乱子免费精品| 亚洲av电影在线观看一区二区三区| 99热这里只有是精品在线观看| 国产精品99久久久久久久久| 国产 一区精品| 在线观看美女被高潮喷水网站| 妹子高潮喷水视频| 亚洲欧洲日产国产| 精品国产国语对白av| 乱人伦中国视频| 全区人妻精品视频| 自拍欧美九色日韩亚洲蝌蚪91 | 国产熟女欧美一区二区| 十分钟在线观看高清视频www | 新久久久久国产一级毛片| 美女脱内裤让男人舔精品视频| av一本久久久久| 国产爽快片一区二区三区| 成人亚洲精品一区在线观看| 日韩制服骚丝袜av| 老司机影院成人| 国产免费又黄又爽又色| 天天躁夜夜躁狠狠久久av| 国产综合精华液| 免费看日本二区| 欧美日本中文国产一区发布| 69精品国产乱码久久久| 好男人视频免费观看在线| 久久久久久久亚洲中文字幕| av网站免费在线观看视频| 成人漫画全彩无遮挡| 欧美 日韩 精品 国产| 国产伦理片在线播放av一区| 熟女电影av网| 日日撸夜夜添| 黄色视频在线播放观看不卡| 国产伦精品一区二区三区四那| 国产成人精品无人区| 一级毛片电影观看| 麻豆乱淫一区二区| 久久亚洲国产成人精品v| av免费观看日本| 嫩草影院入口| 久久狼人影院| 亚洲精品视频女| 偷拍熟女少妇极品色| 国产精品蜜桃在线观看| 免费看光身美女| 亚洲av.av天堂| 乱系列少妇在线播放| 久久久久久久久久成人| 菩萨蛮人人尽说江南好唐韦庄| 免费观看的影片在线观看| 免费人成在线观看视频色| 自拍偷自拍亚洲精品老妇| 91久久精品国产一区二区成人| 新久久久久国产一级毛片| 亚洲欧美精品自产自拍| 黑人猛操日本美女一级片| 精品人妻熟女av久视频| 久久久精品免费免费高清| 男女边摸边吃奶| 18禁在线播放成人免费| 色视频www国产| 国产黄片美女视频| 2018国产大陆天天弄谢| 国产视频内射| 国产欧美亚洲国产| 日韩伦理黄色片| 亚洲综合精品二区| 大又大粗又爽又黄少妇毛片口| 国产永久视频网站| 亚洲欧洲精品一区二区精品久久久 | 国产精品福利在线免费观看| 在线观看免费高清a一片| 久久久国产欧美日韩av| 成人毛片a级毛片在线播放| 国国产精品蜜臀av免费| 91精品国产九色| 免费av不卡在线播放| 免费久久久久久久精品成人欧美视频 | 国产精品久久久久久久久免| 精品酒店卫生间| 最近最新中文字幕免费大全7| 久久国内精品自在自线图片| 赤兔流量卡办理| 亚洲天堂av无毛| 麻豆成人午夜福利视频| 伦理电影大哥的女人| 自拍欧美九色日韩亚洲蝌蚪91 | freevideosex欧美| 久久国产亚洲av麻豆专区| 免费人成在线观看视频色| 五月伊人婷婷丁香| 中文字幕精品免费在线观看视频 | 能在线免费看毛片的网站| 午夜免费男女啪啪视频观看| 亚洲av成人精品一二三区| 久久精品夜色国产| 亚洲欧美日韩东京热| 九色成人免费人妻av| 熟妇人妻不卡中文字幕| 免费观看在线日韩| 青春草亚洲视频在线观看| 中文字幕制服av| 高清黄色对白视频在线免费看 | 精品视频人人做人人爽| 精品国产乱码久久久久久小说| 一级毛片我不卡| 久久精品熟女亚洲av麻豆精品| 美女视频免费永久观看网站| 人妻一区二区av| www.色视频.com| 狂野欧美激情性bbbbbb| 精品酒店卫生间| 一级毛片电影观看| 中文字幕人妻熟人妻熟丝袜美| 自拍偷自拍亚洲精品老妇| 免费观看的影片在线观看| 久久鲁丝午夜福利片| 又粗又硬又长又爽又黄的视频| 亚洲国产欧美日韩在线播放 | 一本久久精品| 日韩欧美一区视频在线观看 | 自线自在国产av| 国产成人精品久久久久久| 免费观看性生交大片5| 亚洲三级黄色毛片| 成人黄色视频免费在线看| 午夜91福利影院| 熟女av电影| 欧美精品国产亚洲| 99久久人妻综合| 日本与韩国留学比较| 六月丁香七月| 国产色婷婷99| 久久精品久久久久久噜噜老黄| 国产精品一二三区在线看| 精品国产一区二区三区久久久樱花| 欧美日韩视频高清一区二区三区二| 免费少妇av软件| 久久精品国产自在天天线| 亚洲人与动物交配视频| 亚洲经典国产精华液单| 免费av中文字幕在线| 91成人精品电影| 国产一区二区三区av在线| 国产精品久久久久成人av| 五月开心婷婷网| 日本猛色少妇xxxxx猛交久久| 极品少妇高潮喷水抽搐| 街头女战士在线观看网站| 插阴视频在线观看视频| 内射极品少妇av片p| 18禁裸乳无遮挡动漫免费视频| 建设人人有责人人尽责人人享有的| av.在线天堂| 久久精品久久精品一区二区三区| 亚洲人成网站在线观看播放| 精品99又大又爽又粗少妇毛片| 少妇熟女欧美另类| www.av在线官网国产| 久久ye,这里只有精品| av在线app专区| 日本午夜av视频| 久久精品国产亚洲网站| 肉色欧美久久久久久久蜜桃| 嫩草影院入口| 亚洲国产日韩一区二区| 丰满乱子伦码专区| 成年女人在线观看亚洲视频| 美女国产视频在线观看| 亚洲国产欧美日韩在线播放 | 青青草视频在线视频观看| 两个人免费观看高清视频 | 欧美日韩亚洲高清精品| 久久久亚洲精品成人影院| 美女cb高潮喷水在线观看| 女性生殖器流出的白浆| 观看美女的网站| av视频免费观看在线观看| av免费在线看不卡| 日本黄色片子视频| 男的添女的下面高潮视频| 我要看黄色一级片免费的| 国产高清不卡午夜福利| 亚洲欧美日韩卡通动漫| 国产精品99久久久久久久久| 亚洲精品国产成人久久av| 亚洲三级黄色毛片| 简卡轻食公司| 九九在线视频观看精品| 黄色毛片三级朝国网站 | 搡老乐熟女国产| 欧美97在线视频| 亚洲av男天堂| 久久久久久久国产电影| 亚洲精品亚洲一区二区| av不卡在线播放| 成人亚洲精品一区在线观看| 少妇裸体淫交视频免费看高清| 色视频www国产| 国产高清不卡午夜福利| 91久久精品国产一区二区成人| 久久这里有精品视频免费| 国产真实伦视频高清在线观看| 在线 av 中文字幕| 久久人妻熟女aⅴ| 99久国产av精品国产电影| 国产高清不卡午夜福利| 一区二区三区四区激情视频| 尾随美女入室| 97在线视频观看| 在线观看免费视频网站a站| 国产精品国产三级国产av玫瑰| 欧美成人午夜免费资源| 日本色播在线视频| 免费看日本二区| 国产精品无大码| 国产亚洲一区二区精品| 午夜日本视频在线| 狂野欧美白嫩少妇大欣赏| 美女大奶头黄色视频| 精品一区二区三区视频在线| 寂寞人妻少妇视频99o| 日韩免费高清中文字幕av| 国产黄片美女视频| 国产av国产精品国产| 岛国毛片在线播放| 精品少妇久久久久久888优播| 麻豆成人av视频| 久久综合国产亚洲精品| 国产毛片在线视频| 在线观看国产h片| 18+在线观看网站| 精品一区在线观看国产| 精品一区二区三卡| av又黄又爽大尺度在线免费看| videos熟女内射| 日日撸夜夜添| 国产色爽女视频免费观看| 丰满人妻一区二区三区视频av| 亚洲国产精品国产精品| 国产伦精品一区二区三区视频9| 九九爱精品视频在线观看| 久久精品久久久久久噜噜老黄| 久久久久久人妻| 亚洲欧美成人综合另类久久久| 成年av动漫网址| 亚洲国产精品专区欧美| 香蕉精品网在线| 亚洲精品亚洲一区二区| 水蜜桃什么品种好| 亚洲电影在线观看av| 日韩免费高清中文字幕av| 日本免费在线观看一区| 国产亚洲精品久久久com| 午夜福利在线观看免费完整高清在| 99久久精品国产国产毛片| 欧美三级亚洲精品| 在线 av 中文字幕| 91久久精品电影网| 少妇人妻精品综合一区二区| 国产极品天堂在线| 国产精品一二三区在线看| 91aial.com中文字幕在线观看| 亚洲av综合色区一区| 国产 一区精品| 久久久久网色| 色网站视频免费| 成人无遮挡网站| 国产av码专区亚洲av| 夜夜骑夜夜射夜夜干| 亚洲第一区二区三区不卡| 在线 av 中文字幕| 欧美精品人与动牲交sv欧美| 精品人妻熟女av久视频| 男人舔奶头视频| 国产乱来视频区| 国产精品偷伦视频观看了| 亚洲精品中文字幕在线视频 | 欧美日韩视频高清一区二区三区二| 国产欧美亚洲国产| 毛片一级片免费看久久久久| 国产男女超爽视频在线观看| 免费观看的影片在线观看| 国产女主播在线喷水免费视频网站| 国产精品99久久99久久久不卡 | 日韩电影二区| 激情五月婷婷亚洲| 观看av在线不卡| 一级黄片播放器| av播播在线观看一区| 国产69精品久久久久777片| 交换朋友夫妻互换小说| 美女福利国产在线| 国产av精品麻豆| 春色校园在线视频观看| 欧美激情极品国产一区二区三区 | 精品少妇黑人巨大在线播放| 国产成人免费无遮挡视频| 美女脱内裤让男人舔精品视频| 女性被躁到高潮视频| 男人舔奶头视频| 成人二区视频| 久久久久精品久久久久真实原创| 国产日韩欧美亚洲二区| 啦啦啦在线观看免费高清www| 18+在线观看网站| 日韩成人av中文字幕在线观看| 久久久国产精品麻豆| 午夜福利影视在线免费观看| 天天操日日干夜夜撸| 天堂俺去俺来也www色官网| 哪个播放器可以免费观看大片| 老熟女久久久| 免费不卡的大黄色大毛片视频在线观看| 久久狼人影院| 免费大片18禁| 波野结衣二区三区在线|