• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Current spin polarization of a platform molecule with compression effect

    2022-08-01 05:59:18ZhiYang羊志FengSun孫峰DengHuiChen陳登輝ZiQunWang王子群ChuanKuiWang王傳奎ZongLiangLi李宗良andShuaiQiu邱帥
    Chinese Physics B 2022年7期

    Zhi Yang(羊志), Feng Sun(孫峰), Deng-Hui Chen(陳登輝), Zi-Qun Wang(王子群),Chuan-Kui Wang(王傳奎), Zong-Liang Li(李宗良),?, and Shuai Qiu(邱帥),?

    1Shandong Key Laboratory of Medical Physics and Image Processing&Shandong Provincial Engineering and Technical Center of Light Manipulations,School of Physics and Electronics,Shandong Normal University,Jinan 250358,China

    2Zao Zhuang University,Zao Zhuang 277160,China

    Keywords: molecular spintronics,spin-dependent transport,spin polarization,single-molecule junctions

    1. Introduction

    Molecular spintronics is a fascinating and frontier subfield of spintronics, which focuses on the spin degrees of freedom of electrons based on organic molecules.[1–5]Organic molecules exhibit the advantages of weak spin–orbit coupling and long spin relaxation times, which is conductive to spin transport and manipulation.[6,7]More importantly,when organic molecules contact the ferromagnetic metals to form a spinterface, the hybrid interface states (HIS) can be generated from the orbital hybridization between molecules and ferromagnets.[8–11]The HIS usually appears near the Fermi level, which determines the spin injection efficiency and transport property.[12]Moreover,comparing with the original ferromagnetic metal, enhancement or reversal of interfacial spin polarization(SP)can be observed to be attributed to HIS.[13–15]A lot of researches have demonstrated the crucial effect of HIS on spin-dependent transport properties in magnetic single-molecule junctions.[16–19]

    As various novel molecules are designed and synthesized, a series of molecular spintronic devices is engineered and extensively investigated in theory and experiment , such as spin filter,[20–22]spin rectifier,[23,24]spin transistors,[25,26]and spin logic gates.[27,28]Thus,it is of utmost importance to search for specific functional molecules for developing molecular spintronic devices. Recently,the extended aromatic platform molecules have attracted much attention of researchers.Since the platform of molecule contacts the substrate electrode flatly via physisorption instead of chemisorption,the conductance of molecular junction is mediated by the electronic coupling between the tip electrode and the freestanding molecular wire.[29,30]In 2017, Jasper-T¨onnieset al.investigated the conductance properties of propynyl–trioxatriangulenium(P-TOTA) molecular junction by using the scanning tunneling microscope with Au tip and substrate electrodes under compression process. The conductance is related to the deformation of molecule wire, where the bonding way between Au tip and molecule as well as the symmetry mismatch of Au atoms and molecule orbitals plays a key role.[29]Then,they further investigated the conductance of similar platform molecule by replacing propynyl in P-TOTA molecule with hydrogen or methyl,[31]where the excellent charge transport performance of platform molecular junction is widely validated.[32,33]However, the spin-dependent transport properties of platform molecule have not been studied so far. Considering that the spinterface formed between the propynyl of P-TOTA molecule and the top electrode must be changed with the deformation of propynyl in the compression process, the spin transport of P-TOTA magnetic molecular junction modulated by the HIS is an issue worth exploring. Therefore,there is an enormous significance in promoting the applications of P-TOTA molecule in molecular spintronics.

    In this work, the response of spin-dependent transport properties of P-TOTA magnetic molecular junctions to the compression effect is theoretically investigated. We adopt the ferromagnetic Ni tip electrode and non-magnetic Au substrate electrode to simulate the spin-polarized scanning tunneling microscope (SP-STM) experiment. The results demonstrate that the current and SP of current have completely opposite trends with the change of compression effect under bias voltage,which is due to the fact that the spin transport is controlled by the HIS. The mechanism of orbital hybridization between Ni electrode and propynyl of P-TOTA molecule is elucidated,which is responsible for the SP of current. In the rest of this work is organized as follows. The theoretical model and computational details are introduced in Section 2. The results and discussion are analysed in Section 3. The conclusion is finally summarized in Section 4.

    2. Theoretical model and computational details

    The theoretical models of magnetic single-molecule junctions are presented in Fig.1. A P-TOTA molecule is absorbed on the non-magnetic Au(111)bottom electrode with 6×6 unit cell periodicity. The ferromagnetic Ni (111) top electrode with a ten-atom tetrahedron is used as the tip of the SP-STM.To simulate the compression process of this molecular junction, the tip of SP-STM slides toward the substrate and three schematic structures are obtained as displayed in Fig. 1. For the initial configuration M1, the distance between top electrode and bottom electrode is 11.3 ?A and the propynyl of PTOTA molecule keeps upright.When the top electrode is close to the bottom electrode,the interaction between propynyl and tip is gradually enhanced. As the distance between the two electrodes decreases to 9.5 ?A, the propynyl bends 160°and configuration M2 is obtained as shown in Fig.1(b). When we move the top electrode further down to 7.3 ?A,the propynyl is bent more seriously. As displayed in Fig. 1(c), the angle of propynyl is 148°for the final configuration M3. Furthermore,two carbon atoms of propynyl are bonded to the tip atom of Ni electrode, which breaks an original C≡C triple band and forms a new Ni–C–C bond. We calculate the total energy of the three optimized configurations, where is-300988.35 eV,-300988.70 eV, and-300990.86 eV for M1, M2, and M3 junctions, respectively. It is clearly seen that the structure is more stable in the compression process. The difference in total energy between M1 and M2 junctions is only 0.35 eV,whereas that between M2 and M3 junctions is 2.16 eV. Apparently, from M1 to M2 junction, the weak interaction between Ni tip electrode and propynyl of P-TOTA molecule induces a small energy difference. However,when M2 junction is further compressed to obtain M3 junction,the breaking and forming of chemical bonds lead the energy to decrease significantly.

    Fig.1. Schematic diagrams of compression processes about P-TOTA molecular junction for three structures: (a)M1,(b)M2,and(c)M3. The carbon atoms of propynyl of P-TOTA molecule are marked from top to bottom with C1,C2,and C3,respectively. The white,gray,red,green and yellow balls denote H,C,O,Ni,and Au atoms,respectively.

    The geometry optimization of the P-TOTA molecule and three device configurations are calculated based on density functional theory (DFT), where the maximum residual force on each atom is less than 0.04 eV/?A. The spindependent electron transport properties are further investigated by combining the DFT with non-equilibrium Green’s function(NEGF)method[34]implemented in Atomistix ToolKit(ATK)package.[35,36]Firstly, the isolated P-TOTA molecule is optimized. Then, the optimized molecule is placed between two electrodes to simulate the compression process,forming three central regions. The central region composed of optimized molecule and five layers of Au electrodes and six layers of Ni electrodes is further optimized. In this process, the atoms of Ni tetrahedral tip and the two innermost layers atoms of Au slab are completely optimized,while the rest of Ni atoms are fixed, and the remaining Au atoms are restricted to move rigidly. In order to choose appropriate lattice structures of two different electrodes,based on the matching algorithm,the two electrode structures are evaluated and the mismatch between the lattice constants is 0.07%. In the whole calculations, the spin-polarized generalized gradient approximation(SGGA)with the Perdew–Burke–Ernzerhof(PBE)[37]is used as the exchange–correlation functional.The Troullier–Martins type norm-conserving pseudopotentials[38]are adopted. TheK-point sampling is 3×3×100 in each of thex,y, andzdirections, where thezdirection is the electron transport direction. The density mesh cutoff for real space grids is set to be 200 Ry(1 Ry=13.6056923(12)eV),and the tolerance convergence in the self-consistent loop is less than 1.0×10-4Hartree(1 Hartree=4.3597×10-18J). The double zeta (ζ) polarization(DZP)basis set is used for hydrogen,carbon,and oxygen atoms, as well as the single zeta (ζ) polarization (SZP) basis set is applied to Ni and Au atoms to make a balance between computational accuracy and computational quantity.[39,40]A positive bias voltage is applied to the Ni electrode,and a negative bias voltage to the Au electrode.

    The spin-polarized currentIunder a bias voltageVis calculated from the Landauer–B¨uttiker formula[41]

    In formula(1),σis the spin orientation(spin-up or spin-down)of the electrons,erepresents the elementary electron charge,hdenotes the Planck’s constant,fT(E-μT)andfB(E-μB)are the Fermi–Dirac distribution functions for electrons in the top electrode and the bottom electrode, respectively, andμTandμBare the the electrochemical potentials of top electrode and bottom electrode, andTσ(E,V) is the spin-dependent transmission spectrum,and expressed as

    In formula(2),GC(E,V)is Green’s function of the central region,ΓT(E,V)denotes the coupling matrix between the central scattering region and the top electrode,andΓB(E,V)refers to the matrix between the central scattering region and the bottom electrode.

    3. Results and discussion

    To explain the spin transport properties of P-TOTA molecule,we calculate the spin-dependent transmission spectra of M1, M2, and M3 junction under 0.0 V and 0.4 V, respectively. The transmission spectra are plotted in logarithmic coordinates to obtain a more intuitive view as shown in Fig.3.The eigenvalues of spin-dependent molecular-projected selfconsistent Hamiltonian(MPSH)[42]are also marked to distinguish between molecular orbitals and HIS.It is evidently seen that the transmission coefficients of M1, M2, and M3 junction near the Fermi level all increase by an order of magnitude with interelectrode distance shortening under 0.0 V and 0.4 V, which accounts for the results of the total current in Fig.2(a). Besides,the spin-up transmission coefficients of the three junctions are larger than the spin-down ones,which leads to the spin-up SP of current. For M1 and M2 junction shown in Figs. 3(a), 3(b), 3(d), and 3(e), two spin-up peaks appear near the Fermi level, which has no MPSH eigenvalues corresponding to them. This indicates that they are not the molecular orbits caused by the self-energy of the electrode, but are the HIS generated by the interface hybridization. The spin-up HIS transmission peaks move toward higher energy and enter into the bias window with the increase of bias voltage,which brings about the enhancement of SP of current. Moreover,the spin-up HIS transmission peak of M1 junction in the bias window is wider than that of M2 junction, which gives rise to larger SP of current than that of M2 junction. However,in Figs.3(c)and 3(f), the transmission peaks contributed by the molecular orbits appear near the Fermi level, which causes a huge current for M3 junction. The spin-up transmission coefficient and the spin-down transmission coefficient of M3 junction in the bias window have the same magnitudes,which results in minimum SP of current for the three junctions.

    Fig.2. (a)Total current–voltage curves and(b)bias-dependent SP of current of M1,M2,and M3 junctions. The inset in panel(a)shows the magnified part of plots of current–voltage curves for M1 and M2 junctions.

    Fig.3. Spin-dependent transmission spectra of M1,M2,and M3 junctions under((a)–(c))0.0 V and((d)–(f))0.4 V,respectively,where zero energy is Fermi level and the region between two dash lines indicates bias window. Red and blue triangles represent spin-up and spin-down MPSH eigenvalues,respectively.

    To more intuitively analyze the transmission of electrons at bias voltage, the spin-dependent transmission pathways of the three junctions at Fermi level under 0.4 V are given in Fig.4. The blue line and the red line between two atoms represent the pathway of transmission and the pathway of reflection, respectively. And the radius value of blue line and the red line represent the value of transmission probability and reflection probability, respectively. The thresholds are fixed at 0.0005 for all plots to compare different configurations. For all junctions, the extremely dense transmission and reflection pathways between Au substrate surface and platform of PTOTA molecule are presented. Thus, the electron transport properties are mainly dependent on the interface between Ni tip and propynyl of P-TOTA molecule. For the M1 junction(as shown in Figs. 4(a) and 4(b)), the spin-up electrons can transport from the H atoms at the end of P-TOTA molecule to the Ni apex atom,but the spin-down electrons are suppressed.This induces the highest SP of current. For the M2 junction(as shown in Figs. 4(c) and 4(d)), the electrons can transport from the C2 atom of propynyl to the Ni apex atom. Although the spin-down electrons have an additional transmission pathway from molecule to the Ni electrode, the radius magnitude of the spin-up transmission pathway from the C2 atom to the Ni apex atom is larger than that of spin-down one. Moreover, the platform of P-TOTA molecule provides more spinup transmission pathways to C3 atom of propynyl. Therefore, the current of M2 junction is spin-up polarized and has a medium intensity in each of the three molecular junctions.For M3 junction,the spin-up transmission pathways are similar to the spin-down ones in the Ni-propynyl hybrid interface due to the strong chemical contact between Ni tip atom and C2 atom and between Ni tip atom and C3 atom of propynyl as shown in Figs.4(e)and 4(f),respectively. However,the spinup transmission pathways diffusely extend to the third layer of the Ni slab electrode, which is more delocalized than the spin-down ones and still leads to a smaller spin-up polarized current. Consequently,the results of spin-dependent transmission spectra and transmission pathways account for the change of SP of current in compressing process under higher bias.

    Fig.4. Transmission pathways of three junctions at Fermi level under 0.4 V,showing[(a),(c),and(e)]spin-up electrons and[(b),(d),and(f)]spin-down electrons for M1, M2, and M3 junctions, respectively. Carbon atoms of propynyl are marked from top to bottom with C1, C2, and C3, respectively.Thresholds are fixed at 0.0005 for all plots.

    Fig.5. Spin-dependent PDOS of Ni apex atom in(a)M1,(b)M2,and(c)M3 under zero bias voltage. And the spin-dependent PDOS of the propynyl of P-TOTA molecule in(d)M1,(e)M2,and(f)M3 under zero bias voltage.

    Now, we turn to the spin-dependent transport mechanism affected by the Ni-propynyl hybrid interface. The spindependent projected density of states (PDOS) of the Ni apex atom and the propynyl of P-TOTA molecule in the three junctions under zero bias voltage are given in Fig.5. Apparently,the PDOS peaks of the Ni apex atom and the propynyl near the Fermi level are mainly contributed by 3d orbitals and 2p orbitals, respectively. For M1 junction and M2 junction, the PDOS of the Ni apex atom is extremely similar, where they have many spin-up PDOS peaks near the Fermi level as indicated in Figs. 5(a) and 5(b). Meanwhile, there is a spin-up PDOS peak on each side of the Fermi level for propynyl(see Figs. 5(d) and 5(e)), corresponding to the PDOS peak of the Ni apex atom, which indicates that the 3d orbital of Ni apex atom is hybridized with the propynyl. The PDOS peaks of the propynyl of M2 junction near the Fermi level are significantly strengthened compared with that of M1 junction, which reveals that the strength of orbital hybridization between Ni apex atom and propynyl increases evidently with the compression process going on. However,the spin-down PDOS of Ni apex atom and propynyl near the Fermi level are closely restrained,which results in the blocking of the spin-down channel and the spin-up polarization of the current. With the continuous compression of the molecular junction to M3, the C2 atom and C3 atom of propynyl contact the Ni apex atom, which causes the orbital hybridization of the Ni-propynyl interface to become more intense. Unlike the M1 junction and M2 junction, the PDOS of M3 junction changes obviously as shown in Figs.5(c)and 5(f). Especially,the spin-down PDOS of the propynyl increases significantly near the Fermi level, which indicates that the spin-down channel is activated, leading the spin-up polarization of the current to decrease. Thus, the spin-dependent PDOS is affected by the change of organic–ferromagnetic interface originating from the compression process,which is responsible for the variation of spin-dependent transport.

    In order to explore the contribution of every atom to the electronic states in the junction,the spatial distributions of local density of states (LDOS) for the energy of each spin-up PDOS peak of propynyl near the Fermi level under zero bias voltage are plotted in Fig.6. It can be intuitively seen that the spin-up and spin-down LDOS are both distributed mainly in Ni electrode and partially exists in Au electrode, which indicates that the PDOS peaks of propynyl are contributed mainly by electrode atoms. For the M1 junction, the LDOS has almost no distribution on P-TOTA molecule(see Figs.6(a),6(b),6(g), and 6(h)). However, with the decrease of the interelectrode distance, the interaction between Ni electrode and PTOTA molecule is enhanced. The spin-up LDOS of M2 junction shown in Figs. 6(c) and 6(d) appears in methyl and C3 atom of propynyl,especially at the energy of-0.22 eV,where is attributed to a high PDOS peak shown in Fig. 5(e). But the spin-down LDOS of M2 junction shown in Figs.6(i)and 6(j) is still similar to the LDOS of M1 junction. Being compressed futher, the C2 and C3 atoms of propynyl are bonded to the Ni apex atom. From Figs. 6(e), 6(f), 6(k), and 6(l), it is evidently seen that the spin-up LDOS and the spin-down LDOS increase in the three atoms,which testifies to the strong orbital hybridization between Ni apex atom and C2 and C3 atoms of propynyl.Note that the spin-down electronic states in M3 junction are distributed in the molecule,which means that the spin-down electronic channel is turned on with the compression process. Therefore, the compression process of PTOTA molecular junction modifies the organic–ferromagnetic spinterface remarkably and dominates the electronic states for spin-dependent transport.

    Fig. 6. Spin-up LDOS of [(a), (b)] M1, [(c), (d)] M2, and [(e), (f)] M3 junctions, and spin-down LDOS of [(g), (h)] M1, [(i), (j)] M2, and [(k), (l)]M3 junctions at certain energy under zero bias voltage. Carbon atoms of propynyl are marked from top to bottom with C1, C2, and C3, respectively.Isovalues are fixed at 0.03 for all isosurface plots.

    4. Conclusions

    In this work,according to the first-principles calculations of DFT combined with NEGF,we theoretically investigate the spin-dependent transport properties of P-TOTA molecule by simulating the compression process of SP-STM experiment with Ni tip electrode and Au substrate electrode. The computational results show that the current gradually increases with interelectrode distance shortening, which is coincident with that of conductance in previous STM experiment with Au electrode. However, it is extremely intriguing that the SP of current decreases with the compression process going on when the bias voltage exceeds 0.1 V, which is completely opposite to the variation tendency of current. The analysis of transmission spectra and transmission pathways reveals the physical mechanism of spin-dependent transport under high bias voltage,where the compression process induces more spin-down electron channels. Moreover, the coupling between Ni tip electrode and propynyl of P-TOTA molecule is enhanced in the compression process, which modifies the organic–ferromagnetic spinterface significantly. The results of PDOS and LDOS illuminate that orbital hybridization between 3d orbitals of Ni tip atom and 2p orbitals of C atoms of propynyl occurs at the spinterface. More importantly, the weak orbital hybridization results in strong spin-up polarized density of states,but strong orbital hybridization activates the spin-down electron transmission and leads the spin polarization to decrease. As a consequence, the orbital hybridization of organic–ferromagnetic spinterface plays a vital role in determining the spin-dependent transport properties of P-TOTA molecular junction. Our theoretical work reveals the physical mechanism of spin transport properties of P-TOTA molecular junction and promotes its application in molecular spintronic devices.

    Acknowledgements

    Project supported by the National Natural Science Foundation of China (Grant Nos. 11974217 and 11874242) and the Natural Science Foundation of Shandong Province,China(Grant No.ZR2018MA037).

    国产成人免费无遮挡视频| 99热这里只有精品一区| 男女无遮挡免费网站观看| 色5月婷婷丁香| 天堂中文最新版在线下载 | 国精品久久久久久国模美| 成年人午夜在线观看视频| 高清毛片免费看| 青春草视频在线免费观看| 国产精品一区二区三区四区免费观看| 亚洲精品日韩在线中文字幕| 日韩三级伦理在线观看| 久久99热这里只频精品6学生| 国产美女午夜福利| 涩涩av久久男人的天堂| 色5月婷婷丁香| 在线看a的网站| 亚洲av.av天堂| 亚洲,一卡二卡三卡| 最近2019中文字幕mv第一页| 亚洲av在线观看美女高潮| 国产精品不卡视频一区二区| 国产精品一区二区性色av| 一区二区av电影网| 免费大片18禁| 国产黄色视频一区二区在线观看| 免费黄频网站在线观看国产| 久久亚洲国产成人精品v| 午夜福利网站1000一区二区三区| 亚洲av成人精品一二三区| 久久久精品欧美日韩精品| 国产av国产精品国产| 性色av一级| 久热这里只有精品99| 亚洲第一区二区三区不卡| 国产一区二区在线观看日韩| 青春草亚洲视频在线观看| 一二三四中文在线观看免费高清| 亚洲综合精品二区| 精品久久久精品久久久| 久久亚洲国产成人精品v| 亚洲无线观看免费| 国产精品一区二区在线观看99| 一级毛片黄色毛片免费观看视频| 大话2 男鬼变身卡| 天天躁夜夜躁狠狠久久av| 97人妻精品一区二区三区麻豆| 欧美精品一区二区大全| av国产免费在线观看| 国产国拍精品亚洲av在线观看| a级毛色黄片| 天天躁日日操中文字幕| 69av精品久久久久久| 国产免费视频播放在线视频| 国产精品久久久久久av不卡| 亚洲av电影在线观看一区二区三区 | 草草在线视频免费看| 亚洲第一区二区三区不卡| 亚洲美女搞黄在线观看| 老女人水多毛片| 日韩在线高清观看一区二区三区| 国产成人一区二区在线| 国产精品人妻久久久久久| 欧美老熟妇乱子伦牲交| 国产色婷婷99| 观看免费一级毛片| 精品久久久噜噜| 成人一区二区视频在线观看| 久久久精品免费免费高清| 中国美白少妇内射xxxbb| 日本一二三区视频观看| 2021少妇久久久久久久久久久| 免费看日本二区| 青春草视频在线免费观看| av在线亚洲专区| 寂寞人妻少妇视频99o| 日韩大片免费观看网站| 日韩欧美精品免费久久| 亚洲国产精品国产精品| 三级男女做爰猛烈吃奶摸视频| 搡女人真爽免费视频火全软件| 欧美zozozo另类| 18禁动态无遮挡网站| 精品少妇黑人巨大在线播放| av免费观看日本| 亚洲欧美日韩卡通动漫| 91精品国产九色| 欧美xxⅹ黑人| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 2021少妇久久久久久久久久久| 丝袜喷水一区| 欧美日韩一区二区视频在线观看视频在线 | 成人漫画全彩无遮挡| 久久人人爽人人片av| 精品久久久久久久人妻蜜臀av| 永久免费av网站大全| 一级片'在线观看视频| 男人爽女人下面视频在线观看| 男人添女人高潮全过程视频| 日韩欧美 国产精品| 亚洲自偷自拍三级| 婷婷色综合www| 在线观看人妻少妇| 插逼视频在线观看| 精品一区二区免费观看| 国产av国产精品国产| 精品99又大又爽又粗少妇毛片| 不卡视频在线观看欧美| 国产一区二区三区av在线| 午夜亚洲福利在线播放| 国产精品蜜桃在线观看| 白带黄色成豆腐渣| 亚洲av成人精品一二三区| 亚洲不卡免费看| 欧美+日韩+精品| 亚洲成人中文字幕在线播放| 六月丁香七月| 国产 一区 欧美 日韩| 欧美xxⅹ黑人| 97在线视频观看| 久久久久性生活片| 国产探花极品一区二区| 久久精品久久久久久噜噜老黄| 成人漫画全彩无遮挡| 简卡轻食公司| 熟女人妻精品中文字幕| 久久韩国三级中文字幕| 日本av手机在线免费观看| 26uuu在线亚洲综合色| 中国国产av一级| 最近手机中文字幕大全| 日韩 亚洲 欧美在线| 中文字幕亚洲精品专区| 国产色婷婷99| 国产成人精品福利久久| 大陆偷拍与自拍| 久久99蜜桃精品久久| 91午夜精品亚洲一区二区三区| 国产精品福利在线免费观看| 国产高潮美女av| 国产一区二区三区综合在线观看 | 亚洲内射少妇av| 亚洲高清免费不卡视频| 亚洲欧美日韩另类电影网站 | 麻豆乱淫一区二区| 熟妇人妻不卡中文字幕| 人妻一区二区av| 在线观看av片永久免费下载| 高清日韩中文字幕在线| 欧美日韩视频高清一区二区三区二| 日本av手机在线免费观看| 人妻系列 视频| 国产成人午夜福利电影在线观看| h日本视频在线播放| 婷婷色麻豆天堂久久| 黑人高潮一二区| 毛片一级片免费看久久久久| 青春草国产在线视频| 国产黄片美女视频| xxx大片免费视频| 女人十人毛片免费观看3o分钟| 中文字幕人妻熟人妻熟丝袜美| 白带黄色成豆腐渣| 国产精品无大码| 免费电影在线观看免费观看| 国产精品女同一区二区软件| 国产视频内射| 国产在线男女| 一级毛片黄色毛片免费观看视频| 亚洲精品国产色婷婷电影| 亚洲精品日本国产第一区| 国产日韩欧美亚洲二区| 国产一区二区三区综合在线观看 | 天堂中文最新版在线下载 | 精品人妻一区二区三区麻豆| 成年女人看的毛片在线观看| 一区二区av电影网| 在线观看免费高清a一片| 九九爱精品视频在线观看| 十八禁网站网址无遮挡 | 久久久精品免费免费高清| 黄片无遮挡物在线观看| 欧美另类一区| 禁无遮挡网站| 久久久久网色| 国产欧美日韩精品一区二区| 欧美日韩一区二区视频在线观看视频在线 | 中国三级夫妇交换| 69av精品久久久久久| 青春草国产在线视频| 国产男女超爽视频在线观看| 免费播放大片免费观看视频在线观看| 欧美一区二区亚洲| 欧美 日韩 精品 国产| 国产成人一区二区在线| 99久久精品热视频| 久久6这里有精品| 99热全是精品| 久久精品国产亚洲av天美| 精品熟女少妇av免费看| 日本wwww免费看| 国产精品99久久99久久久不卡 | 白带黄色成豆腐渣| 亚洲精品aⅴ在线观看| 国产一区亚洲一区在线观看| 久久久久性生活片| 欧美97在线视频| 白带黄色成豆腐渣| 亚洲成人av在线免费| 一级片'在线观看视频| 男人爽女人下面视频在线观看| 亚洲欧美日韩东京热| 亚洲欧美日韩无卡精品| 久久久久久久午夜电影| 国产爽快片一区二区三区| 精品酒店卫生间| 午夜日本视频在线| 欧美成人一区二区免费高清观看| 亚洲久久久久久中文字幕| 高清视频免费观看一区二区| 亚洲精品色激情综合| 最近手机中文字幕大全| 观看免费一级毛片| 国内精品美女久久久久久| 网址你懂的国产日韩在线| 天天一区二区日本电影三级| 免费播放大片免费观看视频在线观看| 水蜜桃什么品种好| av专区在线播放| 欧美激情国产日韩精品一区| 国产精品国产三级专区第一集| 精品久久久久久久久av| 亚洲最大成人手机在线| 久久精品国产a三级三级三级| 大陆偷拍与自拍| 亚洲精品乱久久久久久| 亚洲精品国产av成人精品| 我的女老师完整版在线观看| 有码 亚洲区| 国产淫片久久久久久久久| av专区在线播放| av天堂中文字幕网| 亚洲av成人精品一二三区| 午夜老司机福利剧场| videos熟女内射| 日本免费在线观看一区| 777米奇影视久久| 黄色视频在线播放观看不卡| 国产淫语在线视频| 精品国产乱码久久久久久小说| 日本av手机在线免费观看| 国产精品伦人一区二区| 黄色一级大片看看| 男的添女的下面高潮视频| 麻豆国产97在线/欧美| 最近2019中文字幕mv第一页| 日韩成人伦理影院| 国产毛片a区久久久久| 大码成人一级视频| 亚洲国产精品成人久久小说| 日日啪夜夜撸| 欧美国产精品一级二级三级 | 欧美激情久久久久久爽电影| 国产男女内射视频| 国产老妇伦熟女老妇高清| 久久久a久久爽久久v久久| 国产男女超爽视频在线观看| 三级经典国产精品| 亚洲最大成人中文| 白带黄色成豆腐渣| 亚洲第一区二区三区不卡| 神马国产精品三级电影在线观看| 精品久久久久久久久亚洲| 成人漫画全彩无遮挡| 国产免费一区二区三区四区乱码| 国模一区二区三区四区视频| 午夜激情福利司机影院| 又爽又黄a免费视频| 真实男女啪啪啪动态图| 久久这里有精品视频免费| av线在线观看网站| 欧美高清性xxxxhd video| 特级一级黄色大片| 免费播放大片免费观看视频在线观看| 一级毛片我不卡| 黄色欧美视频在线观看| 激情 狠狠 欧美| 亚洲精品日本国产第一区| 联通29元200g的流量卡| 久久久久久久久久人人人人人人| 麻豆久久精品国产亚洲av| eeuss影院久久| 免费观看的影片在线观看| 欧美潮喷喷水| 久久久午夜欧美精品| 久久人人爽av亚洲精品天堂 | 干丝袜人妻中文字幕| 搞女人的毛片| 亚洲欧美精品自产自拍| 听说在线观看完整版免费高清| 美女高潮的动态| av天堂中文字幕网| 国产av不卡久久| 久久久久性生活片| 不卡视频在线观看欧美| 日韩大片免费观看网站| 亚洲不卡免费看| 两个人的视频大全免费| 亚洲欧洲日产国产| 天堂网av新在线| 国内揄拍国产精品人妻在线| 性色avwww在线观看| 久久这里有精品视频免费| www.色视频.com| 美女cb高潮喷水在线观看| 黄色日韩在线| 3wmmmm亚洲av在线观看| 国产欧美另类精品又又久久亚洲欧美| 精品亚洲乱码少妇综合久久| 欧美区成人在线视频| 国产成人精品婷婷| av在线app专区| 国产精品久久久久久久电影| 在线观看免费高清a一片| 国产欧美日韩精品一区二区| 大码成人一级视频| 女人被狂操c到高潮| 国产精品99久久久久久久久| 国产一区亚洲一区在线观看| 男插女下体视频免费在线播放| 成年版毛片免费区| 国产亚洲91精品色在线| 观看免费一级毛片| 日韩欧美精品v在线| 亚洲色图综合在线观看| 国产免费又黄又爽又色| 免费看a级黄色片| 深爱激情五月婷婷| 中文字幕免费在线视频6| 国产精品福利在线免费观看| 一区二区三区乱码不卡18| 日韩欧美一区视频在线观看 | 内地一区二区视频在线| 日产精品乱码卡一卡2卡三| 色播亚洲综合网| 黄色欧美视频在线观看| 日本色播在线视频| 激情 狠狠 欧美| 看黄色毛片网站| 自拍偷自拍亚洲精品老妇| 亚洲高清免费不卡视频| 赤兔流量卡办理| 精华霜和精华液先用哪个| 国产精品久久久久久精品古装| 国产老妇女一区| 精品久久国产蜜桃| 欧美3d第一页| 精品国产露脸久久av麻豆| 国产国拍精品亚洲av在线观看| 在线免费十八禁| 伊人久久精品亚洲午夜| 国产成人免费观看mmmm| 国产精品一区www在线观看| 尾随美女入室| av免费在线看不卡| 高清在线视频一区二区三区| 国产女主播在线喷水免费视频网站| 美女xxoo啪啪120秒动态图| 日日啪夜夜爽| 午夜日本视频在线| a级毛片免费高清观看在线播放| 中文字幕久久专区| 国产午夜精品久久久久久一区二区三区| 午夜老司机福利剧场| 日韩一区二区视频免费看| 自拍欧美九色日韩亚洲蝌蚪91 | 高清午夜精品一区二区三区| 一级a做视频免费观看| 国产精品伦人一区二区| 成人毛片60女人毛片免费| 有码 亚洲区| 九九爱精品视频在线观看| 午夜福利在线观看免费完整高清在| 爱豆传媒免费全集在线观看| 熟女人妻精品中文字幕| 日韩av在线免费看完整版不卡| 最近中文字幕高清免费大全6| 国产成人a区在线观看| 久久99蜜桃精品久久| 青春草国产在线视频| 天堂中文最新版在线下载 | 王馨瑶露胸无遮挡在线观看| 夜夜爽夜夜爽视频| 日本黄大片高清| 男人和女人高潮做爰伦理| 国产毛片a区久久久久| 亚洲一级一片aⅴ在线观看| 精品一区二区三区视频在线| 精品人妻偷拍中文字幕| 国语对白做爰xxxⅹ性视频网站| 久久久精品免费免费高清| 精品国产三级普通话版| 99久久人妻综合| 国产精品成人在线| 免费观看的影片在线观看| 岛国毛片在线播放| 久久午夜福利片| 亚洲人成网站在线观看播放| 亚洲美女视频黄频| 国产黄色视频一区二区在线观看| 免费高清在线观看视频在线观看| 国产亚洲精品久久久com| 中国美白少妇内射xxxbb| 成人国产av品久久久| 国产一区亚洲一区在线观看| 成人鲁丝片一二三区免费| 国产有黄有色有爽视频| 久久综合国产亚洲精品| 又黄又爽又刺激的免费视频.| 欧美区成人在线视频| av国产精品久久久久影院| 国产色婷婷99| 亚洲国产av新网站| 男人爽女人下面视频在线观看| 成年版毛片免费区| 青青草视频在线视频观看| tube8黄色片| 欧美亚洲 丝袜 人妻 在线| 久久久午夜欧美精品| 国产精品熟女久久久久浪| 大香蕉久久网| 男女边吃奶边做爰视频| 亚洲无线观看免费| 我的女老师完整版在线观看| 超碰97精品在线观看| 精品久久久久久久久亚洲| 久久久久国产精品人妻一区二区| 尤物成人国产欧美一区二区三区| 国产午夜精品久久久久久一区二区三区| 亚洲最大成人手机在线| 日韩国内少妇激情av| 国产av国产精品国产| 成人午夜精彩视频在线观看| av免费在线看不卡| 建设人人有责人人尽责人人享有的 | 日本欧美国产在线视频| 网址你懂的国产日韩在线| 久久人人爽av亚洲精品天堂 | 欧美成人a在线观看| 男人添女人高潮全过程视频| 18禁裸乳无遮挡动漫免费视频 | 亚洲av.av天堂| 久久精品久久久久久久性| 国产精品久久久久久av不卡| 久久久久久久久久成人| 国产男女内射视频| 丝袜喷水一区| 亚洲欧美成人综合另类久久久| 国产高清三级在线| 日韩精品有码人妻一区| 成人鲁丝片一二三区免费| 国产午夜福利久久久久久| 精品人妻熟女av久视频| 你懂的网址亚洲精品在线观看| 免费观看性生交大片5| 人人妻人人看人人澡| av免费在线看不卡| 久久这里有精品视频免费| 日韩大片免费观看网站| 国产高清三级在线| 男女国产视频网站| 夜夜爽夜夜爽视频| 日日撸夜夜添| 日韩一区二区三区影片| 最新中文字幕久久久久| 日本黄色片子视频| 久久热精品热| 精品人妻熟女av久视频| 免费观看在线日韩| 亚洲精品国产av成人精品| 国产成人精品福利久久| 色吧在线观看| kizo精华| 国产高清国产精品国产三级 | 亚洲欧美成人精品一区二区| 激情五月婷婷亚洲| 国产亚洲av嫩草精品影院| 日韩人妻高清精品专区| 春色校园在线视频观看| 亚洲成人av在线免费| 熟女人妻精品中文字幕| 国产高潮美女av| 在现免费观看毛片| 夫妻性生交免费视频一级片| 国产精品99久久99久久久不卡 | 精品一区在线观看国产| 欧美人与善性xxx| 亚洲精品国产成人久久av| 午夜免费观看性视频| 大码成人一级视频| 熟女av电影| 国产男女内射视频| 亚洲丝袜综合中文字幕| 久久6这里有精品| 日本熟妇午夜| 观看美女的网站| 国产又色又爽无遮挡免| 女人十人毛片免费观看3o分钟| 高清视频免费观看一区二区| 国产视频首页在线观看| 男人添女人高潮全过程视频| 视频中文字幕在线观看| 国产精品不卡视频一区二区| 青春草亚洲视频在线观看| av福利片在线观看| 男男h啪啪无遮挡| 亚洲国产精品999| 国产精品三级大全| 少妇高潮的动态图| 国产综合精华液| 久久久久久久久久成人| 日韩三级伦理在线观看| 亚洲性久久影院| 欧美日韩视频高清一区二区三区二| 91狼人影院| 一本久久精品| 人体艺术视频欧美日本| 免费观看无遮挡的男女| 欧美一级a爱片免费观看看| 午夜免费鲁丝| 国产成人一区二区在线| 午夜亚洲福利在线播放| 欧美人与善性xxx| 99久久精品国产国产毛片| 欧美日韩综合久久久久久| 在线观看免费高清a一片| 欧美变态另类bdsm刘玥| 一二三四中文在线观看免费高清| 成人亚洲精品一区在线观看 | 少妇人妻 视频| 欧美丝袜亚洲另类| 26uuu在线亚洲综合色| 免费看日本二区| 黄片无遮挡物在线观看| 亚洲av成人精品一区久久| 18禁裸乳无遮挡动漫免费视频 | av天堂中文字幕网| 少妇 在线观看| 国产极品天堂在线| 热re99久久精品国产66热6| 欧美三级亚洲精品| 热re99久久精品国产66热6| 2021天堂中文幕一二区在线观| 免费看av在线观看网站| 久久久亚洲精品成人影院| 亚洲成人久久爱视频| 午夜福利在线观看免费完整高清在| 在现免费观看毛片| 人妻夜夜爽99麻豆av| 一边亲一边摸免费视频| 欧美高清成人免费视频www| 国产高清国产精品国产三级 | 亚洲av一区综合| 国产亚洲一区二区精品| 精品国产乱码久久久久久小说| 高清毛片免费看| av免费观看日本| 欧美一级a爱片免费观看看| 精品久久久久久久久av| 久久久欧美国产精品| 亚洲精品影视一区二区三区av| 久久女婷五月综合色啪小说 | 直男gayav资源| 美女主播在线视频| 成人午夜精彩视频在线观看| 肉色欧美久久久久久久蜜桃 | 在线a可以看的网站| 免费观看无遮挡的男女| 成人亚洲欧美一区二区av| 一个人观看的视频www高清免费观看| 亚洲经典国产精华液单| 成人无遮挡网站| 全区人妻精品视频| 女人被狂操c到高潮| 26uuu在线亚洲综合色| 亚洲av在线观看美女高潮| 一级二级三级毛片免费看| 99re6热这里在线精品视频| 91在线精品国自产拍蜜月| av.在线天堂| 欧美xxxx性猛交bbbb| 麻豆久久精品国产亚洲av| 日本一二三区视频观看| 黄片wwwwww| 欧美成人精品欧美一级黄| 国产精品一区二区性色av| 在线亚洲精品国产二区图片欧美 | 精品99又大又爽又粗少妇毛片| 久久久久久久午夜电影| 青春草视频在线免费观看| 一边亲一边摸免费视频| 伊人久久国产一区二区| 黄色怎么调成土黄色| 国产成人一区二区在线| 69人妻影院| 女人久久www免费人成看片| 最近的中文字幕免费完整| 免费看a级黄色片| 中文字幕制服av| 一级a做视频免费观看| av在线亚洲专区| 色播亚洲综合网| 日本与韩国留学比较| 别揉我奶头 嗯啊视频| 日日撸夜夜添|