• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Influence of Rashba spin–orbit coupling on Josephson effect in triplet superconductor/two-dimensional semiconductor/triplet superconductor junctions

    2022-08-01 05:59:18BinHaoDu杜彬豪ManNiChen陳嫚妮andLiangBinHu胡梁賓
    Chinese Physics B 2022年7期

    Bin-Hao Du(杜彬豪), Man-Ni Chen(陳嫚妮), and Liang-Bin Hu(胡梁賓)

    Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials,School of Physics and Telecommunication Engineering,South China Normal University,Guangzhou 510631,China

    Keywords: Josephson effect,Rashba spin–orbit coupling,triplet superconductor,0-π transitions

    1. Introduction

    In recent years, the study of various effects related to spin–orbit interaction (SOI) of conducting electrons in solidstate materials and their hybrid structures has been an active research field in condensed matter physics. Such studies are not only of fundamental interest but also of practical importance because they may provide some potential routes for spinbased electronics(spintronics)and quantum computation.[1,2]And in this context, strong SOI intrinsic in some narrow-gap semiconductors or topological insulators and various effects related to them have attracted considerable interest.The strong SOI intrinsic in such materials may originate from bulk inversion asymmetry[3]or structural inversion asymmetry due to confining potentials[4]and can be externally controlled by the application of electric field, gate voltage, or mechanical strain,etc., for instance.[5–7]Such tunability has a great potential for the application to spintronic devices and quantum information processing. A variety of interesting phenomena were predicted based on such strong SOI,to name a few,spin Hall effect[8–11]and quantum spin Hall effect,[12,13]topological insulators,[14]topological superconductivity,[15]etc.

    An interesting subject within these studies is that what influences strong SOI may have on Josephson supercurrent when two superconductors having a phase differenceφis connected by a semiconductor channel with strong SOI.This issue has been investigated recently for a variety of junctions containing various semiconductor nanostructures with strong SOI,such as quantum dots,[16–19]carbon nanotubes,[20,21]semiconductor nanowires,[22–25]2D electron gas,[26]and others.[27]The possibility to control various parameters of the nanostructures allows one to explore different influences of strong SOI on Josephson effect in such devices. It was predicted that Josephson supercurrents through such nanostructures may exhibit a number of novel features. For instance, in some nanostructures the coexistence of strong SOI and Zeeman effect can induce a supercurrent atφ=0,the so-called anomalous Josephson current.[25–32]From a generic point of view,such novel features arise from the specific spin structure on the Fermi surfaces due to the spin–orbit coupling,which plays an important role in connection with Josephson effect.

    In this work we investigate theoretically Josephson effect in planar ballistic junctions consisting of two triplet superconductors (TSCs) withp-wave orbital symmetries and connected by a 2D semiconductor channel with strong Rashba SOI. While there has been a growing interest in understanding coherent transport phenomena in Josephson junctions with strong SOI, most of previous studies were focused on hybrid heterostructures involving conventional superconductors with spin-singlet pairing ands-wave orbital symmetry. From theoretical points of view, since the pairing potentials are momentum-dependent and change sign on the Fermi surface and the Cooper pairs take the forms of spin-triplet pairing in TSCs, different behaviors would be anticipated compared to the singlet cases.[33,34]For example, due to the intimate relationship between spin-triplet pairing and ferromagnetism,one would anticipate that the effect of strong Rashba SOI, which behaves as a momentum-dependent effective magnetic field,may have sensitive dependence on the orientation of Rashba effective field relative to the TSC vector order parameter, a key parameter of such systems.[35]Moreover,in such systems zero-energy bound states may form at interfaces in a junction,which may also affect significantly the transport properties of a junction.[36]In view of these facts, a deeper understanding of the effect of strong SOI and its interplay with Zeeman magnetic field upon Josephson supercurrents in such systems is desirable. In the current study, we focus on the coherent transport in connection with Josephson supercurrents in planar ballistic junctions consisting of two triplet superconductor leads withp-wave orbital symmetries and connected by a 2D semiconductor channel with strong Rashba SOI.Using the Bogoliubov–de Gennes(BdG)formalism,we investigate systematically the effect of strong Rashba SOI and its interplay with Zeeman effect upon coherent transport in connection with Josephson supercurrents in such junctions.

    The paper is organized as follows. In Section 2 we illustrate the theoretical model and the solution of the scattering problem used for the calculations of Josephson supercurrents.In Section 3 we present the numerical results for Josephson supercurrents and current-phase relations obtained by use of the formalism illustrated in Section 2. The features of the variations of supercurrents and current-phase relations with the changes of relevant physical parameters are investigated in some detail. A summary is given in Section 4.

    2. Model and formulation

    The system under current study is a planar ballistic junction consisting of two identicalp-wave superconductors connected by a 2D semiconductor channel with strong Rashba SOI.The junction is grown along thezdirection and lies in they–zplane. The two interfaces between the two superconductor leads and the semiconductor channel are located atz=0 andz=L, respectively, and extend along theydirection. An out-of-plane Zeeman magnetic field is applied along thexdirection in the semiconductor channel. The BdG equation for quasiparticle(QP)states in the system is given by

    wherek=(ky,kz)is the 2D wave vector,σ0is the 2×2 identity matrix,andσ=(σx,σy,σz)the Pauli matrices,Θ(z)is the step function,αRis the strength of Rashba SOI in the semiconductor channel,Vx=gμBBis the Zeeman energy, withBthe magnitude of the Zeeman field andgthe Lande factor andμBthe Bohr magneton. For simplicity, we assume equal effective massmand chemical potentialμin all regions of the junction.

    wheredL,Rdenote thedvectors in the left (L) and right (R)superconductor leads andΔL,R(k) the superconducting order parameters, respectively. In particular, we assume that thedvectorsdL,Rlie in thex–yplane and their orientations are defined two anglesaLandaR, respectively, whereaL,Ris the angle between thexaxis anddL,R. The explicit forms ofdL,Rare then given by

    The Josephson supercurrent is related to a difference in the overall phases of the superconducting order parameters in the left and right leads of the junction. We assume that the two superconductor leads differ only in a overall phase of the order parameter,with

    in whichΔ(k)denotes the orbital pairing states andφthe overall phase difference of the superconducting order parameters.We will consider three types of orbital-pairing states,with

    We first solve the BdG equations separately in different regions of the junction to obtain the eigenfunctions of quasiparticles(QPs). For dc Josephson effect,only low-energy excitations (withμ ?E,|Δ(k)|) are involved. Under this assumption,the wave vectors can be regarded as approximately equal in magnitude for electron-like and hole-like QPs in the superconducting regions,i.e.,ke≈kh≈kF,the so-called Andreev approximation. For convenience, in the following we will use a superscript L (R) in the eigenfunctions to denotes QPs in the left lead(z <0)or in the right lead(z >L)of the junction and use a subscripts r (l) to denote right-going (leftgoing) QPs. Definingk ≡(kz,ky) = (kFcosθ,kFsinθ) and-^k ≡(-kz,ky),whereθis the angle of the wave vectorkof a QP relative to thezdirection, the eigenfunctions of rightgoing (left-going) QPs in the left lead (z <0) or in the right lead(z >L)of the junction can be given by

    The corresponding eigenfunctions of right-moving (leftmoving) electrons (holes) in the semiconductor channel between the two superconductor leads will be denoted asψe(h),r(l),γ, in which the subscriptsγ(=+ or-) denote the spin helicity. Since the system is translational invariant along theydirection, theycomponent of the wave vector is conserved when a QP is transmitted through the interfaces between the superconductor leads and the semiconductor channel. For electrons(holes)with energyEand theycomponentkyof the wave vector,the eigenfunctions of right-moving(leftmoving) electrons (holes) in the semiconductor channel can then be expressed as

    whereCe,r(l),γis the normalization factor,s= + for rightmoving ands=- for left-moving electrons (holes),kz,e(h),γdenotes thezcomponent of the wave vector of an electron(hole) with the spin helicityγ, andu↑,u↓,v↑,v↓are defined by

    Note that the wave vectorske(h),γdepend on both the Rashba SOI strength and the Zeeman energy in the semiconductor channel. This has significant influence on the propagation of electrons and holes in the semiconductor channel. For example, if the Zeeman energyVx >μandαR=0, the wave vectorske(h),-of minority-spin QPs will be imaginary, implying that their propagations will be exponentially suppressed in the semiconductor channel.

    Now we consider the scattering problem of QPs through the junction. By use of the eigenfunctions(9)–(12)and(18)–(19),the following wavefunction ansatz can be constructed for a spin-σelectron-like QP injected from the left lead of the junction:

    where

    where the energy argument is analytically continued to Matsubara frequencies[E →iωn=i(2n+1)π/β]andβ=1/kBT.

    3. Results and discussion

    In this section we present the numerical results obtained by using the formalism outlined above. For convenience, in the numerical calculations we re-scale the strength of Rashba SOI to a dimensionless parameterα ≡2mαR/ˉh2kF, and the superconducting pairing potentialΔ0and the Zeeman energyVxare both measured in units of the chemical potentialμ. The temperatureTis measured in units of the critical temperatureTcand the lengthLof the semiconductor channel between two superconductor leads is measured in units of 1/kF. The supercurrent is measured in units ofeΔ0/ˉh.

    For clarity, we first investigate the effect of Rashba SOI in the absence of Zeeman effect. We calculate numerically the supercurrent as a function of the phase differenceφof the superconducting order parameters for several different values of the Rashba SOI strengthαand the Zeeman energyVx=0.The corresponding results forpy-wave pairing,pz-wave pairing,and(pz+ipy)-wave pairing are plotted in Figs.1(a)–1(c),respectively.From Figs.1(a)–1(c)one can see that,in the presence of Rashba SOI,the current-phase relations are still nearly in the ordinary form of a sinusoidal function for the three types of orbital symmetries, as in the absence of Rashba SOI. But the magnitude of supercurrent can be changed significantly in the presence of Rashba SOI and can be tuned effectively by varying the strength of Rashba SOI.More interestingly, from Figs. 1(a)–1(c) one can see that the so-called 0–πtransitions can be driven by varying the strength of Rashba SOI,i.e., as the strength of Rashba SOI is varied, the direction of supercurrent is reversed at some critical values of the Rashba SOI strength and the current-phase relation changes from the form ofI(φ)∝sinφ(0-state)to the form ofI(φ)∝sin(φ+π)(πstate),orvice versa.Such transitions can be more clearly illustrated by analyzing the sign changes of the supercurrentI(φ)at a fixed phase differenceφwith the variation of the Rashba SOI strengthα. In Figs.2(a)–2(c)we plotI(φ)atφ=π/2 as a function of the Rashba SOI strengthαforpy-wave andpzwave and(pz+ipy)-wave pairing,respectively. Figures 2(a)–2(c)show that the magnitudes of the supercurrents atφ=π/2(the critical supercurrents)oscillate in an approximately periodic way with the variation of the Rashba SOI strengthα,but the amplitudes of the oscillation decrease gradually with the increase ofα. Accompanying with the oscillation of the magnitude of supercurrent,the direction of supercurrent is reversed for several times at some critical values of the parameterα,resulting in a sequence of 0–πtransitions. In Fig. 2(a)–2(c),the sequence of alternating 0 andπstates is separated by a sequence of critical points of the parameterαat which the supercurrent changes sign,beginning with a 0-state atα=0 for all the three types of pairing symmetries. Since the strength of Rashba SOI can be tuned by electrical means, this result suggests that it is possible to realize 0–πtransitions by electrical means. We also note that as the Rashba SOI strength is varied,the magnitude of the supercurrent remains vanishing atφ=0,i.e.,no anomalous Josephson supercurrent is exhibited,unlike the results found in somes-wave Josephson junctions with Rashba SOI.[25–32]

    From Fig. 2(a)–2(c) one can note that the features of the oscillations of the supercurrents with the variation of the Rashba SOI strength depend on the orbital symmetries of the pairing potentials in the superconducting leads. For example, for the cases ofpy-wave pairing, the amplitude of the oscillation of the supercurrent with the increase of the parameterαdecreases rapidly, while for the cases ofpz-wave and (pz+ipy)-wave pairing, the amplitude of the oscillation of the supercurrent with the increase of the parameterαdecreases more slowly. For the cases ofpy-wave pairing shown in Fig. 2(a), the oscillation of the supercurrent is substantial only in the range ofα <1. Outside this range,the oscillation of the supercurrent is much weak and the oscillation almost can not result in 0–πtransition as the value ofαis increased.In the range ofα >1.5,theπ-state is much robust to increasingαand no 0–πtransitions are observed. In contrast, for the cases ofpz-wave and (pz+ipy)-wave pairing shown in Figs. 2(b) and 2(c), the oscillations of the supercurrents with the variation of the parameterαare substantial and can lead to 0–πtransitions in a more wide range of the parameterα. For a given value of the parameterα,whether the ground state is a 0-state or aπ-state also depends on the orbital symmetries of the pairing potentials in the superconducting leads. For example,for the cases shown in Fig.2(a)–2(c),the ground state is a 0-state atα=0.5 forpy-wave pairing but is aπ-state forpz-wave and(pz+ipy)-wave pairing.

    Fig. 1. The supercurrent as a function of the phase difference φ of the superconducting order parameters for several different values of the Rashba SOI strength α. The corresponding results for py-wave and pz-wave and(pz+ipy)-wave pairings are plotted in panels(a),(b),and(c),respectively. The values of the parameter α are shown in the figures. The other parameters are Δ0/μ =0.001,Vx=0,T/Tc=0.4,kFL=20,aL=aR=0.

    Fig. 2. The supercurrent at the phase difference φ =π/2 as a function of the Rashba SOI strength α for (a) py-wave pairing, (b) pz-wave pairing, (c)(pz+ipy)-wave pairing,respectively. The parameters are Δ0/μ =0.001,Vx=0,T/Tc=0.4,kFL=20,aL=aR=0.

    From the theoretical point of view, for the system considered above,when a QP incident from one superconducting electrode is reflected at the junction interfaces or is transmitted to the other superconducting electrode through the semiconductor channel between them, since theycomponent of the wave vector is conserved but thezcomponent is not conserved,the strength of the pairing potential experienced by a QP does not change if the orbital symmetry of the pairing potential ispy-wave type but will be changed if the orbital symmetry ispz-wave or (pz+ipy)-wave type. The phase changes of the wave functions of reflected (or transmitted) QPs will also be different for different orbital symmetries. Due to such differences,the features of the oscillations of the supercurrents with the variation of the Rashba SOI strength depend on the orbital symmetries of the pairing potentials in the superconducting leads,and compared with the cases ofpy-wave pairing,the oscillations of the supercurrents with the variation of the Rashba SOI strength are more substantial in the cases ofpz-wave or(pz+ipy)-wave pairing, as shown in Fig. 2. And from this point of view,one may expect that thepz-wave or(pz+ipy)-wave type of junctions should be the optimal for observing such oscillations in experiments.

    The effects of Rashba SOI illustrated in Figs. 1 and 2 are similar to that of an external magnetic field. This is reasonable since Rashba SOI is equivalent to a momentumdependent Zeeman field in principle. To illustrate this point more clearly, in Figs. 3(a)–3(c) we plot the supercurrent as a function of the phase differenceφof the superconducting order parameters for several different values of the Zeeman energyVxand the Rashba SOI strengthα= 0 forpy-wave andpz-wave and(pz+ipy)-wave pairings,respectively,and in Figs. 4(a)–4(c) we plot the corresponding results for the supercurrent at the phase differenceφ=π/2 as a function of the Zeeman energyVx. From Figs. 3 and 4 one can see that, in the regimeVx/μ <1,the supercurrent exhibits significant oscillations with the increase of the Zeeman energyVx, similar to that as shown in Figs. 1 and 2. In the regimeVx/μ >1,the supercurrent is suppressed significantly. This suppression is due to the fact that the wave vectorke(h),-of minority-spin QPs become imaginary whenVx/μ >1(as can be seen from Eq.(25))and their propagations in the semiconductor channel between the two superconductor leads is exponentially suppressed and hence do not contribute to the supercurrent. In the regimeVx/μ <1,the magnitude of the supercurrent decreases in an oscillatory manner with the increase of the Zeeman energyVx,and accompanying with the oscillation of the magnitude of the supercurrent, the direction of the supercurrent is also reversed for several times,i.e., the oscillation of the supercurrent with the increase of the Zeeman energy also leads to a sequence of 0–πtransitions. In Fig.4(a)–4(c),such transitions are indicated by the sign changes of the supercurrent at some critical values ofVx,which separate a sequence of alternating 0 andπstates,beginning with a 0-state atVx=0 for all the three types of pairing symmetry.

    Fig.3. The supercurrent as a function of the phase difference φ of the superconducting order parameters for several different values of the Zeeman energy Vx.The corresponding results for py-wave pairing, pz-wave pairing,and(pz+ipy)-wave pairing are plotted in panels(a),(b),and(c),respectively. The values of Vx (in units of μ)are shown in the figures. The other parameters are Δ/μ =0.001,α =0,T/Tc=0.4,kFL=20,aL=aR=0.

    Fig.4. The supercurrent at the phase difference φ =π/2 as a function of the Zeeman energy Vx for(a) py-wave pairing,(b) pz-wave pairing,(c)(pz+ipy)-wave pairing,respectively. The parameters are Δ0/μ =0.001,α =0,T/Tc=0.4,kFL=20,aL=aR=0.

    If both Rashba SOI and Zeeman magnetic field are present, the supercurrent and current-phase relation will depend both on Rashba SOI and Zeeman magnetic field. In such cases, some features of the supercurrents and current-phase relations illustrated above may be altered significantly if the interplay of Rashba SOI and Zeeman magnetic field is strong.As an example, in Figs.5(a)–5(c)we plot the supercurrent at the phase differenceφ=π/2 as a function of the Zeeman energyVxfor several different values of the Rashba SOI strengthα. From Figs. 5(a)–5(c) one can see that, in the presence of the interplay of Rashba SOI and Zeeman effect,the 0–πtransitions can still be driven by varying the strength of Zeeman magnetic field or varying the strength of Rashba SOI,but the basic patterns of the variations of the supercurrents with the relevant parameters may be altered significantly due to their interplay. For instance, for the cases withα=0.1 in Fig. 5,the variations of the supercurrent with the Zeeman energyVxare similar to that as shown in Fig. 4. But as the value ofαis increased,e.g., for the cases withα=1, the onset of the oscillation of the supercurrent will require a largerVxand the oscillation will become smoother and smoother. As the value ofαis increased further, the oscillation of the supercurrent may eventually be smeared out(e.g.,for the cases withα=2 in Fig.5).Another interesting result of the interplay of Rashba SOI and Zeeman effect is that,if the value ofαis sufficiently large,the supercurrent will not be suppressed completely even whenVx/μ >1. Such features are different from that illustrated in Fig. 4. From the theoretical point of view, Rashba SOI not only modify the spin structure on the Fermi surfaces and change the Fermi momenta which affect the Josephson supercurrent but also cause precession of the spins of QPs,which tends to wash out the spin polarization of QPs due to Zeeman effect. In strong spin–orbit coupling regime, the Andreev reflection may be influenced significantly by the wash-out of the spin polarization of QPs and hence the suppression of Josephson supercurrent due to Zeeman effect may be weakened even whenVx/μ >1. This is similar to the result obtained in a recent study,[35]where the interplay of Rashba spin–orbit coupling and Zeeman effect on the tunneling conductance of a 2D Rashba metal/superconductor junction is investigated. It was found that, when the Zeeman energy is larger than the Fermi energy,the zero-bias conductance is suppressed in weak spin–orbit coupling regime but may revive in strong spin–orbit coupling regime.[35]

    In all cases considered above we have assumed that the directions of thedvectors in two superconducting leads of a junction are parallel to each other and bothdLanddRare along thexaxis,with the anglesaL=aR=0. From the theoretical point of view,the relative orientations of thedvectors in different superconducting leads of a junction may also have significant influence on coherent transport of QPs in connection with Josephson supercurrent. To illustrate this point, we keep the direction ofdLalong thexaxis and rotatedRin thex–yplane,i.e., keeping the angleaL=0 and varying the values of the angleaR. In Fig. 6 we plot the supercurrent as a function of the phase differenceφof the superconducting order parameters foraR=0,π/2,andπ,respectively. The other parameters areΔ/μs=0.001,α=0.1,Vx=0.1,T/Tc=0.4,kFL=20. For the parameters chosen, the ground state of the junction is a 0-state foraR=0 (the directions ofdLanddRare parallel to each other) and is aπ-state foraR=π( the directions ofdLanddRare antiparallel to each other)for all the three types of orbital symmetries considered. ForaR=0 andaR=π, the periodicity of the current-phase relationship is 2π. ForaR=π/2,the periodicity of the current-phase relationship isπbut not 2π,indicating that the sinφcomponent of the Josephson supercurrent is suppressed and the sin2φcomponent is enhanced when the directions of thedvectors in two superconducting leads are perpendicular to each other. Such differences indicate clearly that inp-wave Josephson junctions the relative orientations of thedvectors in different superconducting leads may have significant influence on Josephson supercurrent, and both the magnitude of supercurrent and the current-phase relation may be manipulated effectively by tuning the relative orientations of thedvectors in different superconducting leads. Such features are significantly different from that found in conventionals-wave Josephson junctions.

    Fig.5. The supercurrent at the phase difference φ =π/2 as a function of the Zeeman energy Vx for several different values of the Rashba SOI strength α.The corresponding results for py-wave pairing, pz-wave pairing,and(pz+ipy)-wave pairing are plotted in panels(a),(b),and(c),respectively. The values of the Rashba SOI strength α are shown in the figures. The other parameters are Δ/μs=0.001,T/Tc=0.4,kFL=20,aL=aR=0.

    Fig. 6. The supercurrent as a function of the phase difference φ of the superconducting order parameters for several different values of the angle aR. The corresponding results for py-wave pairing, pz-wave pairing,and(pz+ipy)-wave pairing are plotted in panels(a),(b),and(c),respectively. The values of the angle aR are shown in the figures. The other parameters are Δ/μs=0.001,α =0.1,Vx=0.1,T/Tc=0.4,kFL=20,aL=0.

    4. Conclusion

    In summary, we have theoretically studied the influence of Rashba SOI on Josephson effect in junctions consisting of two spin-tripletp-wave superconductors connected by a 2D semiconductor channel with strong Rashba SOI. The variations of the supercurrent and current-phase relation with the relevant physical parameters are investigated in some detail. It is found that the magnitude of the supercurrent exhibits signifciant oscillations with the Rashba SOI strength,but the amplitude of the oscillation decreases gradually with the increase of the Rashba SOI strength. Accompanying with the oscillations of the magnitude of the supercurrent, 0–πtransitions may also be driven by varying the Rashba SOI strength. It is also shown that if both Rashba SOI and Zeeman magnetic feild are present,the signifciant oscillation of the supercurrent with the Rashba SOI strength or with the magnetic feild strength may be suppressed substantially or may even be smeared out by their interplay. Furthermore, it is shown that the relative orientations of thedvectors in two superconducting leads of a junction may also play an important role in the supercurrent and the current-phase relationship, and 0–πtransitions can also be realized by changing the relative orientations of thedvectors in two superconducting leads.

    久久久久久国产a免费观看| 黄片wwwwww| 午夜视频国产福利| 亚洲图色成人| 99久久精品一区二区三区| 国产久久久一区二区三区| 亚洲久久久久久中文字幕| 亚洲av免费在线观看| 黄色日韩在线| 欧美最新免费一区二区三区| 少妇高潮的动态图| 国产伦一二天堂av在线观看| 国产熟女欧美一区二区| 婷婷色综合大香蕉| 我要搜黄色片| 老司机午夜福利在线观看视频| 中文字幕av在线有码专区| 寂寞人妻少妇视频99o| 搡女人真爽免费视频火全软件 | 精品久久久久久成人av| 国产探花极品一区二区| 中文字幕精品亚洲无线码一区| 日日干狠狠操夜夜爽| 久久久久性生活片| 啦啦啦韩国在线观看视频| 人妻制服诱惑在线中文字幕| 最好的美女福利视频网| 中文字幕熟女人妻在线| 久99久视频精品免费| 久久精品国产鲁丝片午夜精品| 欧美日本视频| 成人特级黄色片久久久久久久| 免费看a级黄色片| 国产高清视频在线观看网站| 性色avwww在线观看| 免费观看人在逋| 99热全是精品| 国产伦精品一区二区三区四那| 精品熟女少妇av免费看| 免费电影在线观看免费观看| 免费搜索国产男女视频| 如何舔出高潮| 国产成人freesex在线 | 男插女下体视频免费在线播放| 内地一区二区视频在线| 中文资源天堂在线| 男女啪啪激烈高潮av片| 免费高清视频大片| 午夜免费激情av| 欧美3d第一页| 国产成人aa在线观看| 久久精品国产99精品国产亚洲性色| 国产在线男女| 国产av在哪里看| 天堂动漫精品| 熟女人妻精品中文字幕| 丝袜喷水一区| 国产精品久久久久久久电影| 亚洲国产欧洲综合997久久,| 毛片女人毛片| 欧美最黄视频在线播放免费| 日本黄大片高清| 日本五十路高清| a级毛片a级免费在线| 99久国产av精品国产电影| 内地一区二区视频在线| 国产精品亚洲美女久久久| 蜜臀久久99精品久久宅男| 亚洲熟妇熟女久久| 一本一本综合久久| 99久久成人亚洲精品观看| 国产在线男女| 亚洲欧美日韩无卡精品| 久久久精品欧美日韩精品| 久久国内精品自在自线图片| 免费黄网站久久成人精品| 内射极品少妇av片p| 日韩欧美精品v在线| a级毛片免费高清观看在线播放| 男女视频在线观看网站免费| 国产精品久久久久久久久免| 尾随美女入室| 日本与韩国留学比较| 国产伦精品一区二区三区视频9| 嫩草影院精品99| 秋霞在线观看毛片| 中文字幕av在线有码专区| 全区人妻精品视频| 欧美精品国产亚洲| 99久久精品国产国产毛片| 久久久久精品国产欧美久久久| 日韩精品中文字幕看吧| 色吧在线观看| 六月丁香七月| 久久久久久久久久久丰满| 天天一区二区日本电影三级| 国产伦精品一区二区三区视频9| 校园人妻丝袜中文字幕| 国产v大片淫在线免费观看| 99热这里只有是精品50| 在线观看免费视频日本深夜| 欧美精品国产亚洲| 久99久视频精品免费| 亚洲三级黄色毛片| av.在线天堂| 日韩制服骚丝袜av| 一级毛片我不卡| 高清毛片免费看| 欧美+日韩+精品| 亚洲美女黄片视频| 亚洲av成人av| 国产真实乱freesex| 精品久久久久久久人妻蜜臀av| 国产高清视频在线播放一区| 国产一区二区激情短视频| 三级毛片av免费| 青春草视频在线免费观看| 免费观看在线日韩| 哪里可以看免费的av片| 熟女人妻精品中文字幕| 午夜免费男女啪啪视频观看 | 一边摸一边抽搐一进一小说| 国产高清三级在线| 我的老师免费观看完整版| 波多野结衣高清作品| 美女cb高潮喷水在线观看| 又爽又黄a免费视频| 亚洲中文字幕一区二区三区有码在线看| 久久久成人免费电影| 久久韩国三级中文字幕| 男女那种视频在线观看| 国产精品一区二区性色av| 免费电影在线观看免费观看| 51国产日韩欧美| 国产伦精品一区二区三区四那| 日本黄色视频三级网站网址| 精品久久久久久久久av| 免费在线观看成人毛片| 欧美激情国产日韩精品一区| 久久精品国产自在天天线| 欧美性猛交黑人性爽| 最新在线观看一区二区三区| 亚洲丝袜综合中文字幕| 国产精品久久久久久久电影| 丰满人妻一区二区三区视频av| 99九九线精品视频在线观看视频| 久久精品国产亚洲av天美| 精品福利观看| 欧美bdsm另类| 在现免费观看毛片| 精品久久久久久久人妻蜜臀av| 日本五十路高清| 免费看美女性在线毛片视频| 99久国产av精品| 三级男女做爰猛烈吃奶摸视频| 国产蜜桃级精品一区二区三区| 97热精品久久久久久| 大又大粗又爽又黄少妇毛片口| 亚洲第一区二区三区不卡| 亚洲av成人av| 成人二区视频| 伊人久久精品亚洲午夜| 免费av毛片视频| 99在线视频只有这里精品首页| 国产探花在线观看一区二区| 免费在线观看影片大全网站| 97在线视频观看| 国产麻豆成人av免费视频| 国产精品99久久久久久久久| 久久亚洲精品不卡| 最近手机中文字幕大全| 欧美日本视频| 亚洲美女视频黄频| 精品人妻熟女av久视频| 国产精品99久久久久久久久| 国产成人91sexporn| 一本一本综合久久| 国产激情偷乱视频一区二区| 国产一区二区三区av在线 | 精品无人区乱码1区二区| 看黄色毛片网站| 欧美一区二区精品小视频在线| 97在线视频观看| 国产亚洲精品综合一区在线观看| 国产一区二区三区av在线 | 能在线免费观看的黄片| 天天一区二区日本电影三级| 精品国产三级普通话版| 三级毛片av免费| 日日摸夜夜添夜夜添av毛片| 精品国产三级普通话版| 国产真实乱freesex| 人人妻人人看人人澡| 此物有八面人人有两片| 精品久久久久久久末码| 欧美潮喷喷水| 久久精品国产亚洲av香蕉五月| 卡戴珊不雅视频在线播放| 亚洲av不卡在线观看| 成人特级黄色片久久久久久久| 亚洲内射少妇av| 国产单亲对白刺激| 免费无遮挡裸体视频| 久久久成人免费电影| 熟女人妻精品中文字幕| 人妻制服诱惑在线中文字幕| 麻豆国产97在线/欧美| 麻豆乱淫一区二区| 白带黄色成豆腐渣| 哪里可以看免费的av片| 性欧美人与动物交配| 亚洲成人av在线免费| 亚洲精品色激情综合| 国产成人aa在线观看| 白带黄色成豆腐渣| 精品久久国产蜜桃| 天堂影院成人在线观看| 成人三级黄色视频| 国产人妻一区二区三区在| 久久久久久久久久成人| 长腿黑丝高跟| 亚洲第一电影网av| 日韩人妻高清精品专区| 日韩高清综合在线| 亚洲av成人精品一区久久| 99久久久亚洲精品蜜臀av| 97超视频在线观看视频| 国产日本99.免费观看| 免费看光身美女| 亚洲av成人av| 秋霞在线观看毛片| 国产精品久久久久久久电影| 欧美一区二区国产精品久久精品| 色尼玛亚洲综合影院| 日本-黄色视频高清免费观看| 国产成年人精品一区二区| 又爽又黄无遮挡网站| 亚洲经典国产精华液单| 午夜亚洲福利在线播放| 国产aⅴ精品一区二区三区波| 人人妻,人人澡人人爽秒播| 亚洲av第一区精品v没综合| 亚洲av电影不卡..在线观看| 日韩精品青青久久久久久| 欧美日韩乱码在线| 免费一级毛片在线播放高清视频| 日本色播在线视频| 国产精华一区二区三区| 婷婷亚洲欧美| 国产黄a三级三级三级人| 99久国产av精品| 你懂的网址亚洲精品在线观看 | 欧美区成人在线视频| 99九九线精品视频在线观看视频| 91精品国产九色| 国产免费一级a男人的天堂| 成人漫画全彩无遮挡| 又黄又爽又刺激的免费视频.| 午夜福利高清视频| 亚洲av第一区精品v没综合| 免费人成在线观看视频色| 无遮挡黄片免费观看| 麻豆国产av国片精品| 国产免费男女视频| 国产精品免费一区二区三区在线| 一进一出抽搐动态| 成人特级黄色片久久久久久久| 亚洲av第一区精品v没综合| 国产又黄又爽又无遮挡在线| 精华霜和精华液先用哪个| 俺也久久电影网| 国产av麻豆久久久久久久| 亚洲欧美成人综合另类久久久 | 乱人视频在线观看| 国产激情偷乱视频一区二区| 久久这里只有精品中国| 亚洲精品国产av成人精品 | 嫩草影院精品99| 观看免费一级毛片| 日本五十路高清| 久久久色成人| 婷婷亚洲欧美| 国国产精品蜜臀av免费| 成年av动漫网址| 1000部很黄的大片| 狠狠狠狠99中文字幕| 十八禁国产超污无遮挡网站| 搡女人真爽免费视频火全软件 | 国产精品野战在线观看| 精品乱码久久久久久99久播| 国产精品久久久久久久久免| 此物有八面人人有两片| 国产亚洲av嫩草精品影院| 国产高清三级在线| 国产精品av视频在线免费观看| 天天躁日日操中文字幕| 天天一区二区日本电影三级| 国国产精品蜜臀av免费| 又爽又黄a免费视频| 欧美又色又爽又黄视频| av在线天堂中文字幕| 国产探花在线观看一区二区| 99热网站在线观看| 中出人妻视频一区二区| 99久久久亚洲精品蜜臀av| 性色avwww在线观看| 国产精品不卡视频一区二区| 深夜精品福利| 又黄又爽又刺激的免费视频.| av天堂在线播放| 精品欧美国产一区二区三| 精品国内亚洲2022精品成人| 午夜a级毛片| 别揉我奶头~嗯~啊~动态视频| 欧美日本视频| 亚洲国产欧美人成| 国产大屁股一区二区在线视频| eeuss影院久久| 亚洲国产色片| 成人精品一区二区免费| 精品久久久久久久久av| 国产aⅴ精品一区二区三区波| 国产不卡一卡二| 熟女人妻精品中文字幕| 国产爱豆传媒在线观看| 男人的好看免费观看在线视频| 中国美白少妇内射xxxbb| 深夜精品福利| 日本三级黄在线观看| 国产 一区精品| 一本一本综合久久| 久久精品91蜜桃| 免费大片18禁| 国产亚洲精品综合一区在线观看| 日本 av在线| 老司机福利观看| 悠悠久久av| 亚洲av免费高清在线观看| av天堂中文字幕网| 成人无遮挡网站| 精品少妇黑人巨大在线播放 | 亚洲精品在线观看二区| 亚洲最大成人手机在线| 不卡视频在线观看欧美| 激情 狠狠 欧美| 国产大屁股一区二区在线视频| 日韩精品有码人妻一区| 欧美中文日本在线观看视频| 2021天堂中文幕一二区在线观| 成人无遮挡网站| 婷婷精品国产亚洲av| 国产精品爽爽va在线观看网站| 国内精品久久久久精免费| eeuss影院久久| 人妻少妇偷人精品九色| 22中文网久久字幕| 插阴视频在线观看视频| 亚洲经典国产精华液单| 深爱激情五月婷婷| 国产精品亚洲美女久久久| 免费不卡的大黄色大毛片视频在线观看 | 女人被狂操c到高潮| 日韩欧美 国产精品| 给我免费播放毛片高清在线观看| 两性午夜刺激爽爽歪歪视频在线观看| 黄色视频,在线免费观看| 久久人妻av系列| 香蕉av资源在线| 如何舔出高潮| 五月伊人婷婷丁香| 成年免费大片在线观看| 一区二区三区高清视频在线| 亚洲av免费高清在线观看| 欧美激情国产日韩精品一区| 黄片wwwwww| 久久午夜福利片| 免费看日本二区| 国产午夜精品论理片| 最好的美女福利视频网| 成人午夜高清在线视频| av专区在线播放| 少妇人妻一区二区三区视频| 日本a在线网址| 中文字幕久久专区| 国产精品福利在线免费观看| 卡戴珊不雅视频在线播放| 精品人妻一区二区三区麻豆 | 亚洲色图av天堂| 午夜影院日韩av| 一夜夜www| 日本在线视频免费播放| 欧美一区二区精品小视频在线| 午夜精品在线福利| 精品少妇黑人巨大在线播放 | 非洲黑人性xxxx精品又粗又长| 老熟妇乱子伦视频在线观看| 日韩欧美一区二区三区在线观看| 免费人成视频x8x8入口观看| 大又大粗又爽又黄少妇毛片口| 日本 av在线| 春色校园在线视频观看| 亚洲国产日韩欧美精品在线观看| 国产成人91sexporn| 国产人妻一区二区三区在| 精品不卡国产一区二区三区| 久久午夜亚洲精品久久| 久久精品国产亚洲av涩爱 | 免费人成视频x8x8入口观看| 国产视频一区二区在线看| 久久6这里有精品| 99久久九九国产精品国产免费| 美女xxoo啪啪120秒动态图| 一个人看视频在线观看www免费| 乱人视频在线观看| 欧美绝顶高潮抽搐喷水| 少妇裸体淫交视频免费看高清| 免费看光身美女| 久久综合国产亚洲精品| 老熟妇乱子伦视频在线观看| 亚洲av熟女| 亚洲av二区三区四区| av视频在线观看入口| av天堂中文字幕网| 亚洲精品久久国产高清桃花| 日韩欧美 国产精品| 美女cb高潮喷水在线观看| 精品一区二区三区视频在线观看免费| 六月丁香七月| 最近在线观看免费完整版| 亚洲四区av| 麻豆成人午夜福利视频| 91在线观看av| 亚洲成人久久性| 国产精品久久久久久av不卡| 亚洲第一电影网av| 一级黄色大片毛片| 哪里可以看免费的av片| 久久精品久久久久久噜噜老黄 | 国产一区二区在线观看日韩| 啦啦啦韩国在线观看视频| 国产免费一级a男人的天堂| 综合色av麻豆| 人妻久久中文字幕网| 亚洲无线观看免费| 精品一区二区免费观看| 可以在线观看的亚洲视频| 国产探花极品一区二区| 国产av不卡久久| 特大巨黑吊av在线直播| 三级毛片av免费| 国产熟女欧美一区二区| 狠狠狠狠99中文字幕| 大又大粗又爽又黄少妇毛片口| 国产精品久久久久久久电影| 99久久中文字幕三级久久日本| 亚洲欧美精品综合久久99| 亚洲成人中文字幕在线播放| 免费一级毛片在线播放高清视频| 国产精品一及| 亚洲欧美精品综合久久99| 日韩制服骚丝袜av| 久久精品国产鲁丝片午夜精品| 日韩精品有码人妻一区| 精品久久久久久成人av| 国产伦在线观看视频一区| 欧美一区二区亚洲| 亚洲人成网站在线播| 深夜精品福利| 淫妇啪啪啪对白视频| 国产精品一区二区三区四区久久| 啦啦啦观看免费观看视频高清| 国产一区亚洲一区在线观看| 国产探花在线观看一区二区| 日韩人妻高清精品专区| 韩国av在线不卡| 一区二区三区高清视频在线| 久久精品夜色国产| 日本五十路高清| 99热这里只有精品一区| 久久精品久久久久久噜噜老黄 | av在线观看视频网站免费| 一本一本综合久久| 欧美日韩在线观看h| 国产精品一二三区在线看| 成人国产麻豆网| 一级av片app| 日本黄大片高清| 一本一本综合久久| 欧美+亚洲+日韩+国产| 久99久视频精品免费| 国产精品一区二区性色av| 日韩 亚洲 欧美在线| 国产亚洲精品久久久久久毛片| 亚洲精品国产av成人精品 | 国产高清有码在线观看视频| av.在线天堂| 日本撒尿小便嘘嘘汇集6| av中文乱码字幕在线| 欧美成人免费av一区二区三区| 久久中文看片网| 级片在线观看| 91久久精品国产一区二区三区| 大香蕉久久网| 18禁在线无遮挡免费观看视频 | 日韩成人av中文字幕在线观看 | 国产探花极品一区二区| 69av精品久久久久久| 国产毛片a区久久久久| 亚洲欧美日韩高清专用| 日韩欧美 国产精品| 在线免费观看不下载黄p国产| 亚洲精品亚洲一区二区| 一卡2卡三卡四卡精品乱码亚洲| 99国产极品粉嫩在线观看| 日本在线视频免费播放| 精品午夜福利在线看| 国产激情偷乱视频一区二区| 欧美性猛交╳xxx乱大交人| 色5月婷婷丁香| 91在线精品国自产拍蜜月| 免费观看在线日韩| 免费看美女性在线毛片视频| 国产精品一区www在线观看| 色尼玛亚洲综合影院| 国产男靠女视频免费网站| 欧美日韩乱码在线| 国产综合懂色| 亚洲成人久久性| 美女内射精品一级片tv| 亚洲无线观看免费| 亚洲一级一片aⅴ在线观看| 成人二区视频| 天天躁夜夜躁狠狠久久av| 久久久色成人| 大型黄色视频在线免费观看| 亚洲婷婷狠狠爱综合网| 国产伦精品一区二区三区四那| 亚洲精品色激情综合| 搡老妇女老女人老熟妇| 99热全是精品| 成人av一区二区三区在线看| av卡一久久| 欧美+日韩+精品| 一个人免费在线观看电影| 久久人妻av系列| 少妇丰满av| 99久久精品国产国产毛片| 亚洲国产高清在线一区二区三| 欧美在线一区亚洲| 国产伦在线观看视频一区| 久久久久久伊人网av| 高清毛片免费看| 欧美日韩精品成人综合77777| 久久精品夜色国产| 久久久午夜欧美精品| 51国产日韩欧美| 亚洲欧美精品自产自拍| 久久久久国内视频| 国产精品一区二区三区四区免费观看 | 麻豆一二三区av精品| 五月玫瑰六月丁香| 国产久久久一区二区三区| 成人国产麻豆网| 波多野结衣巨乳人妻| 精品久久久久久久久av| 人妻制服诱惑在线中文字幕| 日本一二三区视频观看| 国产午夜精品久久久久久一区二区三区 | 极品教师在线视频| 高清日韩中文字幕在线| 尾随美女入室| 国产精品久久久久久av不卡| 麻豆久久精品国产亚洲av| 亚洲欧美精品综合久久99| 久久久久久久久大av| 久久久久免费精品人妻一区二区| 91久久精品国产一区二区三区| 精品少妇黑人巨大在线播放 | 国产在线精品亚洲第一网站| 91久久精品国产一区二区三区| 日韩,欧美,国产一区二区三区 | 黄色欧美视频在线观看| 激情 狠狠 欧美| 久久鲁丝午夜福利片| 亚洲七黄色美女视频| 久久精品人妻少妇| 熟女人妻精品中文字幕| 在线观看一区二区三区| 成人一区二区视频在线观看| 超碰av人人做人人爽久久| 两个人的视频大全免费| 精品欧美国产一区二区三| 91午夜精品亚洲一区二区三区| 中出人妻视频一区二区| 国产精品免费一区二区三区在线| 日韩在线高清观看一区二区三区| 国产精品一区二区三区四区久久| 国产成人一区二区在线| 成人无遮挡网站| 日日摸夜夜添夜夜添小说| 六月丁香七月| 22中文网久久字幕| 久99久视频精品免费| 少妇被粗大猛烈的视频| 亚洲成av人片在线播放无| 精品久久久久久久久av| 插逼视频在线观看| 色av中文字幕| 长腿黑丝高跟| 18禁在线播放成人免费| 特级一级黄色大片| 亚洲国产色片| 少妇被粗大猛烈的视频| 欧美一级a爱片免费观看看| 天天躁日日操中文字幕|