• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Impact of composition ratio on the structure and optical properties of(1-x)MnFe2O4/(x)ZnMn2O4 nanocomposite

    2022-08-01 05:59:18ZeinHeibaMohamedBakrMohamedAliAlkathiriSamehAhmedAlhazime
    Chinese Physics B 2022年7期

    Zein K.Heiba, Mohamed Bakr Mohamed,,?, Ali A.Alkathiri, Sameh I.Ahmed,A A Alhazime

    1Department of Physics,F(xiàn)aculty of Science,Ain shams University,Cairo 11566,Egypt

    2Physics Department,F(xiàn)aculty of Science,Taibah University,Al-Madina al Munawarah,Saudi Arabia

    3Depatment of Physics,College of Science,Taif University,P.O.Box 11099,Taif 21944,Saudi Arabia

    Keywords: MFO and ZMO composite,XPS,structure,optical

    1. Introduction

    Multi-functional nanocomposite materials represented a newly emerging research area for the progressive development of nanotechnology.[1–3]Ferrite materials have a small bandgap therefore they easily converted the visible light energy into chemical energy to support the oxidation and reduction process.[4]Manganese ferrite (MnFe2O4, MFO) is an efficient visible light-responsive nano-photocatalyst with a narrow bandgap of 2.0 eV±0.5 eV.[5]Zinc manganite (ZnMn2O4, ZMO) has a spinel structure and is receiving attention as a result of its probable uses in batteries and supercapacitor fields.[6,7]The optical characteristics of different materials can be altered by changing their size,doped it with suitable materials or coupling it with other compounds.[8,9]For instance, the optical band gap of pure MFO is reduced from 2.46 eV to 2.12 eV and 2.47 eV for the hybridization of MFO/CeO2/SnS2composites.[10]The optical bandgap of MFO was increased as it doped with Zn.[11]The novel microwave-based treatment with MoS2-MFO composite revealed a rapid Cr(VI)reduction in aqueous solution.[12]The recovered MFO/BiVO4heterojunction was very active and stable for tetracycline degradation in the longterm process.[13]MFO/g-C3N4/TiO2nanocomposites under solar light revealed a very high photocatalytic degradation of Methyl Orange dye because of synergistic influence.[14]The coupling of MFO with ZnS in MFO/ZnS nanocomposite enhanced the heating efficiency for magnetic hyperthermia application.[15]The optoelectronic performance of MFO was improved as it decorated with Co3O4nanorods.[16]Core double-shell MFO@rGO@TiO2superparamagnetic photocatalyst represented a promising material for the waste-water treatment procedure.[17]The relatively narrow bandgap of Feor Cr-doped ZMO together with the small dielectric properties nominated the produced materials to applied optoelectronic field.[18,19]In the present study, the influence of alloying between nano MFO and ZMO phases on the produced nanocomposite materials was examined employing Rietveld refinement procedure,x-ray photoelectron spectroscopy(XPS), Fourier-transform infrared spectroscopy (FTIR), and transmission electron microscope(TEM)techniques. Furthermore the effect of alloying on optical characteristics of the resulted nanocomposite was explored using the photoluminescence and ultra-violet(UV)diffused absorption devices.

    2. Methods and materials

    (1-x)MnFe2O4/xZnMn2O4(x=0,0.2,0.5,0.8,and 1.0)samples were prepared employing co-precipitation procedure Fig. 1. The required amount from zinc acetate, manganese acetate and iron nitrate were dissolved in distilled water and ethylene glycol using a magnetic stirrer and heating at 90°C(3 h). The resulted precursors were further heated at 400°C(2 h) and the powder materials were produced. The x-ray diffraction data (XRD) were carried out using x-ray diffractometer(PANalytical with copper source). The UV diffuse reflectance data were obtained using a double-beam spectrophotometer (Shimadzu UV–VIS-2600) with attached integrating sphere assembly. The photoluminescence emission data were collected using a spectrofluorometer (Jasco FP-6500, Japan,Xenon lamb,150 Watt)technique.FTIR spectrometer(Bruker Tensor 27)technique was used to trace the different vibration bands in different samples. The nano nature of 0.8 sample as an example was explored using a high transmission electron microscope(JEOL JEM-2100,200 keV).Different oxidations states for different elements in the studied materials were explored by using the x-ray photoelectron spectroscopy (XPS,Thermo Scientific XPS, Model: KALPHA surface analysis)technique.

    Fig. 1. Preparation schema for MnFe2O4 /ZnMn2O4 nanocomposite system.

    The direct optical band gap was calculated using Tauc’s and Beer–Lambert’s formulas[20,21]

    Furthermore, the extinction coefficient (k), refractive index(n), real (εr) and imaginary (εi) dielectric constants, dielectric loss(tanδ),the optical conductivities(σopt),linear optical susceptibility(χ(1)), the third-order nonlinear optical susceptibility(χ3),and the nonlinear refractive(n2)can be obtained from[21]

    whereA,d,Eg,B,hν,λg,h,c, (D1=[B(hc)n-1d/2.303],D2),λ,andRare the absorbance,thickness,optical band gap,constant,incident photon energy,the wavelength related to the optical gap,Planck’s constant,light velocity,constants represent reflection,wavelength,and reflectance,respectively.

    3. Results and discussion

    3.1. Crystal structure and phase analysis

    The high quality x-ray diffraction patterns measured for(1-x)MnFe2O4/xZnMn2O4(x= 0, 0.2, 0.5, 0.8, and 1.0)are given in Fig. 2(a). Structural analysis applying Rietveld method implanted in the program MAUD[22,23]manifested the presence of two phases for the compositesx=0.2 and 0.5:ZnMn2O4(ZMO)with tetragonal spinel structure(S.G.I 41/a m d), and MnFe2O4(MFO) with cubic spinel structure (Fd-3m), while only singlephase ZMO is found for the samplex=0.8. Figure 2(b)illustrates the resulting fitting for diffraction pattern forx=0.5 and the resulting refined parameters are given in Table 1.

    Table 1. The cell parameters (in unit ?A), average crystallite size (in unit nm), and the phase percentages of the phases developed in the heterostructure nanocomposite (1-x)MnFe2O4/xZnMn2O4 (x=0, 0.2, 0.5, 0.8, 1.0) for different values of x.

    The phase percentages of MFO and ZMO phases are different from the nominated values during preparation, which requires the incorporation of the cation of one phase into the lattice of the other phase; this confirmed the result concluded from IR analysis next. Such cation permutation among the octahedral and tetrahedral sites changes the cell parameters of the phases, (see Table 1). The cell parameter (a) of MFO altered irregularly, it slightly rose forx=0.2 and reduced forx=0.5. For ZMO phase,the cell parameter(c)reduced while the parameter(a)slightly rose with the alloying parameter(x).This could be correlated with cation permutation as follows:the ZMO octahedra,figure 2(c)has a base in theab-plane direction with four O-ions of equal bond length with the cation at the center (~1.97 ?A), and two apex O-atoms along thecaxis with bond length=2.28 ?A.Insertion of Fe3+ions of electronegativity (1.83) higher than that of Mn3+ions (1.55) results in shortening the longer bond length of the octahedra along thecaxis,i.e., compressing the octahedra along thecaxis. Consequently, the cell parameter (a) rose slightly. The crystallite size is hardly altered upon varied alloying parameter (x) as displayed in Table 1. The TEM image for sample withx=0.8 is displayed in Fig.2(d). It could be noticed that the particle size is in the nano range around 20 nm.

    Fig. 2. (a) X-ray diffraction patterns for (1-x) MnFe2O4 + xZnMn2O4 nanocomposite samples, (b) Rietveld refinement pattern fitting for sample with x=0.5,(c)crystal structure of ZnMn2O4 phase,and(d)TEM image for sample with x=0.8.

    Infrared absorption (vibrational) spectroscopy is bond specific and commonly employed to characterize transition metal–oxygen species. For this purpose,F(xiàn)TIR spectra for the present system (1-x)MnFe2O4/xZnMn2O4(x=0, 0.2, 0.5,0.8,and 1.0)have been measured,(see Fig.3). The spectrum of the pure sample MFO(x=0.0),has two vibrational bands observed at 552.1 cm-1and 628.3 cm-1which could be assigned to stretching vibrations of metal?O at octahedral and tetrahedral sites,respectively.[24,25]Forx=0.2 sample,MFO phase is the dominant,(see Table 1),so only MFO vibrational bands appeared at 554.2 cm-1and 636.6 cm-1for octahedral and tetrahedral vibrational bands,respectively;no characteristic bands for ZMO are observed in the spectrum. One can notice in Fig.3 that both bands become flat and shifted to higher wavenumbers compared withx=0.0,indicating that some Zn ions have been incorporated into the MFO lattice in both octahedral and tetrahedral sites. The IR spectrum of pure ZMO(x=1.0) has two vibrational bands located at 506 cm-1and 619 cm-1which are characteristic of tetragonal spinel structure and belong to metal?O vibrations at octahedral and tetrahedral sites, respectively.[26,27]For the samplex= 0.8,only these two bands of ZMO phase appeared and no bands for MFO phase were observed. Furthermore, as indicated in Fig.3, both vibrational bands are shifted(relative tox=1.0)to lower wavenumbers,481 cm-1and 608 cm-1implying that some Fe ions are incorporated into the ZMO phase in both octahedral and tetrahedral sites. For samplex=0.5,both phases ZMO and MFO are formed with nearly equal percentages,so the vibrational bands of the two phases overlap yielding very flat bands as shown in Fig.3. One can conclude that for the nanocomposite samples, all cations have been permuted among the octahedral and tetrahedral sites of both ZMO and MFO phases.This is confirmed by the IR spectrum of the samplex=0.5 where the vibrational bands become flat due to the occupation of the sites by different cations(Zn,Mn,F(xiàn)e).

    Fig. 3. FTIR spectra for (1-x) MnFe2O4 + xZnMn2O4 nanocomposite samples.

    3.2. XPS investigations

    For further investigating the cation permutation among the two phases MFO and ZMO,the elements constituting the samples and their oxidation states are examined by measuring the XPS spectra of the samplex=0.5. The XPS Gaussian fitting analyses were performed and illustrated in Fig.4.The fitting of the Zn 2p narrow scan,(see Fig.4(a)),disclosed two peaks at binding energies 1021.3 eV and 1044.3 eV which could be assigned to Zn2+2p3/2and 2p1/2energy levels. The energy difference of 23 eV coincides very well with that in literature.[28]Figure 4(b) displays the high-resolution spectrum of Fe 2p orbitals. The spectrum comprises a peak at 710.8 eV representing the binding energy of Fe3+2p3/2level,which could be decomposed into two subpeaks at 710.35 eV and 712.7 eV assigned to Fe3+at octahedral and tetrahedral sites respectively.[29]Furthermore,two satellite peaks appear at 716.3 eV and 719.5 eV to confirm the presence of Fe3+cations only.[30]The highresolution XPS of Mn 2p could be fitted into four contributions, (see Fig. 4(c): two at the binding energies of 641.1 eV and 642.1 eV represent the energy level Mn 2p3/2 and are assigned to the Mn2+and Mn3+,respectively.[31]The other two at 652.9 eV and 653.8 eV were assigned to Mn 2p1/2energy level. From the ratio of peak areas, the atomic ratio of Mn2+to Mn3+could be calculated to be 0.46 which is consistent with the phase percentage of MFO to ZMO,Table 1, where Mn2+residing at MFO while Mn3+residing at ZMO. Figure 4(d) depicts the O 1s narrowspectrum fitting which comprises three peaks at 529.7,531.4,and 532.1 eV.The first is assigned to O2-–metal bonding,the second is assigned to various reasons like surface OH,chemisorbed oxygen, oxygen ions in low coordination, and oxygen-containing surface contamination.[32,33]The third is attributed to surface bond water.[34]

    Fig.4. XPS fitting for(a)Zn,(b)Fe,(c)Mn,and(d)O peaks for 0.5MnFe2O4 +0.5ZnMn2O4 nanocomposite samples.

    3.3. Optical characterization

    The variation of the diffused absorbance data with the wavelength for(1-x)ZnMn2O4/(x)MnFe2O4nanocomposite samples are displayed in Fig.5.

    Fig.5. The wavelength dependence of the diffused absorbance for(1-x)MnFe2O4 +xZnMn2O4 nanocomposite samples.

    As noticed from the graph the absorbance of ZMO ions is higher than the absorbance of MFO at a low wavelength range and the situation is reversed at the higher wavelength range. The absorbance of the nanocomposite samples is varied depended on the composition of the samples and the measured wavelength range. The sample withx=0.5 exhibited the highest absorbance among all samples. The change in the absorbance may be due to the variation of the charge trapping effect on the sample surface as a result of the shallow energy level impurities.[35]The direct optical band gap energy (Eg)of the nanocomposite samples can be extracted from the linear intercept of(ahv)2as a function ofhvgraph as established in Fig. 6. The obtained optical band gaps of MFO and ZMO samples are 2.68 eV and 2.13 eV, respectively. The obtained optical band gaps are in agreement with that obtained by other research groups, for example, the optical band gap of MFO formed by a facile hydrothermal route is 2.46 eV while theEgof MFO prepared by reverse-micelle synthesis strategy is 2.65 eV.[10,36]TheEgvalue for ZMO sample prepared by the solgel method is 1.28 eV.[37]Furthermore,the optical bandgap of(1-x)MFO/xZMO(x=0.2,0.5,0.8)nanocomposite samples are 2.55,2.54,and 2.63 eV.As noticed from the figure the optical bandgap of the nanocomposite samples is decreased as the amount of ZMO phase (less optical bandgap than MFO)increased in the samples, see Table 1. The band gap of MFO is 2.65 eV and that of ZMO is 2.13 eV, so most probable the band gap of intermediate composites will be in between,so it decreases by adding ZMO.The raising of the optical bandgap in the nanocomposite sample withx=0.8 instead of decreasing is due to the increasing of ZMO amount may be due to the formation of single-phase of ZMO,see Table 1. This increase in the optical band gap may be due to the introduction of Fe ions inside the ZMO matrix (x-ray part) which may alter the optical band gap characteristics of the host matrix. The refractive index(n)reflected the interaction between the photons and electrons in the materials.

    Fig. 6. The relation between (A/λ)2 versus photon energy (hν) for(1-x)MnFe2O4 +xZnMn2O4 nanocomposite samples.

    Figure 7(a)shows the changing of the refractive index(n)with wavelength for all samples. All samples exhibited a normal dispersion. Thenvalue of ZMO sample is higher than thenvalue of MFO sample. At the low wavelength range, MFO sample has the lowestnvalue while at a higher wavelength range, the sample withx=0.8 has the lowest n value. In the visible range, thenvalues of the nanocomposite samples are larger than the n value of MFO. In addition, thenvalues of the samples withx=0.2 and 0.5 are larger than ZMO sample in the visible range. The enhancement of the refractive index may be due to the change in the electronic structure of the MFO and ZMO materials upon alloying. Furthermore,the improvement of thenvalues is inferred from the improvement of the sensitivity of nanocomposite samples withx=0.2 and 0.5 to the daylight.

    Fig.7. The wavelength dependence of(a)refractive index(n)and(b)extinction coefficient (k) for (1-x) MnFe2O4 + xZnMn2O4 nanocomposite samples.

    Figure 7(b) displays the variation of the extinction coefficient(k)against wavelength for all nanocomposite samples.As noticed from the figure the behavior ofkvalues in all samples are similar where thekvalue increased with increasing the wavelength until it reached its highest value then it decreased again. Sample withx=0.5 in the(1-x)MFO/xZMO nanocomposite system has the highestkvalue while the sample withx=0.8 has the lowest value.

    The wavelength-dependent of the dielectric constant(real and imaginary) and dielectric loss for (1-x)MFO/xZMO nanocomposite samples is represented in Fig. 8. As revealed from Fig.8(a), the real part of the dielectric constant(εr)has the highest value at a low wavelength range for all samples them it decreased with increasing the wavelength similar to the refractive index behavior. The low dielectric constants at a higher wavelength range restrain the electromagnetic energy propagation that contributes to the conductivity. Furthermore,the free carriers are activated and shared the conduction.On the other hand, the dielectric constant (εi) and dielectric loss (tanδ) increased with increasing the wavelength until it reaches the maximum value then it decreased with increasing the wavelength similar to thekvalue behavior. In addition,nanocomposite withx=0.5 has the highestεr,εi, and tanδvalues as compared with other samples.

    Fig. 8. The wavelength dependence of the (a) real part (εr), (b) imaginary part (εi) of dielectric constant and (c) tanδ for (1-x) MnFe2O4 +xZnMn2O4 nanocomposite samples.

    The variation of the optical conductivity (σopt) for all nanocomposite samples with photon energy is revealed in Fig. 9. Theσoptvalues in all samples were increased as the photon energy increased. Theσoptvalue for the nanocomposite sample withx=0.5 has the highest value among the other samples. The changes inχ(1),n2, andχ(3)values with the wavelength for all (1-x)ZnMn2O4/(x)MnFe2O4nanocomposite samples are represented in Fig. 10. All the three parameters exhibited a similar behavior,whereχ(1),n2,andχ(3)values are decreased with increase the wavelength. All samples haveχ(1),n2, andχ(3)values larger than MFO sample.Sample withx=0.5 has the highestχ(1),n2, andχ(3)values as compared with other samples. This result indicates the nanocomposite sample withx=0.5 has a good nonlinear optical behavior in all wavelength range.

    Fig. 9. The variation of the optical conductivity for (1-x)MnFe2O4 +xZnMn2O4 nanocomposite samples with photon energy.

    Fig.10. The Relation between(a)χ1,(b)χ3,(c)n2,and wavelength for(1-x)MnFe2O4 +xZnMn2O4 nanocomposite samples.

    3.4. Photoluminescence(PL)emissions

    Figure 11 reveals the photoluminescence (PL) data for(1-x)MFO/xZMO samples at room temperature by using 350-nm excitation wavelength. The PL intensity of the ZMO sample is higher than the PL intensity of the MFO sample.Furthermore, the PL intensities of the nanocomposite samples are between the PL intensities of MFO and ZMO samples. Sample withx= 0.2 has the lowest intensity while the sample withx= 0.5 exhibited the highest PL intensity.Similar results were obtained where the PL intensity reduced upon doping or forming composites: for ZnS upon coupling with MFO,[39]for intermediate nanocomposites of MnS@ZnS system,[38]and for ZMO upon doping with Fe[18]or Cr.[19]In contrast Patadeet al. found that as MFO doped with Zn, the PL intensity increased.[11]The variation of the PL intensity may result from changing of the recombination rate between the photo-induced electrons (e) and holes (h+) pairs created in the different samples which are depended on the trap levels produced in the bandgap upon alloying.[40,41]The reduction in the PL intensity of the nanocomposite samples may nominate them to be applied in the photocatalytic area. By using Gaussian fitting the PL of each sample can be divided into sub emission peaks. Moreover,the possible transition of electrons between different levels is also provided in Fig. 12. As noticed from the graph and Table 2 that the PL spectra of all samples except nanocomposite samples withx=0.5 and 0.8 are formed from two violets, blue and green colors. Samples withx=0.5 andx=0.8 emitted(two violets,blue)and(violet,blue,green)colors,respectively. The MFO formed by the co-precipitation procedure emitted a green color.[11]The disorder in the lattice or interstitial oxygen defects formed in the samples formed a green emission.[42]

    Fig.11. The Gaussian fitting for photoluminescence measurements under 350 nm for(1-x)MnFe2O4 +xZnMn2O4 nanocomposite samples.

    Table 2. PL peak positions for the nanocomposite(1-x)MnFe2O4 +xZnMn2O4 for different values of x.

    4. Conclusions

    Nanocomposites (1-x)MnFe2O4/xZnMn2O4withx=0.2 and 0.5 have ZnMn2O4(ZMO) with tetragonal spinel structure and MnFe2O4(MFO) with cubic spinel structure,while only single-phase ZMO is found for the sample withx= 0.8. The cell parameter (a) of MFO changed irregularly, for ZMO phase, the cell parameter (c) reduced while(a)slightly increased with the alloying parameter(x). The IR analysis and the variation in the lattice parameters confirmed permutation all cation among the octahedral and tetrahedral sites of the two phases in the intermediate samples. The XPS analysis revealed that Mn2+residing at MFO while Mn3+residing at ZMO.Sample withx=0.5 exhibited the highest optical absorbance among all samples. The obtained optical band gaps of MFO and ZMO samples are 2.68 eV and 2.13 eV,respectively; and of nanocomposite samples,x=0.2, 0.5, and 0.8 are 2.55, 2.54, and 2.63 eV respectively. Relative to the pure sample ZMO and MFO, the variation in refractive index of the nanocomposite samples with (x) is dependent on the wavelength region, except forx=0.5 sample which has the highest(n)value for the wholeλrange. Also,sample withx=0.5 disclosed the highestεr,εi,tanδ,σopt,and PL intensity values and a good nonlinear optical behavior as compared with other samples. The PL spectra of all samples exceptx=0.5 and 0.8 are formed from two violets, blue and green colors.Sample withx=0.5 and 0.8 emitted (two violets, blue) and(violet,blue,green)colors,respectively.

    Acknowledgment

    The authors acknowledge Taif University Research Supporting Project number (TURSP-2020/66), Taif University,Taif,Saudi Arabia.

    一二三四中文在线观看免费高清| 日本熟妇午夜| 久久人妻av系列| 成人午夜精彩视频在线观看| av天堂中文字幕网| 国产真实伦视频高清在线观看| 久久精品久久久久久久性| 久99久视频精品免费| 国模一区二区三区四区视频| 欧美性猛交╳xxx乱大交人| 好男人视频免费观看在线| 亚洲国产高清在线一区二区三| 亚洲最大成人手机在线| 国产免费福利视频在线观看| 亚洲精品456在线播放app| 男女边吃奶边做爰视频| 亚洲中文字幕一区二区三区有码在线看| 免费观看在线日韩| 人妻夜夜爽99麻豆av| 神马国产精品三级电影在线观看| 波多野结衣高清无吗| av免费在线看不卡| 99久久无色码亚洲精品果冻| 特大巨黑吊av在线直播| 欧美激情国产日韩精品一区| 日日啪夜夜撸| 免费电影在线观看免费观看| 白带黄色成豆腐渣| 欧美丝袜亚洲另类| 欧美一区二区亚洲| 亚洲国产欧美在线一区| 欧美bdsm另类| 哪个播放器可以免费观看大片| 国产乱人视频| 亚洲无线观看免费| 久久这里只有精品中国| 草草在线视频免费看| 男女下面进入的视频免费午夜| 看非洲黑人一级黄片| 日本wwww免费看| 亚洲国产精品专区欧美| 欧美精品国产亚洲| 亚洲欧洲日产国产| 欧美性感艳星| 99国产精品一区二区蜜桃av| 午夜老司机福利剧场| 欧美成人一区二区免费高清观看| 乱人视频在线观看| 精品久久久久久久久av| 一级二级三级毛片免费看| 国产黄a三级三级三级人| 国产真实伦视频高清在线观看| 免费av观看视频| 国产国拍精品亚洲av在线观看| 亚洲乱码一区二区免费版| 成年女人看的毛片在线观看| 日日摸夜夜添夜夜添av毛片| 成人欧美大片| 国产在视频线在精品| 国产大屁股一区二区在线视频| av线在线观看网站| 天天一区二区日本电影三级| 久久99精品国语久久久| 免费观看人在逋| 人妻系列 视频| 一级毛片aaaaaa免费看小| 中文亚洲av片在线观看爽| 男人舔女人下体高潮全视频| 国产免费视频播放在线视频 | 国内揄拍国产精品人妻在线| 国产黄色小视频在线观看| 午夜激情福利司机影院| 久热久热在线精品观看| 97超碰精品成人国产| 麻豆成人av视频| 国产熟女欧美一区二区| 国产亚洲91精品色在线| 亚洲国产精品成人久久小说| 免费一级毛片在线播放高清视频| 2022亚洲国产成人精品| 综合色丁香网| 中文字幕免费在线视频6| 欧美激情国产日韩精品一区| 村上凉子中文字幕在线| 久久6这里有精品| 成人二区视频| 99久久九九国产精品国产免费| 亚洲国产精品sss在线观看| 成年女人看的毛片在线观看| 九九在线视频观看精品| 国产极品天堂在线| 久久久成人免费电影| 亚洲国产欧洲综合997久久,| 岛国在线免费视频观看| 桃色一区二区三区在线观看| 国产av一区在线观看免费| 伊人久久精品亚洲午夜| 欧美一区二区精品小视频在线| 亚洲精品成人久久久久久| 国产一区二区亚洲精品在线观看| 国产精品国产三级国产av玫瑰| 免费观看人在逋| 99国产精品一区二区蜜桃av| 最近2019中文字幕mv第一页| 国产综合懂色| 麻豆成人av视频| 精品熟女少妇av免费看| 久久久亚洲精品成人影院| 男女啪啪激烈高潮av片| 男女啪啪激烈高潮av片| 国产极品天堂在线| 日韩中字成人| 九色成人免费人妻av| 一级毛片久久久久久久久女| 欧美zozozo另类| 日韩 亚洲 欧美在线| 欧美另类亚洲清纯唯美| 91狼人影院| 岛国毛片在线播放| 神马国产精品三级电影在线观看| 久久99热这里只有精品18| 看非洲黑人一级黄片| 国内少妇人妻偷人精品xxx网站| 国产老妇女一区| 久久精品91蜜桃| 国产免费福利视频在线观看| 国产精品综合久久久久久久免费| 寂寞人妻少妇视频99o| 色综合色国产| 国产伦精品一区二区三区四那| 国产色爽女视频免费观看| 青春草国产在线视频| 最近2019中文字幕mv第一页| 午夜免费激情av| 美女xxoo啪啪120秒动态图| 国产精品精品国产色婷婷| 亚洲自偷自拍三级| 久久久久久久久久黄片| 免费观看a级毛片全部| 亚洲精品亚洲一区二区| 人人妻人人澡欧美一区二区| av天堂中文字幕网| 国产探花在线观看一区二区| 国产麻豆成人av免费视频| 日日摸夜夜添夜夜爱| 亚洲精品国产成人久久av| 国产私拍福利视频在线观看| 深夜a级毛片| 九草在线视频观看| 久久久久久久久中文| 国产午夜精品一二区理论片| 免费av不卡在线播放| 日本-黄色视频高清免费观看| 国内少妇人妻偷人精品xxx网站| 汤姆久久久久久久影院中文字幕 | 中文字幕精品亚洲无线码一区| 女人被狂操c到高潮| 一级毛片aaaaaa免费看小| 看免费成人av毛片| 精品一区二区三区人妻视频| 国产一区二区三区av在线| or卡值多少钱| 春色校园在线视频观看| 免费黄色在线免费观看| 午夜福利成人在线免费观看| 国产大屁股一区二区在线视频| 高清视频免费观看一区二区 | 老师上课跳d突然被开到最大视频| 99久久人妻综合| 久热久热在线精品观看| 免费黄色在线免费观看| 非洲黑人性xxxx精品又粗又长| 亚洲人与动物交配视频| 国产美女午夜福利| 国产精品一区www在线观看| 亚洲欧美日韩高清专用| 亚洲最大成人手机在线| 久久国内精品自在自线图片| 好男人视频免费观看在线| 91精品伊人久久大香线蕉| 国产免费视频播放在线视频 | 男女边吃奶边做爰视频| 精品久久国产蜜桃| 亚洲欧洲日产国产| 日韩大片免费观看网站 | 一级黄色大片毛片| 99热精品在线国产| 久久人妻av系列| 久久久a久久爽久久v久久| 国产在线一区二区三区精 | 国产探花在线观看一区二区| 久久精品熟女亚洲av麻豆精品 | or卡值多少钱| 高清av免费在线| 免费看美女性在线毛片视频| 18禁裸乳无遮挡免费网站照片| 男人狂女人下面高潮的视频| 午夜精品国产一区二区电影 | 又粗又爽又猛毛片免费看| 中文精品一卡2卡3卡4更新| 欧美成人a在线观看| 人妻系列 视频| 一级毛片aaaaaa免费看小| 亚洲精品一区蜜桃| 成人一区二区视频在线观看| 夫妻性生交免费视频一级片| 91aial.com中文字幕在线观看| 免费不卡的大黄色大毛片视频在线观看 | 色尼玛亚洲综合影院| 免费av不卡在线播放| 久久这里只有精品中国| 听说在线观看完整版免费高清| 亚洲四区av| 尤物成人国产欧美一区二区三区| 久久久久国产网址| 久久国产乱子免费精品| 日本wwww免费看| 最近中文字幕高清免费大全6| 晚上一个人看的免费电影| 久久亚洲国产成人精品v| 国产亚洲5aaaaa淫片| 亚洲最大成人av| 精品一区二区三区视频在线| 国产成人精品一,二区| 国产极品精品免费视频能看的| 国产精品人妻久久久影院| 午夜精品在线福利| 国产日韩欧美在线精品| 午夜福利在线观看免费完整高清在| 爱豆传媒免费全集在线观看| 国产精华一区二区三区| 天堂网av新在线| 日韩欧美 国产精品| 91久久精品国产一区二区三区| 久久精品国产亚洲网站| 欧美97在线视频| 插逼视频在线观看| 久久婷婷人人爽人人干人人爱| 女人十人毛片免费观看3o分钟| 欧美丝袜亚洲另类| 国产精品不卡视频一区二区| 久久精品91蜜桃| 久久这里只有精品中国| 女人十人毛片免费观看3o分钟| 成年免费大片在线观看| 久久人妻av系列| 麻豆国产97在线/欧美| 禁无遮挡网站| 天堂网av新在线| 一个人看的www免费观看视频| 国产亚洲精品av在线| 美女高潮的动态| 免费一级毛片在线播放高清视频| 我的老师免费观看完整版| 久久久久久大精品| 51国产日韩欧美| 中文字幕久久专区| 日韩欧美 国产精品| 国产精品一区二区三区四区久久| 热99re8久久精品国产| 国产白丝娇喘喷水9色精品| 日本猛色少妇xxxxx猛交久久| 色视频www国产| 全区人妻精品视频| 国产高清国产精品国产三级 | 午夜精品一区二区三区免费看| 日韩av不卡免费在线播放| 91在线精品国自产拍蜜月| 国产一区有黄有色的免费视频 | av.在线天堂| 国产精品日韩av在线免费观看| 一级av片app| 久久精品91蜜桃| 99九九线精品视频在线观看视频| 直男gayav资源| 国内精品一区二区在线观看| www.色视频.com| 丰满乱子伦码专区| 一本一本综合久久| 中文字幕久久专区| 国产三级中文精品| 国产欧美另类精品又又久久亚洲欧美| 嫩草影院精品99| 久久精品夜色国产| 国产精品久久久久久精品电影| 亚洲精品aⅴ在线观看| 日本色播在线视频| 九九热线精品视视频播放| 在线免费观看不下载黄p国产| 亚洲在久久综合| 亚洲精品色激情综合| 国产一级毛片在线| 汤姆久久久久久久影院中文字幕 | 亚洲av电影在线观看一区二区三区 | 免费av毛片视频| 国产精品嫩草影院av在线观看| 亚洲在线观看片| 国产欧美日韩精品一区二区| 五月伊人婷婷丁香| 色吧在线观看| 国产成人a∨麻豆精品| 国产一级毛片七仙女欲春2| 校园人妻丝袜中文字幕| 亚洲自拍偷在线| 一个人看的www免费观看视频| 日日摸夜夜添夜夜添av毛片| 精品久久久久久成人av| 99久久精品国产国产毛片| 国产精品爽爽va在线观看网站| 丰满乱子伦码专区| 久久人人爽人人爽人人片va| 一边亲一边摸免费视频| 只有这里有精品99| 99热这里只有精品一区| 国产免费视频播放在线视频 | 97人妻精品一区二区三区麻豆| 黄色日韩在线| 中文字幕人妻熟人妻熟丝袜美| 亚洲不卡免费看| 久久久色成人| 少妇熟女欧美另类| 一边亲一边摸免费视频| 在线观看美女被高潮喷水网站| 免费播放大片免费观看视频在线观看 | 嘟嘟电影网在线观看| 国产淫片久久久久久久久| 日韩欧美精品免费久久| 91久久精品国产一区二区成人| 最近最新中文字幕免费大全7| 亚洲乱码一区二区免费版| 午夜福利在线在线| 日韩av不卡免费在线播放| 18禁动态无遮挡网站| 99热6这里只有精品| 国产一区二区在线av高清观看| 成人国产麻豆网| 亚洲乱码一区二区免费版| 神马国产精品三级电影在线观看| 国产爱豆传媒在线观看| 亚洲中文字幕一区二区三区有码在线看| 看免费成人av毛片| 精品酒店卫生间| 三级经典国产精品| 国产伦理片在线播放av一区| 中文字幕久久专区| 亚洲成av人片在线播放无| 欧美区成人在线视频| 国产精品乱码一区二三区的特点| 1024手机看黄色片| 久久综合国产亚洲精品| 亚洲欧美成人综合另类久久久 | 黄色日韩在线| 一级毛片aaaaaa免费看小| 一级爰片在线观看| 久久久久性生活片| 亚洲一区高清亚洲精品| 极品教师在线视频| 亚洲美女搞黄在线观看| 国产在线一区二区三区精 | 久久99蜜桃精品久久| 九九在线视频观看精品| 亚洲av二区三区四区| 欧美最新免费一区二区三区| av.在线天堂| 中文字幕av成人在线电影| 大话2 男鬼变身卡| 午夜福利高清视频| 中文欧美无线码| 亚洲欧洲国产日韩| 国内揄拍国产精品人妻在线| 亚洲av免费在线观看| 日韩欧美三级三区| 国产国拍精品亚洲av在线观看| 免费播放大片免费观看视频在线观看 | 男人舔奶头视频| 天天躁夜夜躁狠狠久久av| 国产又黄又爽又无遮挡在线| 久久99热这里只频精品6学生 | 国产免费视频播放在线视频 | 尤物成人国产欧美一区二区三区| 久99久视频精品免费| 狂野欧美白嫩少妇大欣赏| 国产黄色视频一区二区在线观看 | 亚洲人与动物交配视频| 老司机影院成人| 国产亚洲av嫩草精品影院| 禁无遮挡网站| 美女cb高潮喷水在线观看| 在现免费观看毛片| 中文乱码字字幕精品一区二区三区 | 国产精品蜜桃在线观看| 色视频www国产| 晚上一个人看的免费电影| 国产精品久久电影中文字幕| 国产亚洲av片在线观看秒播厂 | 亚洲婷婷狠狠爱综合网| 国产av不卡久久| 一级毛片久久久久久久久女| 精品久久国产蜜桃| 日韩欧美精品v在线| 国产伦精品一区二区三区视频9| 国产精品日韩av在线免费观看| 男女视频在线观看网站免费| av女优亚洲男人天堂| 久久国内精品自在自线图片| 99热6这里只有精品| 一个人观看的视频www高清免费观看| 中文字幕精品亚洲无线码一区| 日日干狠狠操夜夜爽| 亚洲四区av| 内地一区二区视频在线| 99久久精品一区二区三区| 国产老妇女一区| 日本五十路高清| av在线观看视频网站免费| 国产高清视频在线观看网站| 成人午夜高清在线视频| 精品一区二区三区视频在线| 中文字幕制服av| 亚洲人成网站在线观看播放| 一个人看的www免费观看视频| 午夜日本视频在线| 国产成人免费观看mmmm| 舔av片在线| 18禁在线无遮挡免费观看视频| 少妇人妻精品综合一区二区| 天堂网av新在线| 99久久九九国产精品国产免费| av在线观看视频网站免费| 天堂√8在线中文| 最近视频中文字幕2019在线8| 日本黄色片子视频| 国产成人一区二区在线| 亚洲成色77777| 亚洲精品成人久久久久久| 中文精品一卡2卡3卡4更新| 欧美性感艳星| 禁无遮挡网站| 国产中年淑女户外野战色| 美女被艹到高潮喷水动态| 国产免费福利视频在线观看| 欧美另类亚洲清纯唯美| 51国产日韩欧美| 久久久久久久亚洲中文字幕| 精品国产一区二区三区久久久樱花 | 六月丁香七月| 亚洲在线自拍视频| 国产精品久久久久久精品电影| 久久人人爽人人片av| 久久精品91蜜桃| 午夜福利在线观看吧| 亚洲中文字幕一区二区三区有码在线看| 天天躁日日操中文字幕| 国产免费男女视频| 一级毛片我不卡| 国产又色又爽无遮挡免| 国产男人的电影天堂91| 久久精品国产亚洲av天美| 最近最新中文字幕免费大全7| 欧美另类亚洲清纯唯美| 国产精品无大码| 别揉我奶头 嗯啊视频| 日韩中字成人| 中文字幕制服av| 亚洲国产高清在线一区二区三| 麻豆国产97在线/欧美| 大香蕉97超碰在线| 中文字幕人妻熟人妻熟丝袜美| 啦啦啦韩国在线观看视频| 在线a可以看的网站| 国产视频首页在线观看| 国产激情偷乱视频一区二区| or卡值多少钱| 一级毛片aaaaaa免费看小| a级毛片免费高清观看在线播放| 欧美97在线视频| 成年女人永久免费观看视频| 国产免费又黄又爽又色| 精品久久久久久电影网 | 禁无遮挡网站| 精品久久久久久久末码| 亚洲,欧美,日韩| 六月丁香七月| 亚洲最大成人中文| 最近手机中文字幕大全| 黄色日韩在线| 日韩欧美精品免费久久| 亚洲色图av天堂| 狠狠狠狠99中文字幕| 久久久久性生活片| 日本免费一区二区三区高清不卡| 国产在视频线精品| 三级男女做爰猛烈吃奶摸视频| 好男人视频免费观看在线| 可以在线观看毛片的网站| 国产欧美另类精品又又久久亚洲欧美| 99热6这里只有精品| 久久精品91蜜桃| 亚洲综合精品二区| 精品国内亚洲2022精品成人| 精品国产三级普通话版| 久久久久久久国产电影| 成人毛片60女人毛片免费| 亚洲最大成人手机在线| 午夜视频国产福利| АⅤ资源中文在线天堂| 亚洲精品亚洲一区二区| 午夜激情欧美在线| 日本wwww免费看| 日韩亚洲欧美综合| 在线天堂最新版资源| 一个人观看的视频www高清免费观看| 尾随美女入室| 乱人视频在线观看| 联通29元200g的流量卡| 中文精品一卡2卡3卡4更新| 午夜激情福利司机影院| 22中文网久久字幕| 我要看日韩黄色一级片| 久久久久久久亚洲中文字幕| 国产av在哪里看| 久久人人爽人人片av| 国产熟女欧美一区二区| 韩国高清视频一区二区三区| 亚洲精品日韩av片在线观看| av在线老鸭窝| 久久99热这里只有精品18| 三级国产精品片| 日本与韩国留学比较| 91精品伊人久久大香线蕉| 成年免费大片在线观看| 亚洲激情五月婷婷啪啪| 欧美xxxx性猛交bbbb| 欧美激情久久久久久爽电影| 少妇猛男粗大的猛烈进出视频 | 午夜福利网站1000一区二区三区| 一个人观看的视频www高清免费观看| 国产免费男女视频| 女人十人毛片免费观看3o分钟| 国产精品乱码一区二三区的特点| 欧美激情在线99| 三级经典国产精品| 六月丁香七月| 黄色日韩在线| videossex国产| 国产精品不卡视频一区二区| 亚洲av电影在线观看一区二区三区 | 黄色欧美视频在线观看| 黑人高潮一二区| 欧美日韩国产亚洲二区| 听说在线观看完整版免费高清| 高清午夜精品一区二区三区| 禁无遮挡网站| 精品一区二区三区人妻视频| 99久国产av精品| 亚洲欧洲国产日韩| 国产成人午夜福利电影在线观看| 日韩强制内射视频| 久久亚洲国产成人精品v| 噜噜噜噜噜久久久久久91| 搞女人的毛片| 精品一区二区免费观看| 直男gayav资源| 亚洲av免费在线观看| 日本三级黄在线观看| 亚洲精品国产成人久久av| 91精品一卡2卡3卡4卡| 美女黄网站色视频| 国产乱人偷精品视频| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 成人三级黄色视频| 国产精品美女特级片免费视频播放器| 国产精品1区2区在线观看.| 丰满少妇做爰视频| 精品久久久久久成人av| 亚洲av男天堂| 蜜桃久久精品国产亚洲av| 国产三级中文精品| 国产69精品久久久久777片| 亚洲在久久综合| 激情 狠狠 欧美| 日韩国内少妇激情av| 久久韩国三级中文字幕| 精品不卡国产一区二区三区| 九色成人免费人妻av| 看十八女毛片水多多多| 日韩欧美精品免费久久| 免费观看在线日韩| 如何舔出高潮| 欧美bdsm另类| 国产成人午夜福利电影在线观看| 嫩草影院入口| 免费观看在线日韩| 最近的中文字幕免费完整| 大话2 男鬼变身卡| 日本黄色片子视频| 午夜a级毛片| 国产精品麻豆人妻色哟哟久久 | 国产成人a∨麻豆精品| 国产精品熟女久久久久浪| 久久久精品大字幕| 中国国产av一级| 久久久久久久久久成人| 久久人人爽人人爽人人片va| 国产亚洲精品av在线| 激情 狠狠 欧美| 欧美不卡视频在线免费观看| 性色avwww在线观看| 日韩,欧美,国产一区二区三区 | 日日干狠狠操夜夜爽| 三级男女做爰猛烈吃奶摸视频| 一级av片app| 黄片无遮挡物在线观看| 久久这里有精品视频免费| 少妇人妻一区二区三区视频|