• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Tunable anharmonicity versus high-performance thermoelectrics and permeation in multilayer(GaN)1-x(ZnO)x

    2022-08-01 06:02:10HanpuLiang梁漢普andYifengDuan段益峰
    Chinese Physics B 2022年7期

    Hanpu Liang(梁漢普) and Yifeng Duan(段益峰)

    School of Materials and Physics,China University of Mining and Technology,Xuzhou 221116,China

    Keywords: thermal transport,anharmonicity,thermoelectricity,nonisovalent alloys

    1. Introduction

    Nonisovalent(GaN)1-x(ZnO)xalloys introduce a variety of potential applications in optoelectronic and thermoelectric devices,due to the abrupt reduction of band gap,compared to their binary counterparts.[1–9]Moreover, dimensional reduction always introduces significant changes in structural configurations and physical properties.[10,11]The few-layer haeckelite phase is more energetically stable and suitable in optoelectronic applications than the wurtzite structures, because that the nearly zero internal electrostatic field (IEF) greatly enhances optical absorption efficiency.[12]The lack of 2D configurations as well as complete stoichiometries hinders to further explore physical properties,e.g., optical absorption and thermal transport. For example, an open question is how the electronic band gap evolves with ZnO composition. In theory,due to the same crystal symmetry and the very close lattice constants, GaN and ZnO can combine in many ways to form various 2D compounds and structures,especially in multilayer configurations. We aim to establish stable multilayer phases as well as complete stoichiometries in 2D (GaN)1-x(ZnO)x,which remain unclear so far and are expected to provide novel performances better than their binary counterparts.

    It is a hot issue on how to strengthen the anharmonicity,since the thermoelectric performance is effectively improved by the ultralow lattice thermal transport. The asymmetrical charge distribution is much close to the structural properties,e.g., in the lone pair cation systems.[13–20]The irregular configurations are adopted to destroy the symmetry in charge distribution,e.g., the square,[21]pentagon,[22]octagon,[23]and other irregular structures.[24,25]In multi-layer structures, the interlayer interactions inspire more phonon vibrational modes,therefore,it is feasible to further suppress the thermal transport and thus to continue to improve the thermoelectrics. However, the novel effects were seldom reported so far because of the lack of multilayer configurations. In van der Waals(vdW) SnSe,[26]a moderate interlayer distance induces high thermoelectric performance by overlapping the antibonding state wave functions in the out-of-plane direction. Herein,due to the very close electronegativity and atomic size in 2D(GaN)1-x(ZnO)x, it is much promising for multilayer configurations to be stable at ambient conditions. The interlayer interactions via covalent bonds introduce more asymmetry into the charge distributions, thus the stronger anharmonicity further improves the thermoelectrics. Therefore,it is technologically necessary and important to deeply explore multilayer(GaN)1-x(ZnO)x, which would provides more colorful properties in the fields of physics,chemistry and materials.

    Adsorption- and permeation-based selection processes are key to evaluate the ionic transport properties in porous multilayer alloys.[27,28]For example, monolayer T-C3N,which is inspired by T-carbon,[29]is a good semipermeable membrane for desalination and can permeate the H2O molecular at room temperature,because of the large porous.[30]Multilayer MoS2shows the high H2/CO2separation performance at the excellent H2permeability at the high-temperature 2H phase, which decreases the interlayer space and enlarges the interbundle spaces and thus increases the gas permeability.[31]Therefore,to deeply explore the application potential in multilayer (GaN)1-x(ZnO)xmaterials, a comprehensive understanding of the ionic adsorption/permeation processes is necessary.

    In the present study, we identify the stable multilayer (GaN)1-x(ZnO)xas wurtzite-likePm-(GaN)3(ZnO)1,Pmc21-(GaN)1(ZnO)1,andP3m1-(GaN)1(ZnO)2,and haeckeliteC2/m-(GaN)1(ZnO)3using an evolutionary variablecomposition searches based on first-principles calculations.The interlayer coupling indeed greatly enhances the thermoelectrics due to the intrinsically ultralow lattice thermal conductivity because of the stronger anharmonicity by the asymmetry in charge distributions. The anomalous band structure versus ZnO composition is attributed to the forbiddenp–dcoupling inC2/m-(GaN)1(ZnO)3from the group theory, which is helpful to modulate the optoelectronic performance. Finally,we uncover the remarkable Na+/H+selectivity in Na+aqueous solution by the multilayer configurations.Our work would stimulate deeper understanding of the nonisovalent semiconductors.

    2. Computational methods

    Stable phases in the 2D system are predicted using a first-principles variable-composition evolutionary algorithm as implemented in the USPEX code.[32–34]At each promising composition, the fixed-composition searches are carried out,in combination with structural relaxations and total energy calculations using the density functional theory (DFT[35,36])within the generalized gradient approximation parameterized by the PBE.[37]The projector augmented wave method[38,39]implemented in the VASP package[40–42]is employed. The vdW interaction is considered by the vdW-DF2 exchange functional.[43]The band alignments are aligned with respect to the vacuum level. We adopt the plane-wave energy cutoff of 500 eV, andΓ-centeredk-point meshes for sampling the Brillouin zone with a reciprocal-space resolution of 2π×0.05 ?A-1. The electronic band structures are calculated by the HSE06 hybrid functional.[44]Electronic transports are calculated by the semiclassical Boltzmann transport equation within the constant relaxation time approximation in the BoltzTraP package.[45]Phonon dispersion and the second-order interatomic force constants (IFCs) are calculated by the Phonopy package.[46]The third-order IFCs and the lattice thermal conductivity are evaluated by the ShengBTE.[47]During structural searches,the initial population includes 80 structures with up to 16 atoms per primitive cell, with the thickness of 2D crystals in a range from 0 ?A to 6 ?A. The succeeding generations are obtained from heredity(50%),softmutation(10%),transmutation operators(10%),and randomly symmetric generator(30%).

    To describe the thermal transport,the IFCs are calculated by applying a small displacement on one atom.The high-order term of interatomic potential dominates the anharmonic effect from the collision between phonons. Three-phonon scattering processes,including absorption(+)and emission(-),satisfy the energy and momentum conservations

    TheKis zero for normal process and nonzero for umklapp process. In the phonon Boltzmann transport equation(BTE),the lattice thermal conductivity is defined as[47]

    wherenandTare the carrier concentration and temperature,respectively. The power factorPF(n,T) describes the electronic features inZT,andκeandκlare the electronic and lattice thermal conductivities,respectively.

    3. Results and discussion

    The 2D GaN and ZnO share the most stable planar hexagonalsp2configuration and was successfully fabricated by reconstructing the bulk wurtzite into the graphite structure[48,49](see Figs.1(a)and 1(b)). The band gaps atΓpoint of hexagonal GaN(h-GaN)and ZnO(h-ZnO)are 3.71 eV and 3.30 eV,respectively. Although the valence band maximum(VBM)is atMpoint in h-GaN,the main optical absorption occurs atΓdue to the much higher conduction band minimum(CBM)atMthan atΓpoint (see Fig. 1(c)). The stable phases of 2D(GaN)1-x(ZnO)xare identified by the complete convex hull,which is expressed by the formation energy (see Fig. 1(d)),with h-GaN and h-ZnO as the starting-and ending-points,respectively. A structure on the convex hull is thermodynamically stable, while above the hull is metastable. The groundstate multilayer configurations appear at the 1/4,1/2,2/3,and 3/4 stoichiometries with thePm,Pmc21,P3m1, andC2/msymmetries, respectively (see Figs. 1(e)–1(h)). Phonon spectra and stress-strain relationship are shown in Figs.S1 and S2 in the Supplemental materials(hereafter SM),as well as structural parameters and elastic constants listed in Tables S1 and S2,which indicate that the predicted configurations satisfy the dynamical and mechanical stability.[50]

    Fig.1. (a)Structural model of the hexagonal lattice. (b)Distributions of GaN and ZnO in the periodic table. (c)Electronic band structures of hexagonal GaN and ZnO monolayers. (d)Thermodynamic convex hull of 2D GaN–ZnO multilayers at ambient conditions. The stable and metastable phases are highlighted in red and gray dots, respectively. Crystal structures, schematic diagrams of structural force, and ELF of top and side views in (e) Pm-(GaN)3(ZnO)1,(f) Pmc21-(GaN)1(ZnO)1, (g) P3m1-(GaN)1(ZnO)2, and (h) C2/m-(GaN)1(ZnO)3. Red, gray, blue, and green balls represent Ga, N, Zn, and O atoms,respectively.

    To suppress the IEF is the key to stabilize the multilayer configurations,since the strong dipoles associated with the opposite charges on surfaces tend to destabilize the structure. InPm-(GaN)3(ZnO)1, the difference in atomic species induces the deformed tetrahedrons,e.g., the bond angles around Zn and O atoms derivating from~109°to~118°and~113°,respectively. The close electronegativity and atomic size prefer the planar layers to reduce the in-plane IEF and thus stabilize the configuration. InPmc21-(GaN)1(ZnO)1, the interlayer Ga–N bonds are overall alternately arranged in opposite directions to reduce the dipole moments along the[001]direction.P3m1-(GaN)1(ZnO)2displays the planar configuration and the alternate arrangements of interlayer dipoles in opposite directions,thus the net IEF is nearly zero both in the plane and along the out-of-plane direction. Furthermore, the interlayer Bader charge and bond length are~0.04eand~2.28 ?A,while the in-plane results are~1.32eand~1.90 ?A, which agree well with 1.34eand 1.86 ?A in monolayer GaN.[51]This implies that the in-plane interactions dominate the structural configuration rather than the interlayer interactions. HaeckeliteC2/m-(GaN)1(ZnO)3is constructed by the alternating octagons and squares along the [110] direction and exhibits a nearly zero IEF along the [001] direction since the adjacent dipoles have opposite directions.

    Figure 2(a)illustrates the optical absorption coefficients,where the absorption thresholds perfectly match the band gaps at theΓpoint. Although, inP3m1-(GaN)1(ZnO)2, the VBM is at theKpoint, similar to hexagonal GaN and ZnO monolayers,[48]the main absorption actually occurs at theΓ,due to the 4.37 eV higher CBM at theKthan at theΓ. It is remarkable that the absorption intensity inC2/m-(GaN)1(ZnO)3is stronger at least two times than that in other structures due to the nearly zero IEF according to the quantum confined Stark effects.[12]Thereby, this structure is more promising in lighting devices with excellent absorption efficiency. Although the nearly zero IEF is also realized inP3m1-(GaN)1(ZnO)2, the covalent bonds by fivefold-coordinated atoms do not originate from the conventionalsp2orsp3hybridization,as a result,the higher-symmetry bonding significantly suppresses the optical absorption.

    The band gap increases from 1.87 eV inPm-(GaN)3(ZnO)1to 2.51 eV inPmc21-(GaN)1(ZnO)1, and to 3.00 eV inP3m1-(GaN)1(ZnO)2, but unexpectedly slightly decreases to 2.91 eV inC2/m-(GaN)1(ZnO)3. This is consistent with that the symmetry first rises fromCstoC2vand toC3v, and then drops toC2h, thereby the anomalous trend closely correlates with the group theory and thep–dcoupling.When thepanddorbitals have the same irreducible representations,thep–dcoupling occurs(see Fig.2(b)). In multilayer(GaN)1-x(ZnO)x, the N-2porbital dominates the VBM and the binding energy is much smaller in Zn-3dorbital than in Ga-3d(see Fig.S3),thus the possiblep–dcoupling originates from N and Zn atoms(see Fig.2(c)).

    Table 1 reveals that thepanddorbitals have one common representation (A′) inPm-(GaN)3(ZnO)1, three (A1,B1,andB2)inPmc21-(GaN)1(ZnO)1and all(A1andE)inP3m1-(GaN)1(ZnO)2,thus thep–dcoupling is allowed,i.e.,Vp–d /=0. The coupling strength is defined as

    which is inversely proportional to the energy differenceεp–εdbetween thepanddorbitals. According to thep–dcoupling theory,[52–54]as the symmetry continuously rises, the down-shift ofdorbital greatly weakens thep–dcoupling and thereby enhances the band gap (see Fig. 2(d)). InC2/m-(GaN)1(ZnO)3, N-3porbital belongs to theAuandBurepresentations, while Zn-3dorbital belongs to theAgandBgrepresentations. Thepanddorbitals have distinct representations, thereby thep–dcoupling is forbidden,i.e.,Vp–d=0.Meanwhile, inP3m1-(GaN)1(ZnO)2, the huge differenceεp–εdmakes the coupling negligible in the band structure,thus the band gaps are very close to each other inP3m1-(GaN)1(ZnO)2andC2/m-(GaN)1(ZnO)3. Moreover, due to the lack ofp–dcoupling,the band alignment ofC2/m-(GaN)1(ZnO)3is overall higher than the others.

    Table 1. Irreducible representations of p and d orbitals in the Cs,C2v,C3v,and C2h point groups,respectively. In the Cs,C2v,and C3v symmetries,the p–d coupling is allowed and is forbidden in the C2h symmetry.

    Fig.2. (a)Optical absorption coefficients and band gaps(inserted panel)in multilayer GaN-ZnO.(b)Shapes of p and d orbitals. (c)Sketches p–d atomic orbital hybridization. (d) Band alignments of the VBM and CBM with respect to the vacuum level. (e) Electronic band structures in Pm-(GaN)3(ZnO)1,Pmc21-(GaN)1(ZnO)1,P3m1-(GaN)1(ZnO)2,and C2/m-(GaN)1(ZnO)3. The inserted panels are the partial charge distribution at the VBM.

    Figure 3(a) displays the lattice thermal conductivityκLby solving the phonon BTE with the iterative method, which is determined by the phonon relaxation timeτλ, the phonon group velocityvλ, and the volumetric specific heat capacityCv. At room temperature, the lowestκLis~3.1 W/mK inP3m1-(GaN)1(ZnO)2, the highestκLis~42.3 W/mK along the armchair direction inPmc21-(GaN)1(ZnO)1,which,however, is much smaller than in most 2D materials. TheκLis~27.2 W/mK and 12.1 W/mK inPm-(GaN)3(ZnO)1andC2/m-(GaN)1(ZnO)3,respectively. The dependence ofκLon the phonon mean-free-path (MFP) is plotted in the inserted panel for multilayer (GaN)1-x(ZnO)xreveals that, to maximize theκL,the boundary sizes are required to be larger than 104nm.

    Fig. 3. (a) The temperature-dependent lattice thermal conductivity as well as the thermal conductivity versus the MFP relationship. (b) The scattering rates, (c) the group velocity, and (d) the Raman spectra in multilayer (GaN)1-x(ZnO)x. (e) The scattering-rate distributions of each phonon branch in P3m1-(GaN)1(ZnO)2 with the Born effective charges and the dielectric constants in the first Brillouin zone. (f) The aao scattering channels of (q1,v1)→(q2,v2)+(q3,v3)in the first Brillouin zone in P3m1-(GaN)1(ZnO)2,where q1=(0.0,0.0,0.0),v1=3.45A1,and v2 and v3 run over the acoustic branches,together with the sketch of the scattering processes of 3.45A1 →LA+TA.

    The scattering rates inP3m1-(GaN)1(ZnO)2are at least 50 times higher than at other stoichiometries (see Fig. 3(b)),which finally results in the ultralowκL, although thevλandCvare overall comparable, even slightly larger inP3m1-(GaN)1(ZnO)2(see Fig. 3(c) and Table S3). Another result of huge scattering rates is that theκLwell obeys the~1/Ttrend according to the Bose distributionn0λ=(exp[(Eλ-EF)/kBT]-1)-1.[55]Figure 3(b)also reveals that,inP3m1-(GaN)1(ZnO)2,the phonon scattering mainly occurs at low frequency, which indicates the decisive contributions from the acoustic modes to theκL.

    To deeply explore the anomalous scattering inP3m1-(GaN)1(ZnO)2, the Raman spectra are plotted together in Fig. 3(d) for comparison. The in-plane vibrational mode shares a smaller Raman frequency(~3.45 THz)than the outof-plane mode inP3m1-(GaN)1(ZnO)2, while the opposite is true at other stoichiometries(see Fig.S4). Note that 3.45 THz is the phonon frequency of the third optical branch at theΓpoint with theA1representation (labeled as the 3.45A1mode in Fig.S1). The red shift of in-plane Raman peak arises from the high symmetry of theC3vpoint group, which strengthens the in-plane interaction, and thus the in-plane collective vibrational mode phonons 3.45A1are more easily activated due to the relatively weaker out-of-plane interaction, thereby the in-plane mode 3.45A1downshifts.P3m1-(GaN)1(ZnO)2prefers the perfectly planar hexagonal configuration with the AA stacking, where each atom is fourfold coordinated, but not by the conventionalsp3tetrahedrons. One surface layer is purely composed of the Ga–N bonds and another of the Zn–O bonds, with the bond angles of 120°. Thereby each atom locates at the equilibrium position,which effectively suppresses in-plane vibrations.

    The scattering channels are greatly activated for the acoustic branches by the down-shift of in-plane optical 3.45A1mode inP3m1-(GaN)1(ZnO)2(see Fig. 3(e)), thereby the phonon population significantly increases at low frequency,which greatly enlarges the phase space and finally reduces theκL. However, at other stoichiometries, the scattering mainly originates from the high-frequency optical modes(see Figs.S5–S7).Figure 3(f)emphasizes on the three-phononaaoscattering channels of (q1,v1)→(q2,v2)+(q3,v3) inP3m1-(GaN)1(ZnO)2. As the phonon frequency increases, the scattering zone shifts from theKpoint of the FA branch to theΓof the 3.45A1branch (see Fig. 3(e)), thereby theq1is fixed to(0.0,0.0,0.0)andv1=3.45A1. As a result,the distributions of the FA, TA, and LA branches are perfectly symmetrical in the Brillouin zone to keep the momentum conservation,i.e.,q2=-q3. The low-frequency scattering rates are dominated by the 3.45A1→LA+LA, 3.45A1→TA+LA, and 3.45A1→FA+LA channels in sequence.

    The low lattice thermal conductivityκLusually results in an excellent thermoelectric performance. TheZT versusthe carrier concentration and temperature along the armchair and zigzag directions are plotted in Fig. 4, which displays the obvious asymmetry for p- and n-type dopings. InP3m1-(GaN)1(ZnO)2,the maximumZTis 3.08 along the armchair direction at 900 K for a p-type doping concentration of 0.15×1015cm-2. TherebyP3m1-(GaN)1(ZnO)2is a promising thermoelectric material at medium temperature by properly doping.

    Fig.4. Figure of merit ZT along the armchair and zigzag directions versus the carrier concentration and temperature.

    TheZTis determined by the power factorPF=σS2,the electronic thermal conductivityκeand the lattice thermal conductivityκL. According toS=8π2k2Bm*T/(2eh2)(π/3n)2/3,the predominant Seebeck coefficientSalong the armchair and zigzag directions favors the highPFand arises from the large effective massm*inP3m1-(GaN)1(ZnO)2(see Fig. S8 and Table 2). This is consistent with the nearly flat top valence band, since the VBM is composed of the fully localized Npzstates, the details are displayed in Fig. 2(e). On the other hand, the low electric conductivityσalong the armchair direction seriously reduces thePF, and then theZT, inP3m1-(GaN)1(ZnO)2(see Figs. S8 and S9). Although a relatively lowκealong the armchair direction for the p-type doping prevents theZTto further drop (see Fig. S10), the ultralowκLeventually results in the ultrahighZTinP3m1-(GaN)1(ZnO)2.Note that the maximumPFappears inPm-(GaN)3(ZnO)1along the armchair direction for the p-type doping, which favors the highZT, but the relatively largeκeandκLsuppress the thermoelectric performance. Therefore, the phonon contributions are usually more dominant than the electronic contributions in the thermoelectric performance.

    Table 2. Carrier mobility μ (in units cm2/V·s) at 300 K and effective mass m* (m0) in Pm-(GaN)3(ZnO)1, Pmc21-(GaN)1(ZnO)1, P3m1-(GaN)1(ZnO)2,and C2/m-(GaN)1(ZnO)3.

    Our next focus is the molecular adsorption/permeation capabilities inAA-stackingPm-(GaN)3(ZnO)1,P3m1-(GaN)1(ZnO)2, andC2/m-(GaN)1(ZnO)3. Figure 5(a)shows the energy profilesversusthe relative positions of the H+,Na+, and OH-ions to the multilayer configurations. To realize the permeation, the structural models are constructed as the sketch of Fig. 5(b). The diameters of the hexagonal-ring pores are~3.7 ?A,thus the H+,Na+,and OH-ions can permeate through the multilayer structures if only the ionic sizes are considered. This is the case for H+ion. However, the Na+ion is only adsorbed near the multilayer surfaces with at least 2.28-?A distance and the energy well is deeper than-24.0 kcal/mol (see Fig. 5(c)). Surprisingly, the OH-adsorption does not occur. The sketch of H+, Na+, and OHdistributions with respect to multilayer GaN–ZnO is plotted in Fig.5(d).

    Fig. 5. (a) Energy profile of H+, Na+, and OH- ions along the minimum migration path through the hexagonal ring in Pm-(GaN)3(ZnO)1, P3m1-(GaN)1(ZnO)2, and C2/m-(GaN)1(ZnO)3. (b) Sketch of the ionic position with respect to multilayer structures. (c) Configurations of the H+ and Na+potential wells. (d)Sketch for the molecular permeation of Na+ aqueous solution.

    The permeation is determined by the pore diameter, the interaction between the ion and the multilayer structure, and the ionic size. Because of the electron distribution in the inner hexagonal ring(see the ELF in Fig.1),the Coulomb attractive interactions of H+and Na+ions result in the potential wells near both surfaces,while the Coulomb repulsive force pushes the OH-ion away from the surface.Furthermore,the potential barrier between adjacent adsorption states actually determines the permeation of H+and Na+ions. The Na+radius is relatively large,and thus introduces the huge deformation energy once it is placed in the multilayer structures, which greatly raises the barrier over 200 kcal/mol, thereby the permeation impossibly occurs at ambient condition. On the contrary, the H+barriers are always lower than 8.0 kcal/mol because of its almost negligible radius, thereby it is easy for the H+ion to jump from one adsorption state to another across the barrier zone. The similar results are obtained in the energy profiles of Li+and Be2+ions in Fig. S11. Note that the OH-and Na+ions share very close energy barriers due to the similar ionic sizes.

    4. Conclusion

    In summary, inspired by the structural anharmonicity, we focus on the effects of the interlayer interactions on the thermal transport, thermoelectrics, electronic structure, and ionic adsorption/permeation in multilayer(GaN)1-x(ZnO)x. The structural searches identify stablePm-(GaN)3(ZnO)1,Pmc21-(GaN)1(ZnO)1,P3m1-(GaN)1(ZnO)2,andC2/m-(GaN)1(ZnO)3. In theP3m1-(GaN)1(ZnO)2, the 3.45A1→LA+LA,3.45A1→TA+LA,and 3.45A1→FA+LA channels dominate the low-frequency scattering,which results in the ultralow thermal conductivity and thereby the ultrahigh thermoelectrics. The anomalous band structure versus ZnO composition inC2/m-(GaN)1(ZnO)3arises from the forbidden N:3p–Zn:3dcoupling according to the group theory. Finally, the potential wells and barriers are deeply explored from the Coulomb interaction and the ionic size to reveal what kinds of ions permeate through multilayer structure. This study provides a new insight into the thermal transport, thermoelectrics, electronic structure, and ionic adsorption/permeation in novel multilayer(GaN)1-x(ZnO)xconfigurations.

    Acknowledgments

    Project supported by the National Natural Science Foundation of China (Grant No. 11774416), the Fundamental Research Funds for the Central Universities (Grant Nos. 2017XKZD08 and 2015XKMS081), the Postgraduate Research&Practice Innovation Program of Jiangsu Province,China (Grant No. KYCX202039), and the Assistance Program for Future Outstanding Talents of China University of Mining and Technology(Grant No.2020WLJCRCZL063).

    久久99精品国语久久久| 欧美激情国产日韩精品一区| 男人舔女人的私密视频| 91精品国产国语对白视频| 亚洲国产精品专区欧美| 美女大奶头黄色视频| 亚洲在久久综合| 美女视频免费永久观看网站| 欧美人与性动交α欧美软件 | 欧美bdsm另类| 久久亚洲国产成人精品v| 天天操日日干夜夜撸| 日本欧美国产在线视频| 啦啦啦视频在线资源免费观看| av片东京热男人的天堂| 日本av免费视频播放| 视频在线观看一区二区三区| 在线天堂中文资源库| av黄色大香蕉| 欧美丝袜亚洲另类| 亚洲av电影在线观看一区二区三区| 99久久中文字幕三级久久日本| 久久久亚洲精品成人影院| 亚洲精华国产精华液的使用体验| 欧美成人午夜精品| av国产精品久久久久影院| 亚洲熟女精品中文字幕| 精品国产露脸久久av麻豆| 欧美人与善性xxx| 免费人成在线观看视频色| 如何舔出高潮| 亚洲欧美一区二区三区国产| 久久韩国三级中文字幕| 欧美精品av麻豆av| 亚洲国产av新网站| 中文字幕人妻丝袜制服| 国产又色又爽无遮挡免| 久热久热在线精品观看| 欧美日韩av久久| 卡戴珊不雅视频在线播放| 国产精品人妻久久久久久| 精品一区二区三区视频在线| 国产成人a∨麻豆精品| 国产成人精品婷婷| 精品一区二区免费观看| 国产一区二区在线观看日韩| 在线观看免费日韩欧美大片| 少妇高潮的动态图| tube8黄色片| 欧美日韩av久久| av在线播放精品| 人人妻人人澡人人看| 黄片无遮挡物在线观看| 99视频精品全部免费 在线| 丁香六月天网| 欧美日韩av久久| 在线观看美女被高潮喷水网站| 成人国语在线视频| 久久精品国产自在天天线| 天天躁夜夜躁狠狠久久av| 精品国产露脸久久av麻豆| kizo精华| a级毛片黄视频| 免费av中文字幕在线| 国产成人精品无人区| av有码第一页| 午夜福利视频在线观看免费| 下体分泌物呈黄色| 一级毛片我不卡| 成人影院久久| 黑人猛操日本美女一级片| av又黄又爽大尺度在线免费看| 成人国产麻豆网| 久久99一区二区三区| 在线天堂最新版资源| 国产毛片在线视频| 国产日韩欧美在线精品| 成人二区视频| 中文乱码字字幕精品一区二区三区| 黄片播放在线免费| 精品久久国产蜜桃| 99久久中文字幕三级久久日本| 亚洲av男天堂| 日本vs欧美在线观看视频| 国产精品无大码| freevideosex欧美| 交换朋友夫妻互换小说| 夫妻性生交免费视频一级片| 熟女av电影| 精品视频人人做人人爽| 男人添女人高潮全过程视频| 亚洲第一av免费看| 国产成人精品一,二区| videos熟女内射| 天天躁夜夜躁狠狠躁躁| 精品99又大又爽又粗少妇毛片| 另类精品久久| 妹子高潮喷水视频| 天堂俺去俺来也www色官网| 热re99久久精品国产66热6| 国内精品宾馆在线| 日本av手机在线免费观看| 校园人妻丝袜中文字幕| 色视频在线一区二区三区| 久久精品人人爽人人爽视色| 久久精品夜色国产| 亚洲欧美中文字幕日韩二区| 国产精品久久久久久av不卡| 亚洲色图综合在线观看| 各种免费的搞黄视频| 男人操女人黄网站| 视频在线观看一区二区三区| 一级片免费观看大全| 国产免费福利视频在线观看| 寂寞人妻少妇视频99o| 精品国产露脸久久av麻豆| 精品国产一区二区三区四区第35| av.在线天堂| 国产色婷婷99| 久久久久网色| 大香蕉久久网| 成年女人在线观看亚洲视频| av线在线观看网站| 涩涩av久久男人的天堂| 亚洲欧美色中文字幕在线| 国产精品麻豆人妻色哟哟久久| 中文字幕制服av| 日韩一区二区三区影片| 精品一区二区三区视频在线| 欧美国产精品va在线观看不卡| 又黄又粗又硬又大视频| 又黄又粗又硬又大视频| 2021少妇久久久久久久久久久| 亚洲精品日本国产第一区| 五月天丁香电影| 男人爽女人下面视频在线观看| 春色校园在线视频观看| 99久久精品国产国产毛片| 中文乱码字字幕精品一区二区三区| 久热久热在线精品观看| 亚洲欧美一区二区三区国产| 又黄又粗又硬又大视频| 18禁在线无遮挡免费观看视频| 99九九在线精品视频| 亚洲综合精品二区| 亚洲精品av麻豆狂野| 成人18禁高潮啪啪吃奶动态图| 两个人看的免费小视频| 视频中文字幕在线观看| xxxhd国产人妻xxx| av国产精品久久久久影院| 卡戴珊不雅视频在线播放| 一本大道久久a久久精品| 高清欧美精品videossex| 午夜老司机福利剧场| 国精品久久久久久国模美| 啦啦啦视频在线资源免费观看| 日韩成人av中文字幕在线观看| av卡一久久| 一级毛片我不卡| 欧美 亚洲 国产 日韩一| 欧美国产精品va在线观看不卡| 人妻人人澡人人爽人人| 久久精品国产综合久久久 | 女人被躁到高潮嗷嗷叫费观| 18禁动态无遮挡网站| 久久久久久人妻| 丝袜喷水一区| 久久久欧美国产精品| 日韩,欧美,国产一区二区三区| 日本免费在线观看一区| 一级片免费观看大全| 免费人妻精品一区二区三区视频| 免费播放大片免费观看视频在线观看| 最新中文字幕久久久久| 中国三级夫妇交换| 一级a做视频免费观看| 在线观看美女被高潮喷水网站| 精品国产国语对白av| 亚洲国产最新在线播放| 国产精品久久久久久精品电影小说| 中文字幕制服av| 老熟女久久久| 日韩一区二区视频免费看| 国产成人午夜福利电影在线观看| 国产白丝娇喘喷水9色精品| 99国产综合亚洲精品| 亚洲av日韩在线播放| 免费高清在线观看视频在线观看| 亚洲欧美成人综合另类久久久| 一级片'在线观看视频| 亚洲欧美日韩另类电影网站| 国产视频首页在线观看| 精品少妇内射三级| 国产片特级美女逼逼视频| 欧美3d第一页| 丝袜喷水一区| 18禁国产床啪视频网站| 欧美日本中文国产一区发布| 寂寞人妻少妇视频99o| 婷婷色麻豆天堂久久| 国产熟女午夜一区二区三区| 精品久久久久久电影网| √禁漫天堂资源中文www| 亚洲精品av麻豆狂野| 亚洲国产最新在线播放| 亚洲精品日本国产第一区| 国产黄色视频一区二区在线观看| 久久久久久人人人人人| 国产精品麻豆人妻色哟哟久久| 99re6热这里在线精品视频| 亚洲经典国产精华液单| 免费女性裸体啪啪无遮挡网站| 中文天堂在线官网| av播播在线观看一区| 我的女老师完整版在线观看| 黑人猛操日本美女一级片| 免费观看无遮挡的男女| av女优亚洲男人天堂| 麻豆乱淫一区二区| 另类精品久久| 成人综合一区亚洲| 丝瓜视频免费看黄片| 欧美精品高潮呻吟av久久| 国产av一区二区精品久久| 五月开心婷婷网| 亚洲精品乱码久久久久久按摩| 亚洲美女黄色视频免费看| 五月玫瑰六月丁香| 9色porny在线观看| 欧美人与性动交α欧美软件 | 久久精品国产亚洲av涩爱| 国产av码专区亚洲av| 免费人妻精品一区二区三区视频| 日本vs欧美在线观看视频| 国产视频首页在线观看| 人妻人人澡人人爽人人| 国产精品国产三级国产专区5o| 高清在线视频一区二区三区| 久久精品aⅴ一区二区三区四区 | 一级黄片播放器| 亚洲精品国产av蜜桃| 久久久久久久久久久免费av| 2022亚洲国产成人精品| 一区二区三区精品91| xxx大片免费视频| 国产精品久久久久久av不卡| 亚洲精品成人av观看孕妇| 精品亚洲成a人片在线观看| 久久毛片免费看一区二区三区| 国产高清不卡午夜福利| 18在线观看网站| 精品久久蜜臀av无| 亚洲 欧美一区二区三区| 久久久久国产精品人妻一区二区| 亚洲少妇的诱惑av| 岛国毛片在线播放| 男女边摸边吃奶| 少妇的逼好多水| 午夜91福利影院| 欧美亚洲日本最大视频资源| 久热这里只有精品99| 国产男女超爽视频在线观看| 超色免费av| 一本色道久久久久久精品综合| 国产免费视频播放在线视频| 亚洲精品第二区| 国产xxxxx性猛交| 国产成人精品在线电影| 亚洲精品视频女| 我的女老师完整版在线观看| xxxhd国产人妻xxx| 97精品久久久久久久久久精品| av在线老鸭窝| 老司机影院毛片| 人人妻人人澡人人看| 中国国产av一级| 最近的中文字幕免费完整| 80岁老熟妇乱子伦牲交| 日本免费在线观看一区| 亚洲欧美成人综合另类久久久| 97在线视频观看| 午夜福利影视在线免费观看| 蜜桃国产av成人99| 国产av一区二区精品久久| 熟女电影av网| av又黄又爽大尺度在线免费看| 大片免费播放器 马上看| 欧美 日韩 精品 国产| 在线精品无人区一区二区三| 这个男人来自地球电影免费观看 | 国产无遮挡羞羞视频在线观看| 天天影视国产精品| 欧美激情极品国产一区二区三区 | 中文乱码字字幕精品一区二区三区| 高清在线视频一区二区三区| 成年人免费黄色播放视频| 只有这里有精品99| 国产成人精品婷婷| 少妇猛男粗大的猛烈进出视频| 午夜精品国产一区二区电影| 久久av网站| 免费黄网站久久成人精品| 国产成人欧美| 中国美白少妇内射xxxbb| 中文字幕另类日韩欧美亚洲嫩草| 日本vs欧美在线观看视频| 久久99热这里只频精品6学生| 一级黄片播放器| 久热这里只有精品99| 国产黄色免费在线视频| 国国产精品蜜臀av免费| 丝袜脚勾引网站| 亚洲丝袜综合中文字幕| 免费观看av网站的网址| av免费在线看不卡| 亚洲综合精品二区| 99久久人妻综合| 性高湖久久久久久久久免费观看| 两性夫妻黄色片 | 下体分泌物呈黄色| 天天影视国产精品| 满18在线观看网站| 精品久久蜜臀av无| 国产精品久久久久成人av| 亚洲国产精品国产精品| www.av在线官网国产| 国产一区二区三区av在线| 亚洲情色 制服丝袜| 在线免费观看不下载黄p国产| 久热这里只有精品99| 久久久亚洲精品成人影院| 国国产精品蜜臀av免费| 国产精品一区www在线观看| 男人添女人高潮全过程视频| 成人毛片60女人毛片免费| 国产成人精品婷婷| 欧美日韩av久久| 国产xxxxx性猛交| 国产福利在线免费观看视频| 少妇的逼好多水| 成年人午夜在线观看视频| 夜夜爽夜夜爽视频| 免费观看av网站的网址| 各种免费的搞黄视频| av电影中文网址| 国产成人精品一,二区| 最近最新中文字幕大全免费视频 | 精品一区二区三区四区五区乱码 | 国产精品秋霞免费鲁丝片| 嫩草影院入口| 一个人免费看片子| 成人亚洲欧美一区二区av| 亚洲美女视频黄频| 午夜福利影视在线免费观看| 国产xxxxx性猛交| 一级,二级,三级黄色视频| 成人影院久久| 国产精品蜜桃在线观看| 日本免费在线观看一区| 欧美精品av麻豆av| 一二三四在线观看免费中文在 | 寂寞人妻少妇视频99o| 九色成人免费人妻av| 丰满饥渴人妻一区二区三| 国产成人一区二区在线| av福利片在线| 精品国产国语对白av| 日韩视频在线欧美| 天天躁夜夜躁狠狠久久av| 天美传媒精品一区二区| 女人被躁到高潮嗷嗷叫费观| 九草在线视频观看| 亚洲色图 男人天堂 中文字幕 | 国产老妇伦熟女老妇高清| 免费少妇av软件| 91午夜精品亚洲一区二区三区| 亚洲精品国产色婷婷电影| 国产亚洲一区二区精品| 国产一区二区三区综合在线观看 | 激情视频va一区二区三区| av视频免费观看在线观看| 婷婷色麻豆天堂久久| 伦理电影免费视频| 久久精品久久久久久久性| 国产精品.久久久| 亚洲综合色惰| 亚洲精品日本国产第一区| 热99久久久久精品小说推荐| 日产精品乱码卡一卡2卡三| 9色porny在线观看| 亚洲精品中文字幕在线视频| 成年人免费黄色播放视频| 精品久久久久久电影网| 午夜福利影视在线免费观看| 天天影视国产精品| 久久久久久久久久久久大奶| 欧美国产精品一级二级三级| 麻豆精品久久久久久蜜桃| 欧美激情 高清一区二区三区| 最新的欧美精品一区二区| 国国产精品蜜臀av免费| 性色av一级| 成人毛片60女人毛片免费| 美女内射精品一级片tv| 欧美老熟妇乱子伦牲交| 午夜激情久久久久久久| 9热在线视频观看99| 国产乱来视频区| 国产熟女欧美一区二区| 国产成人免费无遮挡视频| 免费看光身美女| 两个人看的免费小视频| 成人午夜精彩视频在线观看| 亚洲欧洲日产国产| 免费少妇av软件| 精品久久蜜臀av无| 乱码一卡2卡4卡精品| 久久久久精品久久久久真实原创| 国产成人欧美| 亚洲av国产av综合av卡| 欧美精品亚洲一区二区| 亚洲经典国产精华液单| 久久青草综合色| 在线天堂中文资源库| av国产精品久久久久影院| 欧美日本中文国产一区发布| 天堂8中文在线网| 欧美变态另类bdsm刘玥| 亚洲内射少妇av| 亚洲丝袜综合中文字幕| 中文精品一卡2卡3卡4更新| 国产又爽黄色视频| xxx大片免费视频| 一级爰片在线观看| 桃花免费在线播放| 另类精品久久| 91午夜精品亚洲一区二区三区| a级毛片黄视频| 久久99一区二区三区| 婷婷色综合www| 人体艺术视频欧美日本| 亚洲欧美日韩卡通动漫| 国产成人精品福利久久| 黄色怎么调成土黄色| 少妇的逼水好多| 久久久精品94久久精品| 欧美97在线视频| 色吧在线观看| 国产爽快片一区二区三区| av福利片在线| 女的被弄到高潮叫床怎么办| 观看av在线不卡| 欧美 日韩 精品 国产| 香蕉国产在线看| 亚洲成人一二三区av| 丝袜人妻中文字幕| 五月天丁香电影| 美女主播在线视频| 久久久欧美国产精品| 美女主播在线视频| 在线免费观看不下载黄p国产| 香蕉丝袜av| 午夜免费鲁丝| 免费少妇av软件| 69精品国产乱码久久久| 五月天丁香电影| 九草在线视频观看| 欧美少妇被猛烈插入视频| 新久久久久国产一级毛片| 国产熟女午夜一区二区三区| 最近的中文字幕免费完整| 色网站视频免费| 亚洲精品av麻豆狂野| 亚洲国产精品999| 国产亚洲午夜精品一区二区久久| 精品人妻一区二区三区麻豆| 哪个播放器可以免费观看大片| 欧美日韩av久久| 99视频精品全部免费 在线| 久久久久久久精品精品| 日韩一区二区视频免费看| 成人国产麻豆网| 妹子高潮喷水视频| 亚洲精品乱码久久久久久按摩| 亚洲av免费高清在线观看| 人人妻人人澡人人爽人人夜夜| 国产视频首页在线观看| 亚洲欧美色中文字幕在线| 免费在线观看黄色视频的| 少妇熟女欧美另类| 人成视频在线观看免费观看| 国产1区2区3区精品| 80岁老熟妇乱子伦牲交| 黑人高潮一二区| 久久久久久人妻| 免费人妻精品一区二区三区视频| 国产 精品1| 午夜福利网站1000一区二区三区| 最近手机中文字幕大全| 国产成人精品在线电影| 久久综合国产亚洲精品| 久久久精品免费免费高清| 亚洲精品色激情综合| 乱人伦中国视频| 91国产中文字幕| 狂野欧美激情性bbbbbb| 在线看a的网站| av国产久精品久网站免费入址| 不卡视频在线观看欧美| 国产视频首页在线观看| 久久精品国产a三级三级三级| 哪个播放器可以免费观看大片| 少妇 在线观看| av网站免费在线观看视频| 亚洲av免费高清在线观看| 亚洲成色77777| 久久 成人 亚洲| 国产探花极品一区二区| 国产高清国产精品国产三级| 午夜福利乱码中文字幕| 精品午夜福利在线看| 乱码一卡2卡4卡精品| 午夜av观看不卡| 国产精品久久久久久精品电影小说| 国产欧美亚洲国产| 免费久久久久久久精品成人欧美视频 | 蜜桃国产av成人99| 亚洲久久久国产精品| 菩萨蛮人人尽说江南好唐韦庄| 搡老乐熟女国产| 国产成人aa在线观看| 人成视频在线观看免费观看| 热99国产精品久久久久久7| 成人亚洲欧美一区二区av| 精品少妇内射三级| 日韩,欧美,国产一区二区三区| 欧美性感艳星| 色5月婷婷丁香| 亚洲欧洲日产国产| 久久狼人影院| 国产欧美另类精品又又久久亚洲欧美| 亚洲精品一区蜜桃| 国产麻豆69| 精品人妻一区二区三区麻豆| 日韩制服骚丝袜av| 国产深夜福利视频在线观看| 最新中文字幕久久久久| 成年av动漫网址| 久久久久精品久久久久真实原创| 狠狠精品人妻久久久久久综合| 欧美bdsm另类| 纯流量卡能插随身wifi吗| 美女主播在线视频| 国产欧美日韩一区二区三区在线| av福利片在线| 中文字幕免费在线视频6| 日韩中字成人| 成人二区视频| 日本午夜av视频| 晚上一个人看的免费电影| 午夜av观看不卡| 久久久久久人人人人人| 精品国产乱码久久久久久小说| 久久久久久久国产电影| 久久精品久久久久久噜噜老黄| 九九爱精品视频在线观看| 亚洲欧洲国产日韩| 日日啪夜夜爽| 七月丁香在线播放| 一个人免费看片子| 五月玫瑰六月丁香| 精品一品国产午夜福利视频| 夫妻午夜视频| 国产伦理片在线播放av一区| 午夜免费鲁丝| 五月开心婷婷网| 精品国产国语对白av| 插逼视频在线观看| 久久国内精品自在自线图片| 久久99一区二区三区| 精品一区二区三区视频在线| 伊人亚洲综合成人网| 国产黄色视频一区二区在线观看| 亚洲av中文av极速乱| 丰满饥渴人妻一区二区三| 免费人妻精品一区二区三区视频| 亚洲五月色婷婷综合| 一区二区三区精品91| 国产成人欧美| 视频区图区小说| 丰满少妇做爰视频| 久久久久久久久久久免费av| 在线观看免费高清a一片| 国产av精品麻豆| 99久久精品国产国产毛片| 欧美精品一区二区大全| 亚洲精品第二区| 亚洲天堂av无毛| 韩国精品一区二区三区 | 9热在线视频观看99| 1024视频免费在线观看| 亚洲av综合色区一区| 免费在线观看黄色视频的| 久久人人97超碰香蕉20202| 亚洲综合色惰| 成年动漫av网址| 久久ye,这里只有精品| 日韩,欧美,国产一区二区三区| 热re99久久国产66热| 久久人妻熟女aⅴ| 一二三四在线观看免费中文在 | 搡老乐熟女国产| 99re6热这里在线精品视频| 午夜福利视频精品|