• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Introducing voids around the interlayer of AlN by high temperature annealing

    2022-08-01 06:02:04JianweiBen賁建偉JiangliuLuo羅江流ZhichenLin林之晨XiaojuanSun孫曉娟XinkeLiu劉新科andXiaohuaLi黎曉華
    Chinese Physics B 2022年7期
    關鍵詞:江流新科

    Jianwei Ben(賁建偉), Jiangliu Luo(羅江流), Zhichen Lin(林之晨), Xiaojuan Sun(孫曉娟),Xinke Liu(劉新科),?, and Xiaohua Li(黎曉華)

    1College of Materials Science and Engineering,Shenzhen University-Hanshan Normal University Postdoctoral Workstation,Shenzhen University,Shenzhen 518060,China

    2College of Physics and Optoelectronic Engineering,Shenzhen University,Shenzhen 518060,China

    3State Key Laboratory of Luminescence and Applications,Changchun Institute of Optics,F(xiàn)ine Mechanics and Physics,Chinese Academy of Sciences,Changchun 130033,China

    Keywords: AlN template,AlN interlayer,voids,high-temperature annealing

    1. Introduction

    The introduction of voids is an effective method to improve the light-emitting efficiency (LEE) of III-nitride-based light-emitting devices(LEDs), release the stress and improve the crystal quality of III-nitride-based materials.[1–6]Many researches have reported that the LEE of III-nitride-based LEDs was increased by introducing the air voids into LED structures.For example, the LEE of an InGaN-based LED with an airvoid-embedded SiO2mask was enhanced by 96.8%compared to that of a conventional InGaN-based LED.[7]Aliaset al.fabricated an AlGaN-based ultraviolet LED with nitride/air distributed Bragg reflector structure and found that the light output power (LOP) was improved by a factor of about 1.67.[8]Leeet al.fabricated an AlGaN-based LED on periodic airvoid-incorporated nanoscale-patterned sapphire substrate and the LOP was enhanced by 67%.[9]Based on the published reports,it was found that the introduction of voids is beneficial,i.e.,it increases the LEE of nitride-LEDs.

    Researchers have adopted many methods to introduce voids into III-nitride materials, and most of the methods also effectively improve the quality of the III-nitride materials.The reported methods mainly include etching the substrate, using mask layers,decomposing the III-nitride materials and annealing the physical vapor deposited AlN(PVD-AlN).For example, Xieet al.and Yanet al.introduced voids during the epitaxial lateral overgrowth(ELO)of AlN and GaN on patterned sapphire,respectively.[10,11]The patterned sapphire substrates were fabricated by etching. Moreover, Caoet al.introduced voids into the a-plane GaN layer by etching the a-plane GaN templates.[12]Furthermore, the adoption of a mask layer is a common method to introduce voids, such as the growth of GaN or AlN on a patterned SiO2mask or van der Waals substrates, respectively.[13,14]The voids were formed during the growth process due to the difficulty of nucleation on the masks. Both methods mentioned above were used to achieve ELO of III-nitride materials. However, they require complex pretreatment of the substrates,and the epitaxial layers should be thick in order to form a flat surface. The decomposition of GaN is an effective method to introduce voids into AlGaNbased materials. Liuet al.introduced voids into the GaN layer by decomposing the GaN in H2,and Mitsunariet al.fabricated air voids by decomposing the GaN in GaN/AlN core-shell structure in order to grow GaN using the ELO method.[15,16]Recently,high-temperature annealing(HTA)has proved to be an effective and simple method to obtain high-quality AlN template, and the voids were introduced into PVD-AlN layer during HTA.[17–20]The formation mechanism of the voids has been explained as the coalescence of the crystal grains or the annihilation of the dislocations during recrystallization.However, it is difficult to obtain high-quality AlGaN-based materials using the PVD method directly. Considering that the AlGaN-based epitaxial structures are commonly grown by metal-organic chemical vapor deposition (MOCVD),out situdeposition process will be required if adopting the PVD method to introduce voids into the AlN layer, which will increase the complexity. Consequently, to introduce voids at a certain height into the AlN layer by adopting the PVD method is also too complex.

    In this work, to introduce the voids into the AlN layer at a controllable height, the AlN template with moderatetemperature AlN interlayer was designed and then annealed at 1700°C for one hour to induce the formation of voids,which was inspired by the formation mechanism of the voids in PVDAlN layer during the HTA process. The voids were introduced around the interlayer and the crystal quality of the AlN template improved. This work provides a potential simple method to introduce voids into AlN at a controllable height.

    2. Experimental procedure

    Thec-plane sapphire substrates were used to grow AlN layers by MOCVD(AIX 200/4 RF-S).NH3was used as the N precursor and TMAl was used as the Al precursor. First, the nucleation layer was grown at about 950°C with a V/III ratio of 11000. Then, the nucleation layer wasin situannealed at about 1330°C and the high-temperature AlN(HT-AlN)layer was grown at 1280°C with a V/III ratio of 1100. The AlN interlayer was grown at 1050°C with a V/III ratio of 3700.Finally, to introduce voids into AlN layer, the AlN template wasout situannealed at 1700°C for one hour in pure N2atmosphere.

    In order to characterize the properties of AlN templates,the x-ray diffraction rocking curve(XRC)was used to characterize the crystal quality of AlN(equipment model:BRUKER,D8 Discover), and Raman measurement was adopted to estimate the stress in the AlN layer(equipment model: HORIBA,HR Evolution). A scanning electron microscope (SEM) was used to characterize the cross-sectional morphology of AlN(equipment model: Hitachi S-400)and an atomic force microscope (AFM) was used to exhibit the surface morphology of the AlN interlayer(equipment model: BRUKER,MultiMode 8).

    3. Results and discussion

    Fig. 1. (a) The epitaxy structure of the reference sample. (b) The in situ temperature and 405 nm reflection monitoring curves of the reference sample. (c)The epitaxy structure of the IL-AlN template and(d)the corresponding in situ temperature and 405 nm reflection monitoring curves.

    Figure 1(a)shows the structure of the AlN template without AlN interlayer,which was designed as the reference sample. Thein situmonitoring curves of the reference sample are shown in Fig. 1(b). The HT-AlN was grown on the annealed nucleation layer without an interlayer. There is a total of 12.5 periods in thein situreflection curve and the curve decreases at first and then increases. It was found that the reflective intensity of the 6thperiod is the lowest among the 12.5 periods, which means the growth mode changes from three-dimensional to two-dimensional growth during the epitaxy of HT-AlN. The epitaxial structure of the AlN template with an interlayer(abbreviated as IL-AlN template)is shown in Fig. 1(c) and thein situmonitoring curves are shown in Fig. 1(d). Process 1 (about 220 s) and 3 (about 180 s) represent the growth of the AlN nucleation layer and AlN interlayer,respectively. Process 2(about 900 s)and 4(about 3000 s)represent the growth of HT-AlN.From Fig.1(d),it can be noted that there is a total of 12 periods in thein situreflection monitoring curve, and the growth of the interlayer is located at the first half of the 4thperiod. The results indicate that the interlayer is located at a height of about a 1/3 of the thickness of the AlN layer. A similar result can be obtained by analyzing the growth time. The intensity of the 4thperiod reflective curve drops sharply compared to that of the 3rdperiod,which indicates that three-dimensional island growth has occurred during the growth of the interlayer. After the growth of the AlN interlayer, the reflective intensity of the HT-AlN increases rapidly, which indicates that two-dimensional growth mode has occurred.

    Fig.2. (a)and(b)The(0002)plane and(10-12)plane XRCs of the reference sample with/without 1700 °C annealing,respectively; (c)and(d)the(0002)plane and(10-12)plane XRCs of the IL-AlN template with/without 1700 °C annealing,respectively; (e)the Raman shift spectrum of the IL-AlN template before and after 1700 °C annealing. (f)The enlarged picture of AlN E2(high)peaks in(e).

    The crystal quality of the as-grown AlN templates and annealed AlN templates was characterized by XRC. The results are shown in Figs. 2(a) to 2(d). After 1700°C annealing, the full width at half-maximum (FWHM) of the (10-12)plane XRC decreases evidently for both the reference sample and IL-AlN template. After annealing, the FWHM of the(10-12) plane XRC decreases from 971 arcsec to 292 arcsec for the IL-AlN template. Meanwhile, the FWHM of the(0002) plane XRC remains almost unchanged before and after annealing (110 arcsec and 138 arcsec). The results indicate that the dislocations were annihilated during the HTA process. According to the formula for calculating the dislocation density in Ref. [18], the calculated total dislocation density(TDD) of the annealed IL-AlN template is 5.1×108cm-2,which is one magnitude lower than that of the AlN before annealing (5.26×109cm-2). Furthermore, Raman measurement was taken to exhibit a change in the stress in the AlN layer. The Raman shift spectrum of the IL-AlN template before/after annealing is shown in Fig.2(e),and the peak of sapphire(418 cm-1)is taken as calibration.[21]Figure 2(f)is the enlarged picture of the AlN E2 (high) peak because the E2(high) peak of AlN is commonly used to calculate the stress in AlN.It was found that the E2(high)peak of AlN blueshifts after HTA,which means there is higher compressive stress in the annealed AlN layer than in the AlN without annealing.[22]The higher compressive stress proves the decrease in crystal boundary density and dislocation density in AlN.[18,22]The results indicate that the related physical phenomena are consistent with previous reports.[23,24]

    There are two theories to explain the formation mechanism of the voids in HTA PVD-AlN.One is that the voids are formed by the coalescence of the crystal boundaries, and the other is that the voids are formed by the migration and annihilation of the dislocations.[18–20]In fact, the two theories are fundamentally the same, since the crystal boundaries are the locations of dislocation aggregation.[25,26]Consequently,the dislocations will annihilate and form voids at the crystal boundaries with a high degree of probability during the HTA.Once the dislocations around the crystal boundary have almost been annihilated, the crystal boundary will disappear, which can be described as the coalescence of the crystal boundaries.Based on the above mechanisms and thein situreflection curves, as shown in Fig. 1, it can be inferred that the voids will appear around the middle of the reference sample after HTA.For the HTA IL-AlN template,the voids are expected to appear at a height of 1/3 of the thickness of the AlN epitaxial layer above the AlN/sapphire interface. In order to confirm these inferences, the cross-sectional SEM images of the AlN templates with and without annealing are shown in Fig.3.

    Fig.3. The cross-sectional SEM images at different locations of(a)the reference sample without annealing,(b)the annealed reference sample,(c)the IL-AlN template without annealing,(d)the annealed IL-AlN template with a magnification ratio of 45k and(e)the annealed IL-AlN template with a different magnification ratio. The voids are in the black circle and the channels are in the white-dashed rectangles.

    Figure 3(a)shows the cross-sectional images of the reference sample at different locations without annealing. No void can be found in the AlN layer. The cross-sectional images of the annealed reference sample at different locations are shown in Fig.3(b). It was found that the density of the voids is low and the voids tend to form in the middle of the sample with a wide distribution range. The phenomena can be explained by the low intensity of thein situreflection curve during the middle stage of the AlN growth,as shown in Fig.1(b). As a comparison, the cross-sectional SEM images of the IL-AlN template with/without annealing at different locations are shown in Figs.3(c)–3(e). Figure 3(c)shows the cross-sectional SEM images of the IL-AlN template without annealing at different locations. It can be clearly confirmed that there is no void in the AlN layer before annealing. The four pictures in Fig.3(d)are the cross-sectional SEM images of the IL-AlN template with 1700°C annealing at the same magnification ratio of 45k.The SEM images are calibrated by the black line at the interface of the AlN layers and sapphire substrates, and the positions of the voids are marked by the white-dashed line,which is slightly lower than the voids. From Fig.3(d),it can be seen that the voids are located at almost the same level above the AlN/sapphire interface. According to the SEM results, the thickness of the AlN layer is about 1.1 μm,and the voids are located at a horizontal level that is about 350 nm higher than that at the AlN/sapphire interface. In addition to the fact that the interlayer is located at a height of about 1/3 of the thickness of the AlN layer above the AlN/sapphire interface, the voids could be considered to be formed around the interlayer. Moreover, the square voids beneath the AlN/sapphire interface are formed by the decomposition of sapphire according to a previous report.[27]Figure 3(e) shows the cross-sectional SEM results of the annealed IL-AlN template with different magnification ratios. It is estimated that the voids are located around the interlayer and the possibility of pollution can be excluded.

    Fig. 4. The surface morphology of the AlN interlayer (a) before annealing and(b)after 1700 °C annealing for one hour.

    In order to confirm the possible formation mechanism on the voids in the AlN layer, the surface morphology of the AlN interlayer has been characterized by AFM, as shown in Fig. 4(a). It was confirmed that the surface of the AlN interlayer consists of large island-like structures, which confirms the existence of a large number of crystal boundaries. After 1700°C annealing, the islands will coalesce, and there are many islands with regular edge shape on the step-like surface morphology (some of the step edges are marked by arrows),as shown in Fig.4(b). Based on the AFM results,it was confirmed that the voids are formed by the coalescence of the crystal boundaries. However,it should be noted that there are channels on some voids,as shown in the white-dashed rectangles in Figs.3(b)and 3(e).These channels connect the voids to the surface of the AlN templates. This phenomenon may provide another possibility that some voids may be formed by the decomposition of AlN.Further research is required to confirm this inference.

    4. Conclusion and perspectives

    Voids have been introduced around the AlN interlayer by annealing the AlN template with the AlN interlayer. The formation mechanism of the voids is mainly attributed to the coalescence of crystal boundaries, but some of the voids may be formed by the decomposition of AlN. Meanwhile,the dislocation density decreased to 5.10×108cm-2from 5.26×109cm-2. This work provides a potential method to introduce voids into AlN at a designated layer with a certain height, which improves the crystal quality of AlN. There are still some issues to be improved in further research work. For example,the density and volume of the voids should be further increased,and the voids should be introduced periodically into the AlN layer along with the growth orientation.

    Acknowledgments

    Project supported by the National Key Research and Development Program of China(Grant No.2017YFB0404100),the National Natural Science Foundation of China (Grant Nos. 61827813, 61974144, and 62004127), the Key Research Program of the Chinese Academy of Sciences(Grant No. XDPB22), the Key-Area Research and Development Program of Guangdong Province, China (Grant Nos. 2020B010169001 and 2020B010174003), and the Science and Technology Foundation of Shenzhen (Grant No.JSGG20191129114216474).

    猜你喜歡
    江流新科
    新科世界冠軍有他們五位
    羽毛球(2023年6期)2023-06-08 08:04:32
    A self-driven photodetector based on a SnS2/WS2 van der Waals heterojunction with an Al2O3 capping layer
    江流兒故事類型與民間“報冤”心態(tài)
    戲曲研究(2022年1期)2022-08-26 09:07:04
    吹響鄉(xiāng)村文化振興的新號角——讀《橫江流韻》隨想
    西江月(2021年2期)2021-11-24 01:16:14
    新科空調(diào)逆勢增長200% 2019年銷售目標200萬套
    家用電器(2019年1期)2019-09-10 07:22:44
    曲江流飲
    目 光
    雪蓮(2016年4期)2016-05-26 12:13:23
    西游記之大圣歸來
    品牌新征程 新科發(fā)力電視行業(yè)
    電腦迷(2015年5期)2015-05-30 10:48:04
    品牌新征程 新科發(fā)力電視行業(yè)
    電腦迷(2015年10期)2015-04-29 00:44:03
    色综合色国产| 两个人的视频大全免费| 3wmmmm亚洲av在线观看| 少妇裸体淫交视频免费看高清| 观看美女的网站| 欧美日韩国产mv在线观看视频 | 大香蕉久久网| 国产av在哪里看| 黄片无遮挡物在线观看| 免费无遮挡裸体视频| 欧美+日韩+精品| 麻豆成人av视频| 国产精品综合久久久久久久免费| 在线免费观看的www视频| 少妇猛男粗大的猛烈进出视频 | 91精品一卡2卡3卡4卡| 午夜福利网站1000一区二区三区| 久久久国产一区二区| 男插女下体视频免费在线播放| 午夜福利成人在线免费观看| 成人亚洲精品一区在线观看 | 伊人久久精品亚洲午夜| 成年版毛片免费区| 十八禁网站网址无遮挡 | 97超视频在线观看视频| 久久久色成人| 国产一区有黄有色的免费视频 | 精品人妻视频免费看| 91av网一区二区| 欧美bdsm另类| 亚洲婷婷狠狠爱综合网| 精品亚洲乱码少妇综合久久| 老司机影院毛片| 久久国产乱子免费精品| 久久精品久久精品一区二区三区| 亚洲国产成人一精品久久久| 久久久久久久久久人人人人人人| 99久久精品热视频| 午夜福利视频1000在线观看| 中文字幕久久专区| 男女边摸边吃奶| 国产成人福利小说| 亚洲国产色片| 欧美成人精品欧美一级黄| 亚洲精品影视一区二区三区av| 成人漫画全彩无遮挡| 一级av片app| 日韩视频在线欧美| 亚洲激情五月婷婷啪啪| 欧美性猛交╳xxx乱大交人| 在线 av 中文字幕| 午夜福利成人在线免费观看| 夜夜爽夜夜爽视频| 中国美白少妇内射xxxbb| 精品少妇黑人巨大在线播放| 别揉我奶头 嗯啊视频| 天堂av国产一区二区熟女人妻| 久久久久国产网址| 国产高潮美女av| 免费高清在线观看视频在线观看| 最新中文字幕久久久久| 国产欧美另类精品又又久久亚洲欧美| 麻豆国产97在线/欧美| 搡老妇女老女人老熟妇| 一区二区三区免费毛片| 男人爽女人下面视频在线观看| 少妇人妻精品综合一区二区| 国产精品蜜桃在线观看| 久久精品熟女亚洲av麻豆精品 | .国产精品久久| 欧美精品一区二区大全| 亚洲av日韩在线播放| 亚洲激情五月婷婷啪啪| 国产一区二区三区av在线| 久久这里只有精品中国| 搡女人真爽免费视频火全软件| 三级国产精品欧美在线观看| 国产精品.久久久| 高清视频免费观看一区二区 | 一二三四中文在线观看免费高清| 免费观看的影片在线观看| 日本黄色片子视频| 十八禁国产超污无遮挡网站| 波多野结衣巨乳人妻| 97超碰精品成人国产| 国产成人freesex在线| www.av在线官网国产| 成年版毛片免费区| 亚洲欧美精品自产自拍| 男女啪啪激烈高潮av片| 日韩伦理黄色片| 国产精品一区二区三区四区久久| 一级二级三级毛片免费看| 婷婷色综合www| 久久精品国产亚洲网站| 黄色一级大片看看| 国产成年人精品一区二区| 老司机影院成人| 成人一区二区视频在线观看| 亚洲乱码一区二区免费版| 一个人免费在线观看电影| 国产v大片淫在线免费观看| 99久久九九国产精品国产免费| 精品一区二区免费观看| 亚洲精品日本国产第一区| 80岁老熟妇乱子伦牲交| 婷婷色麻豆天堂久久| 一级片'在线观看视频| 国语对白做爰xxxⅹ性视频网站| 国产片特级美女逼逼视频| 亚洲人与动物交配视频| 欧美成人精品欧美一级黄| 日韩一区二区视频免费看| 网址你懂的国产日韩在线| 亚洲怡红院男人天堂| 美女cb高潮喷水在线观看| 国产色婷婷99| 中文欧美无线码| 免费观看无遮挡的男女| 可以在线观看毛片的网站| 高清午夜精品一区二区三区| 看非洲黑人一级黄片| 男女边吃奶边做爰视频| 日本免费a在线| 久久久色成人| 免费看日本二区| 少妇的逼水好多| 国内少妇人妻偷人精品xxx网站| 亚洲最大成人av| 免费看日本二区| 免费av不卡在线播放| 最近最新中文字幕免费大全7| 一本一本综合久久| 特级一级黄色大片| 99久久中文字幕三级久久日本| 国产精品久久久久久精品电影小说 | 国产成人91sexporn| 日本一二三区视频观看| 国产精品不卡视频一区二区| 国内揄拍国产精品人妻在线| 久久国内精品自在自线图片| 欧美人与善性xxx| 国产伦精品一区二区三区视频9| 禁无遮挡网站| 日韩国内少妇激情av| 精品一区二区免费观看| 久久久久性生活片| 99视频精品全部免费 在线| 国产国拍精品亚洲av在线观看| 一级黄片播放器| 少妇熟女aⅴ在线视频| 七月丁香在线播放| 久久久久性生活片| 熟女电影av网| 欧美日韩视频高清一区二区三区二| 久久久久久久大尺度免费视频| 九九在线视频观看精品| 超碰av人人做人人爽久久| 99热这里只有精品一区| 91久久精品电影网| 两个人视频免费观看高清| 精品久久久久久久久久久久久| 看免费成人av毛片| 久久久亚洲精品成人影院| 亚洲成人一二三区av| 老女人水多毛片| 免费看a级黄色片| 亚洲国产av新网站| 亚州av有码| 欧美激情在线99| 国产精品一二三区在线看| 亚洲av成人精品一区久久| 看十八女毛片水多多多| 少妇被粗大猛烈的视频| 一区二区三区四区激情视频| 欧美日韩亚洲高清精品| 日韩在线高清观看一区二区三区| 你懂的网址亚洲精品在线观看| 日本午夜av视频| 97超视频在线观看视频| 最后的刺客免费高清国语| 99热这里只有精品一区| 国产爱豆传媒在线观看| 精品久久久久久久末码| 国产在线男女| 美女国产视频在线观看| 日本黄色片子视频| 亚洲国产高清在线一区二区三| 中国国产av一级| 久久久久久久久久久丰满| 国产高潮美女av| 一区二区三区四区激情视频| 午夜免费男女啪啪视频观看| 国产 亚洲一区二区三区 | 久久97久久精品| 国产亚洲av片在线观看秒播厂 | 午夜福利视频1000在线观看| 一个人看视频在线观看www免费| 在线免费观看的www视频| 麻豆精品久久久久久蜜桃| 亚洲成人av在线免费| 91久久精品国产一区二区三区| 成人亚洲精品av一区二区| 欧美日韩综合久久久久久| 日韩三级伦理在线观看| 毛片女人毛片| 中文在线观看免费www的网站| 欧美区成人在线视频| 精品一区二区免费观看| 久久97久久精品| 国产中年淑女户外野战色| 日韩电影二区| 欧美三级亚洲精品| 日韩三级伦理在线观看| 在线免费十八禁| 精品国内亚洲2022精品成人| 看十八女毛片水多多多| 久久精品久久久久久噜噜老黄| 搡老乐熟女国产| 男人爽女人下面视频在线观看| 欧美97在线视频| 国产黄频视频在线观看| 麻豆成人午夜福利视频| 亚洲最大成人中文| 舔av片在线| 又爽又黄a免费视频| 只有这里有精品99| 国产精品久久久久久精品电影小说 | 久久人人爽人人片av| 国产精品1区2区在线观看.| 国国产精品蜜臀av免费| 日本一本二区三区精品| 亚洲国产av新网站| 日本黄色片子视频| 午夜福利高清视频| 18禁在线播放成人免费| 中文字幕免费在线视频6| 精品不卡国产一区二区三区| 亚洲国产av新网站| 国产黄色小视频在线观看| 亚洲人成网站在线播| 久久久久久久久久成人| 午夜福利在线在线| 久久精品久久精品一区二区三区| 亚洲欧美成人精品一区二区| 麻豆国产97在线/欧美| av线在线观看网站| 97人妻精品一区二区三区麻豆| 成人性生交大片免费视频hd| .国产精品久久| 国产精品女同一区二区软件| 午夜视频国产福利| 国产精品人妻久久久影院| 久久草成人影院| 精品人妻偷拍中文字幕| 性色avwww在线观看| 国产探花极品一区二区| 美女xxoo啪啪120秒动态图| 高清在线视频一区二区三区| 91久久精品电影网| 免费大片18禁| 熟妇人妻不卡中文字幕| 少妇高潮的动态图| 亚洲成人精品中文字幕电影| 久久久精品欧美日韩精品| 久久精品夜色国产| 欧美日本视频| 草草在线视频免费看| 国产乱来视频区| 国产精品一区二区性色av| 嫩草影院入口| 亚洲色图av天堂| 嫩草影院精品99| 亚洲av成人精品一区久久| 男女下面进入的视频免费午夜| 97精品久久久久久久久久精品| 精品国产露脸久久av麻豆 | 精品久久久久久久人妻蜜臀av| 最近最新中文字幕免费大全7| 女的被弄到高潮叫床怎么办| 美女大奶头视频| 久99久视频精品免费| 最近中文字幕2019免费版| 国产精品精品国产色婷婷| 国产91av在线免费观看| 精品不卡国产一区二区三区| 久久久成人免费电影| 91精品伊人久久大香线蕉| 久久草成人影院| 欧美激情久久久久久爽电影| 一个人看的www免费观看视频| 一级a做视频免费观看| 久久99热6这里只有精品| 久久久久国产网址| 久久这里只有精品中国| 久久久久网色| 日韩在线高清观看一区二区三区| 91午夜精品亚洲一区二区三区| 亚洲精品国产成人久久av| 亚洲精品第二区| 一个人看视频在线观看www免费| 成人国产麻豆网| av女优亚洲男人天堂| 伊人久久精品亚洲午夜| 高清日韩中文字幕在线| av女优亚洲男人天堂| av专区在线播放| 日韩一本色道免费dvd| 精品一区在线观看国产| 免费黄网站久久成人精品| 身体一侧抽搐| 2021少妇久久久久久久久久久| 欧美最新免费一区二区三区| 国产黄色小视频在线观看| 91精品一卡2卡3卡4卡| 亚洲欧洲日产国产| 波多野结衣巨乳人妻| 午夜激情久久久久久久| 老师上课跳d突然被开到最大视频| 中文天堂在线官网| 午夜福利视频精品| 欧美变态另类bdsm刘玥| 在线观看一区二区三区| 亚洲四区av| 国产日韩欧美在线精品| 中文欧美无线码| 高清欧美精品videossex| 观看免费一级毛片| 在线观看av片永久免费下载| 少妇的逼好多水| 免费看av在线观看网站| 免费av不卡在线播放| 淫秽高清视频在线观看| 九九爱精品视频在线观看| 欧美日韩一区二区视频在线观看视频在线 | 秋霞在线观看毛片| kizo精华| 男女边摸边吃奶| 天天躁日日操中文字幕| 成人一区二区视频在线观看| 亚洲成人中文字幕在线播放| 亚洲国产色片| 久久久久久久久久久免费av| 亚洲一级一片aⅴ在线观看| 三级国产精品片| 人体艺术视频欧美日本| 中国国产av一级| 欧美97在线视频| 婷婷六月久久综合丁香| 国产成人aa在线观看| 欧美激情久久久久久爽电影| 国产成人福利小说| 日日啪夜夜爽| 2021天堂中文幕一二区在线观| 欧美xxxx黑人xx丫x性爽| 联通29元200g的流量卡| 国产一区二区三区av在线| 韩国高清视频一区二区三区| 美女大奶头视频| 免费看日本二区| 少妇人妻一区二区三区视频| 欧美日韩亚洲高清精品| 久久这里只有精品中国| 午夜久久久久精精品| 草草在线视频免费看| 亚洲精品乱码久久久v下载方式| 久久精品国产自在天天线| 国产精品伦人一区二区| 国产一区二区三区av在线| 美女高潮的动态| av在线观看视频网站免费| 免费黄色在线免费观看| 国产精品福利在线免费观看| 国产单亲对白刺激| 亚洲成人精品中文字幕电影| 亚洲精品国产av蜜桃| 国产黄频视频在线观看| 美女cb高潮喷水在线观看| 亚洲在久久综合| 日本猛色少妇xxxxx猛交久久| 欧美高清性xxxxhd video| 汤姆久久久久久久影院中文字幕 | 尤物成人国产欧美一区二区三区| 日韩一本色道免费dvd| 大片免费播放器 马上看| 亚洲经典国产精华液单| 美女cb高潮喷水在线观看| 亚洲欧美精品自产自拍| 亚洲人与动物交配视频| 中文欧美无线码| 久热久热在线精品观看| 日韩精品有码人妻一区| 又爽又黄a免费视频| 美女黄网站色视频| 欧美97在线视频| 亚洲欧洲日产国产| 国产伦在线观看视频一区| 国产黄色小视频在线观看| 黄色配什么色好看| 一级毛片我不卡| 国产有黄有色有爽视频| 国产片特级美女逼逼视频| 全区人妻精品视频| 在线观看免费高清a一片| 麻豆成人av视频| 精品久久久久久久久av| 99久久人妻综合| 日本色播在线视频| 狂野欧美白嫩少妇大欣赏| 永久网站在线| 一区二区三区免费毛片| 日韩国内少妇激情av| 亚洲内射少妇av| 婷婷色av中文字幕| 国产伦精品一区二区三区视频9| 极品少妇高潮喷水抽搐| 高清av免费在线| 秋霞伦理黄片| 成人特级av手机在线观看| 中国美白少妇内射xxxbb| 嫩草影院新地址| 网址你懂的国产日韩在线| 一区二区三区乱码不卡18| 亚洲av日韩在线播放| 国产黄色视频一区二区在线观看| 国产午夜精品久久久久久一区二区三区| 国产69精品久久久久777片| 精品人妻视频免费看| 99热这里只有精品一区| 国产成年人精品一区二区| av专区在线播放| 欧美性猛交╳xxx乱大交人| 亚洲最大成人中文| 久久久久九九精品影院| 中文字幕av成人在线电影| 成年免费大片在线观看| eeuss影院久久| 床上黄色一级片| 免费av观看视频| 日韩制服骚丝袜av| 免费黄色在线免费观看| 欧美区成人在线视频| 欧美激情在线99| 日本熟妇午夜| 日本猛色少妇xxxxx猛交久久| 内地一区二区视频在线| 亚洲精品亚洲一区二区| 久久久久九九精品影院| 久久久久国产网址| or卡值多少钱| 国产免费又黄又爽又色| 3wmmmm亚洲av在线观看| 久久精品国产亚洲网站| 亚洲欧美成人综合另类久久久| 最近的中文字幕免费完整| 亚洲欧美一区二区三区黑人 | 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 午夜福利视频1000在线观看| 少妇高潮的动态图| 亚洲av电影在线观看一区二区三区 | 日本欧美国产在线视频| 日韩国内少妇激情av| 一级a做视频免费观看| 99热这里只有是精品50| 26uuu在线亚洲综合色| 婷婷色av中文字幕| 久久久久久九九精品二区国产| 插阴视频在线观看视频| 国产午夜精品论理片| 一边亲一边摸免费视频| 中文字幕人妻熟人妻熟丝袜美| 国产 一区精品| 三级国产精品片| 国内少妇人妻偷人精品xxx网站| 大香蕉97超碰在线| .国产精品久久| 亚洲最大成人av| 国产高清三级在线| 日韩中字成人| 91精品国产九色| 午夜福利在线在线| 男人爽女人下面视频在线观看| 欧美区成人在线视频| 毛片一级片免费看久久久久| 91狼人影院| 一级毛片电影观看| 啦啦啦韩国在线观看视频| www.色视频.com| 18禁动态无遮挡网站| 哪个播放器可以免费观看大片| 日韩 亚洲 欧美在线| 人体艺术视频欧美日本| av在线播放精品| 尾随美女入室| 亚洲av成人av| av在线老鸭窝| 国内揄拍国产精品人妻在线| 男人狂女人下面高潮的视频| 国产精品福利在线免费观看| 秋霞在线观看毛片| 日日啪夜夜撸| 精品人妻熟女av久视频| 永久免费av网站大全| 国产精品嫩草影院av在线观看| 免费观看av网站的网址| 69av精品久久久久久| www.av在线官网国产| 国产成人a∨麻豆精品| 看十八女毛片水多多多| 免费观看性生交大片5| 国产伦在线观看视频一区| 男女边吃奶边做爰视频| 人人妻人人看人人澡| 九色成人免费人妻av| 欧美一级a爱片免费观看看| 亚洲av成人av| 亚洲丝袜综合中文字幕| 国产亚洲91精品色在线| a级一级毛片免费在线观看| 91久久精品国产一区二区三区| 中文字幕av在线有码专区| 激情 狠狠 欧美| 尾随美女入室| 一二三四中文在线观看免费高清| 国产精品综合久久久久久久免费| 亚洲精品国产av蜜桃| 国产黄a三级三级三级人| 黄色一级大片看看| 水蜜桃什么品种好| 免费播放大片免费观看视频在线观看| 秋霞伦理黄片| 亚洲高清免费不卡视频| 日韩一本色道免费dvd| 国产久久久一区二区三区| 精品久久久久久久久av| 国产黄片美女视频| 非洲黑人性xxxx精品又粗又长| 久久99热这里只有精品18| 国产又色又爽无遮挡免| 午夜老司机福利剧场| 婷婷色麻豆天堂久久| 精品人妻一区二区三区麻豆| or卡值多少钱| 夜夜看夜夜爽夜夜摸| 国产精品一二三区在线看| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 国产伦一二天堂av在线观看| 日本一二三区视频观看| 精品人妻视频免费看| 欧美97在线视频| 日韩av在线大香蕉| 亚洲精品视频女| 色尼玛亚洲综合影院| 男女国产视频网站| 在线天堂最新版资源| 一级av片app| 2018国产大陆天天弄谢| 成年版毛片免费区| 久久人人爽人人片av| 最近最新中文字幕免费大全7| 欧美+日韩+精品| 成年人午夜在线观看视频 | 免费看av在线观看网站| 午夜激情久久久久久久| 国产白丝娇喘喷水9色精品| 亚洲成人久久爱视频| 色综合亚洲欧美另类图片| 尾随美女入室| 好男人视频免费观看在线| 身体一侧抽搐| 人妻系列 视频| 亚洲欧洲国产日韩| 久久久a久久爽久久v久久| 亚洲18禁久久av| 日韩视频在线欧美| 国产亚洲最大av| 日本熟妇午夜| 亚洲高清免费不卡视频| 人妻夜夜爽99麻豆av| 亚洲精品第二区| 97人妻精品一区二区三区麻豆| 蜜桃久久精品国产亚洲av| 日韩欧美三级三区| 日韩视频在线欧美| 丰满乱子伦码专区| 国产精品99久久久久久久久| 久久午夜福利片| 午夜福利在线观看免费完整高清在| 日本欧美国产在线视频| 国产乱人视频| 干丝袜人妻中文字幕| 免费av毛片视频| 国产色婷婷99| 最近视频中文字幕2019在线8| 国产伦一二天堂av在线观看| 欧美激情在线99| 国产精品一区二区在线观看99 | 欧美一级a爱片免费观看看| 激情 狠狠 欧美| 色综合色国产| 国产在视频线精品| 日韩av不卡免费在线播放| 免费看av在线观看网站| 亚洲成人中文字幕在线播放| 亚洲国产精品国产精品| 国产欧美另类精品又又久久亚洲欧美| 国产午夜精品一二区理论片| 亚洲av一区综合| .国产精品久久| 精品欧美国产一区二区三| 天天躁夜夜躁狠狠久久av| 干丝袜人妻中文字幕| 精品一区二区免费观看| 成人午夜精彩视频在线观看| 1000部很黄的大片|