• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Introducing voids around the interlayer of AlN by high temperature annealing

    2022-08-01 06:02:04JianweiBen賁建偉JiangliuLuo羅江流ZhichenLin林之晨XiaojuanSun孫曉娟XinkeLiu劉新科andXiaohuaLi黎曉華
    Chinese Physics B 2022年7期
    關鍵詞:江流新科

    Jianwei Ben(賁建偉), Jiangliu Luo(羅江流), Zhichen Lin(林之晨), Xiaojuan Sun(孫曉娟),Xinke Liu(劉新科),?, and Xiaohua Li(黎曉華)

    1College of Materials Science and Engineering,Shenzhen University-Hanshan Normal University Postdoctoral Workstation,Shenzhen University,Shenzhen 518060,China

    2College of Physics and Optoelectronic Engineering,Shenzhen University,Shenzhen 518060,China

    3State Key Laboratory of Luminescence and Applications,Changchun Institute of Optics,F(xiàn)ine Mechanics and Physics,Chinese Academy of Sciences,Changchun 130033,China

    Keywords: AlN template,AlN interlayer,voids,high-temperature annealing

    1. Introduction

    The introduction of voids is an effective method to improve the light-emitting efficiency (LEE) of III-nitride-based light-emitting devices(LEDs), release the stress and improve the crystal quality of III-nitride-based materials.[1–6]Many researches have reported that the LEE of III-nitride-based LEDs was increased by introducing the air voids into LED structures.For example, the LEE of an InGaN-based LED with an airvoid-embedded SiO2mask was enhanced by 96.8%compared to that of a conventional InGaN-based LED.[7]Aliaset al.fabricated an AlGaN-based ultraviolet LED with nitride/air distributed Bragg reflector structure and found that the light output power (LOP) was improved by a factor of about 1.67.[8]Leeet al.fabricated an AlGaN-based LED on periodic airvoid-incorporated nanoscale-patterned sapphire substrate and the LOP was enhanced by 67%.[9]Based on the published reports,it was found that the introduction of voids is beneficial,i.e.,it increases the LEE of nitride-LEDs.

    Researchers have adopted many methods to introduce voids into III-nitride materials, and most of the methods also effectively improve the quality of the III-nitride materials.The reported methods mainly include etching the substrate, using mask layers,decomposing the III-nitride materials and annealing the physical vapor deposited AlN(PVD-AlN).For example, Xieet al.and Yanet al.introduced voids during the epitaxial lateral overgrowth(ELO)of AlN and GaN on patterned sapphire,respectively.[10,11]The patterned sapphire substrates were fabricated by etching. Moreover, Caoet al.introduced voids into the a-plane GaN layer by etching the a-plane GaN templates.[12]Furthermore, the adoption of a mask layer is a common method to introduce voids, such as the growth of GaN or AlN on a patterned SiO2mask or van der Waals substrates, respectively.[13,14]The voids were formed during the growth process due to the difficulty of nucleation on the masks. Both methods mentioned above were used to achieve ELO of III-nitride materials. However, they require complex pretreatment of the substrates,and the epitaxial layers should be thick in order to form a flat surface. The decomposition of GaN is an effective method to introduce voids into AlGaNbased materials. Liuet al.introduced voids into the GaN layer by decomposing the GaN in H2,and Mitsunariet al.fabricated air voids by decomposing the GaN in GaN/AlN core-shell structure in order to grow GaN using the ELO method.[15,16]Recently,high-temperature annealing(HTA)has proved to be an effective and simple method to obtain high-quality AlN template, and the voids were introduced into PVD-AlN layer during HTA.[17–20]The formation mechanism of the voids has been explained as the coalescence of the crystal grains or the annihilation of the dislocations during recrystallization.However, it is difficult to obtain high-quality AlGaN-based materials using the PVD method directly. Considering that the AlGaN-based epitaxial structures are commonly grown by metal-organic chemical vapor deposition (MOCVD),out situdeposition process will be required if adopting the PVD method to introduce voids into the AlN layer, which will increase the complexity. Consequently, to introduce voids at a certain height into the AlN layer by adopting the PVD method is also too complex.

    In this work, to introduce the voids into the AlN layer at a controllable height, the AlN template with moderatetemperature AlN interlayer was designed and then annealed at 1700°C for one hour to induce the formation of voids,which was inspired by the formation mechanism of the voids in PVDAlN layer during the HTA process. The voids were introduced around the interlayer and the crystal quality of the AlN template improved. This work provides a potential simple method to introduce voids into AlN at a controllable height.

    2. Experimental procedure

    Thec-plane sapphire substrates were used to grow AlN layers by MOCVD(AIX 200/4 RF-S).NH3was used as the N precursor and TMAl was used as the Al precursor. First, the nucleation layer was grown at about 950°C with a V/III ratio of 11000. Then, the nucleation layer wasin situannealed at about 1330°C and the high-temperature AlN(HT-AlN)layer was grown at 1280°C with a V/III ratio of 1100. The AlN interlayer was grown at 1050°C with a V/III ratio of 3700.Finally, to introduce voids into AlN layer, the AlN template wasout situannealed at 1700°C for one hour in pure N2atmosphere.

    In order to characterize the properties of AlN templates,the x-ray diffraction rocking curve(XRC)was used to characterize the crystal quality of AlN(equipment model:BRUKER,D8 Discover), and Raman measurement was adopted to estimate the stress in the AlN layer(equipment model: HORIBA,HR Evolution). A scanning electron microscope (SEM) was used to characterize the cross-sectional morphology of AlN(equipment model: Hitachi S-400)and an atomic force microscope (AFM) was used to exhibit the surface morphology of the AlN interlayer(equipment model: BRUKER,MultiMode 8).

    3. Results and discussion

    Fig. 1. (a) The epitaxy structure of the reference sample. (b) The in situ temperature and 405 nm reflection monitoring curves of the reference sample. (c)The epitaxy structure of the IL-AlN template and(d)the corresponding in situ temperature and 405 nm reflection monitoring curves.

    Figure 1(a)shows the structure of the AlN template without AlN interlayer,which was designed as the reference sample. Thein situmonitoring curves of the reference sample are shown in Fig. 1(b). The HT-AlN was grown on the annealed nucleation layer without an interlayer. There is a total of 12.5 periods in thein situreflection curve and the curve decreases at first and then increases. It was found that the reflective intensity of the 6thperiod is the lowest among the 12.5 periods, which means the growth mode changes from three-dimensional to two-dimensional growth during the epitaxy of HT-AlN. The epitaxial structure of the AlN template with an interlayer(abbreviated as IL-AlN template)is shown in Fig. 1(c) and thein situmonitoring curves are shown in Fig. 1(d). Process 1 (about 220 s) and 3 (about 180 s) represent the growth of the AlN nucleation layer and AlN interlayer,respectively. Process 2(about 900 s)and 4(about 3000 s)represent the growth of HT-AlN.From Fig.1(d),it can be noted that there is a total of 12 periods in thein situreflection monitoring curve, and the growth of the interlayer is located at the first half of the 4thperiod. The results indicate that the interlayer is located at a height of about a 1/3 of the thickness of the AlN layer. A similar result can be obtained by analyzing the growth time. The intensity of the 4thperiod reflective curve drops sharply compared to that of the 3rdperiod,which indicates that three-dimensional island growth has occurred during the growth of the interlayer. After the growth of the AlN interlayer, the reflective intensity of the HT-AlN increases rapidly, which indicates that two-dimensional growth mode has occurred.

    Fig.2. (a)and(b)The(0002)plane and(10-12)plane XRCs of the reference sample with/without 1700 °C annealing,respectively; (c)and(d)the(0002)plane and(10-12)plane XRCs of the IL-AlN template with/without 1700 °C annealing,respectively; (e)the Raman shift spectrum of the IL-AlN template before and after 1700 °C annealing. (f)The enlarged picture of AlN E2(high)peaks in(e).

    The crystal quality of the as-grown AlN templates and annealed AlN templates was characterized by XRC. The results are shown in Figs. 2(a) to 2(d). After 1700°C annealing, the full width at half-maximum (FWHM) of the (10-12)plane XRC decreases evidently for both the reference sample and IL-AlN template. After annealing, the FWHM of the(10-12) plane XRC decreases from 971 arcsec to 292 arcsec for the IL-AlN template. Meanwhile, the FWHM of the(0002) plane XRC remains almost unchanged before and after annealing (110 arcsec and 138 arcsec). The results indicate that the dislocations were annihilated during the HTA process. According to the formula for calculating the dislocation density in Ref. [18], the calculated total dislocation density(TDD) of the annealed IL-AlN template is 5.1×108cm-2,which is one magnitude lower than that of the AlN before annealing (5.26×109cm-2). Furthermore, Raman measurement was taken to exhibit a change in the stress in the AlN layer. The Raman shift spectrum of the IL-AlN template before/after annealing is shown in Fig.2(e),and the peak of sapphire(418 cm-1)is taken as calibration.[21]Figure 2(f)is the enlarged picture of the AlN E2 (high) peak because the E2(high) peak of AlN is commonly used to calculate the stress in AlN.It was found that the E2(high)peak of AlN blueshifts after HTA,which means there is higher compressive stress in the annealed AlN layer than in the AlN without annealing.[22]The higher compressive stress proves the decrease in crystal boundary density and dislocation density in AlN.[18,22]The results indicate that the related physical phenomena are consistent with previous reports.[23,24]

    There are two theories to explain the formation mechanism of the voids in HTA PVD-AlN.One is that the voids are formed by the coalescence of the crystal boundaries, and the other is that the voids are formed by the migration and annihilation of the dislocations.[18–20]In fact, the two theories are fundamentally the same, since the crystal boundaries are the locations of dislocation aggregation.[25,26]Consequently,the dislocations will annihilate and form voids at the crystal boundaries with a high degree of probability during the HTA.Once the dislocations around the crystal boundary have almost been annihilated, the crystal boundary will disappear, which can be described as the coalescence of the crystal boundaries.Based on the above mechanisms and thein situreflection curves, as shown in Fig. 1, it can be inferred that the voids will appear around the middle of the reference sample after HTA.For the HTA IL-AlN template,the voids are expected to appear at a height of 1/3 of the thickness of the AlN epitaxial layer above the AlN/sapphire interface. In order to confirm these inferences, the cross-sectional SEM images of the AlN templates with and without annealing are shown in Fig.3.

    Fig.3. The cross-sectional SEM images at different locations of(a)the reference sample without annealing,(b)the annealed reference sample,(c)the IL-AlN template without annealing,(d)the annealed IL-AlN template with a magnification ratio of 45k and(e)the annealed IL-AlN template with a different magnification ratio. The voids are in the black circle and the channels are in the white-dashed rectangles.

    Figure 3(a)shows the cross-sectional images of the reference sample at different locations without annealing. No void can be found in the AlN layer. The cross-sectional images of the annealed reference sample at different locations are shown in Fig.3(b). It was found that the density of the voids is low and the voids tend to form in the middle of the sample with a wide distribution range. The phenomena can be explained by the low intensity of thein situreflection curve during the middle stage of the AlN growth,as shown in Fig.1(b). As a comparison, the cross-sectional SEM images of the IL-AlN template with/without annealing at different locations are shown in Figs.3(c)–3(e). Figure 3(c)shows the cross-sectional SEM images of the IL-AlN template without annealing at different locations. It can be clearly confirmed that there is no void in the AlN layer before annealing. The four pictures in Fig.3(d)are the cross-sectional SEM images of the IL-AlN template with 1700°C annealing at the same magnification ratio of 45k.The SEM images are calibrated by the black line at the interface of the AlN layers and sapphire substrates, and the positions of the voids are marked by the white-dashed line,which is slightly lower than the voids. From Fig.3(d),it can be seen that the voids are located at almost the same level above the AlN/sapphire interface. According to the SEM results, the thickness of the AlN layer is about 1.1 μm,and the voids are located at a horizontal level that is about 350 nm higher than that at the AlN/sapphire interface. In addition to the fact that the interlayer is located at a height of about 1/3 of the thickness of the AlN layer above the AlN/sapphire interface, the voids could be considered to be formed around the interlayer. Moreover, the square voids beneath the AlN/sapphire interface are formed by the decomposition of sapphire according to a previous report.[27]Figure 3(e) shows the cross-sectional SEM results of the annealed IL-AlN template with different magnification ratios. It is estimated that the voids are located around the interlayer and the possibility of pollution can be excluded.

    Fig. 4. The surface morphology of the AlN interlayer (a) before annealing and(b)after 1700 °C annealing for one hour.

    In order to confirm the possible formation mechanism on the voids in the AlN layer, the surface morphology of the AlN interlayer has been characterized by AFM, as shown in Fig. 4(a). It was confirmed that the surface of the AlN interlayer consists of large island-like structures, which confirms the existence of a large number of crystal boundaries. After 1700°C annealing, the islands will coalesce, and there are many islands with regular edge shape on the step-like surface morphology (some of the step edges are marked by arrows),as shown in Fig.4(b). Based on the AFM results,it was confirmed that the voids are formed by the coalescence of the crystal boundaries. However,it should be noted that there are channels on some voids,as shown in the white-dashed rectangles in Figs.3(b)and 3(e).These channels connect the voids to the surface of the AlN templates. This phenomenon may provide another possibility that some voids may be formed by the decomposition of AlN.Further research is required to confirm this inference.

    4. Conclusion and perspectives

    Voids have been introduced around the AlN interlayer by annealing the AlN template with the AlN interlayer. The formation mechanism of the voids is mainly attributed to the coalescence of crystal boundaries, but some of the voids may be formed by the decomposition of AlN. Meanwhile,the dislocation density decreased to 5.10×108cm-2from 5.26×109cm-2. This work provides a potential method to introduce voids into AlN at a designated layer with a certain height, which improves the crystal quality of AlN. There are still some issues to be improved in further research work. For example,the density and volume of the voids should be further increased,and the voids should be introduced periodically into the AlN layer along with the growth orientation.

    Acknowledgments

    Project supported by the National Key Research and Development Program of China(Grant No.2017YFB0404100),the National Natural Science Foundation of China (Grant Nos. 61827813, 61974144, and 62004127), the Key Research Program of the Chinese Academy of Sciences(Grant No. XDPB22), the Key-Area Research and Development Program of Guangdong Province, China (Grant Nos. 2020B010169001 and 2020B010174003), and the Science and Technology Foundation of Shenzhen (Grant No.JSGG20191129114216474).

    猜你喜歡
    江流新科
    新科世界冠軍有他們五位
    羽毛球(2023年6期)2023-06-08 08:04:32
    A self-driven photodetector based on a SnS2/WS2 van der Waals heterojunction with an Al2O3 capping layer
    江流兒故事類型與民間“報冤”心態(tài)
    戲曲研究(2022年1期)2022-08-26 09:07:04
    吹響鄉(xiāng)村文化振興的新號角——讀《橫江流韻》隨想
    西江月(2021年2期)2021-11-24 01:16:14
    新科空調(diào)逆勢增長200% 2019年銷售目標200萬套
    家用電器(2019年1期)2019-09-10 07:22:44
    曲江流飲
    目 光
    雪蓮(2016年4期)2016-05-26 12:13:23
    西游記之大圣歸來
    品牌新征程 新科發(fā)力電視行業(yè)
    電腦迷(2015年5期)2015-05-30 10:48:04
    品牌新征程 新科發(fā)力電視行業(yè)
    電腦迷(2015年10期)2015-04-29 00:44:03
    亚洲欧美日韩无卡精品| 九色国产91popny在线| 国产亚洲精品一区二区www| 亚洲三区欧美一区| 国产免费av片在线观看野外av| 成人国产一区最新在线观看| 亚洲国产中文字幕在线视频| 啦啦啦观看免费观看视频高清| 日本一本二区三区精品| 精品国产乱子伦一区二区三区| 脱女人内裤的视频| 中文字幕精品免费在线观看视频| 看免费av毛片| 亚洲人成网站高清观看| 久久久久免费精品人妻一区二区 | 老汉色∧v一级毛片| 男人舔奶头视频| 久久精品国产清高在天天线| 淫秽高清视频在线观看| 母亲3免费完整高清在线观看| 两性夫妻黄色片| 后天国语完整版免费观看| 亚洲免费av在线视频| 国产亚洲欧美精品永久| 成人18禁在线播放| 久久 成人 亚洲| 亚洲av片天天在线观看| 色老头精品视频在线观看| 国产av在哪里看| 女生性感内裤真人,穿戴方法视频| 一区二区三区精品91| 在线av久久热| 婷婷亚洲欧美| 在线观看一区二区三区| 久久天躁狠狠躁夜夜2o2o| 午夜福利成人在线免费观看| 一级黄色大片毛片| 久久久久久久久久黄片| 国产熟女午夜一区二区三区| 精品卡一卡二卡四卡免费| 午夜福利高清视频| 日韩视频一区二区在线观看| 国产亚洲欧美98| 久久久久久久久中文| 少妇粗大呻吟视频| videosex国产| 亚洲免费av在线视频| 亚洲av片天天在线观看| 亚洲国产精品999在线| 欧美日韩乱码在线| 中出人妻视频一区二区| 白带黄色成豆腐渣| 1024香蕉在线观看| 中文字幕人妻熟女乱码| 精品国产国语对白av| 亚洲全国av大片| 在线天堂中文资源库| 男人操女人黄网站| 波多野结衣巨乳人妻| 精品电影一区二区在线| 国产一区二区激情短视频| 制服诱惑二区| 久久久久久久久中文| 嫩草影视91久久| 国产亚洲欧美在线一区二区| 国内精品久久久久久久电影| 韩国av一区二区三区四区| 午夜福利在线在线| 免费看美女性在线毛片视频| 亚洲国产中文字幕在线视频| 动漫黄色视频在线观看| 哪里可以看免费的av片| 美女 人体艺术 gogo| 真人做人爱边吃奶动态| 国产三级在线视频| 男女之事视频高清在线观看| 精品日产1卡2卡| 日本熟妇午夜| 黄色女人牲交| 一本一本综合久久| 国产熟女xx| 久久久国产欧美日韩av| 母亲3免费完整高清在线观看| 国产精品永久免费网站| 国产亚洲av高清不卡| 99热只有精品国产| bbb黄色大片| 精品卡一卡二卡四卡免费| 最好的美女福利视频网| 人成视频在线观看免费观看| 老司机午夜福利在线观看视频| 亚洲 欧美一区二区三区| 婷婷丁香在线五月| 女人被狂操c到高潮| 久久久久免费精品人妻一区二区 | 精品国产一区二区三区四区第35| 丝袜美腿诱惑在线| 好男人在线观看高清免费视频 | 亚洲国产精品999在线| av在线天堂中文字幕| 在线看三级毛片| 免费一级毛片在线播放高清视频| 国产成人欧美| 在线永久观看黄色视频| 这个男人来自地球电影免费观看| 午夜成年电影在线免费观看| 香蕉久久夜色| 此物有八面人人有两片| 国产三级黄色录像| 大香蕉久久成人网| 色尼玛亚洲综合影院| 亚洲自偷自拍图片 自拍| 亚洲 欧美 日韩 在线 免费| 精华霜和精华液先用哪个| 美女高潮到喷水免费观看| 一区二区三区精品91| 制服人妻中文乱码| 国产精品99久久99久久久不卡| 村上凉子中文字幕在线| 久久精品影院6| 天天添夜夜摸| 久久久久国内视频| 久久久国产成人精品二区| 日日爽夜夜爽网站| 两个人看的免费小视频| 国产国语露脸激情在线看| 午夜久久久久精精品| 91九色精品人成在线观看| 欧美成人午夜精品| 成人国产一区最新在线观看| 亚洲成人国产一区在线观看| 黄色视频,在线免费观看| 亚洲五月婷婷丁香| 欧美一级毛片孕妇| 一级毛片精品| 国产精品亚洲一级av第二区| 日韩 欧美 亚洲 中文字幕| 91成年电影在线观看| 亚洲成av人片免费观看| 一卡2卡三卡四卡精品乱码亚洲| 精品卡一卡二卡四卡免费| 亚洲国产欧美日韩在线播放| 男女做爰动态图高潮gif福利片| 黑丝袜美女国产一区| 麻豆国产av国片精品| 中文在线观看免费www的网站 | 亚洲真实伦在线观看| 成人午夜高清在线视频 | 99在线人妻在线中文字幕| 欧美日韩一级在线毛片| 手机成人av网站| 久久天堂一区二区三区四区| 老司机午夜十八禁免费视频| 国产亚洲精品久久久久久毛片| 亚洲久久久国产精品| 很黄的视频免费| 色老头精品视频在线观看| 宅男免费午夜| xxxwww97欧美| 日韩中文字幕欧美一区二区| 欧美日韩亚洲综合一区二区三区_| 色综合欧美亚洲国产小说| 黄色成人免费大全| 91成年电影在线观看| 老司机福利观看| 在线观看66精品国产| 亚洲国产欧洲综合997久久, | 日本 av在线| 成年人黄色毛片网站| 亚洲av片天天在线观看| 99热只有精品国产| 91麻豆av在线| 18禁观看日本| 亚洲国产欧美一区二区综合| 啦啦啦韩国在线观看视频| 午夜影院日韩av| 久久精品成人免费网站| 在线国产一区二区在线| 国产精品久久久人人做人人爽| 在线观看免费午夜福利视频| 亚洲一区中文字幕在线| 一个人免费在线观看的高清视频| 制服人妻中文乱码| 女人高潮潮喷娇喘18禁视频| 18禁美女被吸乳视频| 欧美丝袜亚洲另类 | 国产极品粉嫩免费观看在线| 久热爱精品视频在线9| 国产精品一区二区三区四区久久 | 国产精品亚洲av一区麻豆| 免费在线观看日本一区| 久久 成人 亚洲| 国产成人欧美在线观看| 国产精品乱码一区二三区的特点| 男女做爰动态图高潮gif福利片| 大型av网站在线播放| 国产区一区二久久| 免费在线观看日本一区| 日韩中文字幕欧美一区二区| 日韩三级视频一区二区三区| 老司机午夜十八禁免费视频| 搞女人的毛片| 久久精品aⅴ一区二区三区四区| 精品免费久久久久久久清纯| www.熟女人妻精品国产| 国产99白浆流出| 99在线人妻在线中文字幕| 在线观看免费午夜福利视频| 久久人妻av系列| 久久久久久九九精品二区国产 | 日韩三级视频一区二区三区| 国产精品美女特级片免费视频播放器 | 国产91精品成人一区二区三区| 真人一进一出gif抽搐免费| 一级毛片精品| 韩国精品一区二区三区| videosex国产| 免费看日本二区| 岛国在线观看网站| 两个人免费观看高清视频| a在线观看视频网站| 级片在线观看| 欧美亚洲日本最大视频资源| 亚洲精品美女久久久久99蜜臀| 欧美人与性动交α欧美精品济南到| 真人做人爱边吃奶动态| 精品人妻1区二区| 成人亚洲精品一区在线观看| 精品一区二区三区四区五区乱码| 中文资源天堂在线| 亚洲自拍偷在线| 男女之事视频高清在线观看| 欧美日韩福利视频一区二区| 日日摸夜夜添夜夜添小说| 亚洲全国av大片| 90打野战视频偷拍视频| 91国产中文字幕| 最新美女视频免费是黄的| 国产视频一区二区在线看| 亚洲精品色激情综合| a级毛片在线看网站| 欧美大码av| 麻豆久久精品国产亚洲av| 亚洲久久久国产精品| 欧美色视频一区免费| 久久草成人影院| 精品无人区乱码1区二区| 99久久99久久久精品蜜桃| 夜夜看夜夜爽夜夜摸| 免费高清视频大片| xxxwww97欧美| 黄色成人免费大全| 国内揄拍国产精品人妻在线 | 免费看十八禁软件| 欧美大码av| 亚洲一区二区三区色噜噜| 十八禁网站免费在线| 成年人黄色毛片网站| 亚洲av中文字字幕乱码综合 | av片东京热男人的天堂| 亚洲av成人一区二区三| 男女午夜视频在线观看| 亚洲精品中文字幕一二三四区| 一卡2卡三卡四卡精品乱码亚洲| 国产黄片美女视频| 欧美在线黄色| 亚洲国产精品成人综合色| 午夜成年电影在线免费观看| 亚洲国产高清在线一区二区三 | 久久这里只有精品19| 女人爽到高潮嗷嗷叫在线视频| 亚洲欧美日韩无卡精品| 国产精品久久久久久人妻精品电影| 高清在线国产一区| 神马国产精品三级电影在线观看 | 免费在线观看日本一区| 亚洲 欧美一区二区三区| 两个人免费观看高清视频| 女人被狂操c到高潮| 国内少妇人妻偷人精品xxx网站 | 日韩大码丰满熟妇| 久久国产精品影院| 欧美黑人巨大hd| 亚洲自偷自拍图片 自拍| 女性生殖器流出的白浆| 99精品在免费线老司机午夜| 亚洲成av片中文字幕在线观看| 日本在线视频免费播放| 午夜a级毛片| 国产区一区二久久| 欧美日韩黄片免| 久久中文字幕人妻熟女| 成人18禁在线播放| 午夜激情av网站| 在线永久观看黄色视频| 午夜精品久久久久久毛片777| 一级毛片精品| 欧美又色又爽又黄视频| 免费观看人在逋| 欧美日韩亚洲国产一区二区在线观看| 国产精品1区2区在线观看.| 亚洲成人国产一区在线观看| 欧美日韩一级在线毛片| 色播在线永久视频| 亚洲第一av免费看| 高清毛片免费观看视频网站| 国产激情偷乱视频一区二区| 欧美日本亚洲视频在线播放| 欧美黑人巨大hd| 伦理电影免费视频| 亚洲中文字幕一区二区三区有码在线看 | 正在播放国产对白刺激| 日韩精品青青久久久久久| 哪里可以看免费的av片| 国产精品九九99| 狂野欧美激情性xxxx| 国产一级毛片七仙女欲春2 | 免费看日本二区| 亚洲中文字幕日韩| 在线天堂中文资源库| 性欧美人与动物交配| 精品不卡国产一区二区三区| 久久久水蜜桃国产精品网| 久久这里只有精品19| 又黄又爽又免费观看的视频| 国产91精品成人一区二区三区| 18禁黄网站禁片午夜丰满| 岛国在线观看网站| 国产成年人精品一区二区| 久久久久久亚洲精品国产蜜桃av| 久久国产精品影院| 亚洲av日韩精品久久久久久密| 成人三级做爰电影| 久久精品91蜜桃| 日韩视频一区二区在线观看| 法律面前人人平等表现在哪些方面| 亚洲中文字幕日韩| 黄色视频,在线免费观看| 亚洲天堂国产精品一区在线| 99国产极品粉嫩在线观看| a在线观看视频网站| 亚洲专区国产一区二区| 最近最新免费中文字幕在线| 亚洲专区国产一区二区| 日韩高清综合在线| 精品一区二区三区视频在线观看免费| 在线观看午夜福利视频| 久久香蕉精品热| 视频在线观看一区二区三区| 久久香蕉精品热| 又大又爽又粗| 久久香蕉精品热| 日韩大码丰满熟妇| 亚洲中文字幕一区二区三区有码在线看 | 国产男靠女视频免费网站| 午夜激情福利司机影院| 国产精品久久久久久亚洲av鲁大| 热99re8久久精品国产| 久久久久久九九精品二区国产 | 国产1区2区3区精品| 一二三四社区在线视频社区8| 淫妇啪啪啪对白视频| 亚洲男人天堂网一区| 最近最新中文字幕大全电影3 | 欧美中文综合在线视频| 日韩欧美一区二区三区在线观看| 久久久久精品国产欧美久久久| 日韩欧美一区视频在线观看| 级片在线观看| 波多野结衣高清作品| 最新美女视频免费是黄的| 国产精品久久久av美女十八| 一进一出抽搐动态| 久久婷婷成人综合色麻豆| 亚洲成av人片免费观看| 国产午夜福利久久久久久| 欧美黑人巨大hd| 女性被躁到高潮视频| av在线天堂中文字幕| 成人精品一区二区免费| 成人亚洲精品一区在线观看| 久久 成人 亚洲| АⅤ资源中文在线天堂| xxx96com| 他把我摸到了高潮在线观看| 亚洲精品国产一区二区精华液| 女人高潮潮喷娇喘18禁视频| e午夜精品久久久久久久| 亚洲全国av大片| 国产国语露脸激情在线看| 一区二区三区激情视频| 丝袜人妻中文字幕| 亚洲中文字幕日韩| 国产色视频综合| 亚洲人成网站在线播放欧美日韩| 亚洲五月天丁香| 在线观看舔阴道视频| 亚洲人成77777在线视频| 热re99久久国产66热| 琪琪午夜伦伦电影理论片6080| 夜夜躁狠狠躁天天躁| 日韩成人在线观看一区二区三区| 国产区一区二久久| 国产av在哪里看| 99在线视频只有这里精品首页| 亚洲熟女毛片儿| 一个人观看的视频www高清免费观看 | 国产免费男女视频| 欧美日韩亚洲综合一区二区三区_| 一级毛片高清免费大全| 亚洲av电影在线进入| 国产精品野战在线观看| 成人免费观看视频高清| 亚洲午夜理论影院| 琪琪午夜伦伦电影理论片6080| 国产激情欧美一区二区| 国产av不卡久久| 啦啦啦观看免费观看视频高清| 国产精品二区激情视频| 成人一区二区视频在线观看| 免费在线观看完整版高清| 中文字幕最新亚洲高清| 久久久久久久久久黄片| 最新美女视频免费是黄的| 久久精品aⅴ一区二区三区四区| 国产激情久久老熟女| 国产又色又爽无遮挡免费看| 亚洲国产中文字幕在线视频| 国产精品久久久人人做人人爽| 在线播放国产精品三级| 1024香蕉在线观看| 久久午夜综合久久蜜桃| 深夜精品福利| 日日爽夜夜爽网站| 久久久精品欧美日韩精品| 韩国av一区二区三区四区| 亚洲九九香蕉| 欧美日韩瑟瑟在线播放| 中国美女看黄片| 精品福利观看| 又大又爽又粗| 亚洲熟女毛片儿| 久久久久久人人人人人| 中文字幕人妻熟女乱码| 亚洲成人精品中文字幕电影| 国产成人av教育| 国产成人欧美| 国内揄拍国产精品人妻在线 | 女警被强在线播放| 欧美精品亚洲一区二区| 欧美激情高清一区二区三区| 午夜日韩欧美国产| 亚洲精品国产精品久久久不卡| 国产又黄又爽又无遮挡在线| 欧美午夜高清在线| 色精品久久人妻99蜜桃| 欧美乱色亚洲激情| 国产一区二区激情短视频| 日本在线视频免费播放| 国产真人三级小视频在线观看| e午夜精品久久久久久久| www.自偷自拍.com| 国产国语露脸激情在线看| 黄色 视频免费看| 一区二区三区精品91| 久久国产精品影院| 一级片免费观看大全| 曰老女人黄片| 国产成人精品无人区| 香蕉久久夜色| 亚洲狠狠婷婷综合久久图片| 日日爽夜夜爽网站| 变态另类丝袜制服| 精品一区二区三区av网在线观看| 国产一卡二卡三卡精品| 国产精品 欧美亚洲| 男女下面进入的视频免费午夜 | 日日爽夜夜爽网站| 欧美激情极品国产一区二区三区| 精品一区二区三区av网在线观看| 久久天堂一区二区三区四区| 天堂影院成人在线观看| 国产精品久久久人人做人人爽| 熟女少妇亚洲综合色aaa.| avwww免费| 午夜福利成人在线免费观看| 亚洲欧美精品综合久久99| 国产爱豆传媒在线观看 | 欧美在线一区亚洲| 9191精品国产免费久久| 午夜福利免费观看在线| 一级毛片高清免费大全| 欧美性猛交黑人性爽| 99国产精品99久久久久| 国产精品日韩av在线免费观看| 久久热在线av| 亚洲第一青青草原| 久久午夜综合久久蜜桃| 免费av毛片视频| 久久伊人香网站| 国内揄拍国产精品人妻在线 | 一级黄色大片毛片| 亚洲精华国产精华精| 手机成人av网站| cao死你这个sao货| 亚洲专区国产一区二区| 一边摸一边抽搐一进一小说| 精品少妇一区二区三区视频日本电影| 中亚洲国语对白在线视频| 午夜激情av网站| 啪啪无遮挡十八禁网站| 成人国产综合亚洲| 国产精品 国内视频| 一级黄色大片毛片| 这个男人来自地球电影免费观看| 黑人巨大精品欧美一区二区mp4| 亚洲精品久久国产高清桃花| 亚洲三区欧美一区| 91国产中文字幕| 亚洲一区二区三区色噜噜| 麻豆国产av国片精品| 99久久久亚洲精品蜜臀av| 在线观看日韩欧美| www.自偷自拍.com| 在线看三级毛片| 亚洲成人精品中文字幕电影| 免费看日本二区| 美女午夜性视频免费| 国产激情久久老熟女| 国产精品久久久人人做人人爽| 中文字幕最新亚洲高清| 99精品欧美一区二区三区四区| 淫妇啪啪啪对白视频| 久久久水蜜桃国产精品网| 热re99久久国产66热| 国产精品av久久久久免费| 亚洲专区字幕在线| 久久性视频一级片| 一级a爱片免费观看的视频| 国内精品久久久久精免费| 亚洲七黄色美女视频| 欧美亚洲日本最大视频资源| 欧美一级毛片孕妇| 欧美激情极品国产一区二区三区| 国产乱人伦免费视频| 午夜老司机福利片| 他把我摸到了高潮在线观看| 搡老熟女国产l中国老女人| www.www免费av| 91成人精品电影| 欧美大码av| 中文字幕另类日韩欧美亚洲嫩草| 不卡一级毛片| 校园春色视频在线观看| 亚洲av日韩精品久久久久久密| 亚洲精品一卡2卡三卡4卡5卡| 很黄的视频免费| 久久中文看片网| 国产伦一二天堂av在线观看| 高清毛片免费观看视频网站| 亚洲美女黄片视频| 精品第一国产精品| 精品免费久久久久久久清纯| 悠悠久久av| 欧美日韩亚洲国产一区二区在线观看| 女生性感内裤真人,穿戴方法视频| 成年版毛片免费区| 精品无人区乱码1区二区| 欧美午夜高清在线| 久久精品亚洲精品国产色婷小说| 成年人黄色毛片网站| 国产又爽黄色视频| 中文字幕av电影在线播放| 亚洲国产欧美一区二区综合| 人人妻,人人澡人人爽秒播| 91大片在线观看| 俄罗斯特黄特色一大片| 久久精品91蜜桃| 精品欧美一区二区三区在线| 欧美激情极品国产一区二区三区| 欧美精品亚洲一区二区| 免费在线观看亚洲国产| 日韩欧美三级三区| 757午夜福利合集在线观看| 亚洲成人久久爱视频| 在线永久观看黄色视频| av电影中文网址| 好男人在线观看高清免费视频 | 人人澡人人妻人| 两个人视频免费观看高清| 日本免费一区二区三区高清不卡| 国内久久婷婷六月综合欲色啪| 久久天堂一区二区三区四区| 国产成+人综合+亚洲专区| 真人一进一出gif抽搐免费| 久久精品夜夜夜夜夜久久蜜豆 | 亚洲五月色婷婷综合| 少妇的丰满在线观看| 88av欧美| 国产精品国产高清国产av| aaaaa片日本免费| 免费高清视频大片| 亚洲专区国产一区二区| 免费看日本二区| 视频区欧美日本亚洲| 亚洲精品在线美女| 日韩欧美在线二视频| 精品国产乱码久久久久久男人| 国产精品综合久久久久久久免费| 黄色丝袜av网址大全| 日本免费a在线| 精品电影一区二区在线| 成人18禁高潮啪啪吃奶动态图| 51午夜福利影视在线观看| 日韩欧美国产一区二区入口|