• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Introducing voids around the interlayer of AlN by high temperature annealing

    2022-08-01 06:02:04JianweiBen賁建偉JiangliuLuo羅江流ZhichenLin林之晨XiaojuanSun孫曉娟XinkeLiu劉新科andXiaohuaLi黎曉華
    Chinese Physics B 2022年7期
    關鍵詞:江流新科

    Jianwei Ben(賁建偉), Jiangliu Luo(羅江流), Zhichen Lin(林之晨), Xiaojuan Sun(孫曉娟),Xinke Liu(劉新科),?, and Xiaohua Li(黎曉華)

    1College of Materials Science and Engineering,Shenzhen University-Hanshan Normal University Postdoctoral Workstation,Shenzhen University,Shenzhen 518060,China

    2College of Physics and Optoelectronic Engineering,Shenzhen University,Shenzhen 518060,China

    3State Key Laboratory of Luminescence and Applications,Changchun Institute of Optics,F(xiàn)ine Mechanics and Physics,Chinese Academy of Sciences,Changchun 130033,China

    Keywords: AlN template,AlN interlayer,voids,high-temperature annealing

    1. Introduction

    The introduction of voids is an effective method to improve the light-emitting efficiency (LEE) of III-nitride-based light-emitting devices(LEDs), release the stress and improve the crystal quality of III-nitride-based materials.[1–6]Many researches have reported that the LEE of III-nitride-based LEDs was increased by introducing the air voids into LED structures.For example, the LEE of an InGaN-based LED with an airvoid-embedded SiO2mask was enhanced by 96.8%compared to that of a conventional InGaN-based LED.[7]Aliaset al.fabricated an AlGaN-based ultraviolet LED with nitride/air distributed Bragg reflector structure and found that the light output power (LOP) was improved by a factor of about 1.67.[8]Leeet al.fabricated an AlGaN-based LED on periodic airvoid-incorporated nanoscale-patterned sapphire substrate and the LOP was enhanced by 67%.[9]Based on the published reports,it was found that the introduction of voids is beneficial,i.e.,it increases the LEE of nitride-LEDs.

    Researchers have adopted many methods to introduce voids into III-nitride materials, and most of the methods also effectively improve the quality of the III-nitride materials.The reported methods mainly include etching the substrate, using mask layers,decomposing the III-nitride materials and annealing the physical vapor deposited AlN(PVD-AlN).For example, Xieet al.and Yanet al.introduced voids during the epitaxial lateral overgrowth(ELO)of AlN and GaN on patterned sapphire,respectively.[10,11]The patterned sapphire substrates were fabricated by etching. Moreover, Caoet al.introduced voids into the a-plane GaN layer by etching the a-plane GaN templates.[12]Furthermore, the adoption of a mask layer is a common method to introduce voids, such as the growth of GaN or AlN on a patterned SiO2mask or van der Waals substrates, respectively.[13,14]The voids were formed during the growth process due to the difficulty of nucleation on the masks. Both methods mentioned above were used to achieve ELO of III-nitride materials. However, they require complex pretreatment of the substrates,and the epitaxial layers should be thick in order to form a flat surface. The decomposition of GaN is an effective method to introduce voids into AlGaNbased materials. Liuet al.introduced voids into the GaN layer by decomposing the GaN in H2,and Mitsunariet al.fabricated air voids by decomposing the GaN in GaN/AlN core-shell structure in order to grow GaN using the ELO method.[15,16]Recently,high-temperature annealing(HTA)has proved to be an effective and simple method to obtain high-quality AlN template, and the voids were introduced into PVD-AlN layer during HTA.[17–20]The formation mechanism of the voids has been explained as the coalescence of the crystal grains or the annihilation of the dislocations during recrystallization.However, it is difficult to obtain high-quality AlGaN-based materials using the PVD method directly. Considering that the AlGaN-based epitaxial structures are commonly grown by metal-organic chemical vapor deposition (MOCVD),out situdeposition process will be required if adopting the PVD method to introduce voids into the AlN layer, which will increase the complexity. Consequently, to introduce voids at a certain height into the AlN layer by adopting the PVD method is also too complex.

    In this work, to introduce the voids into the AlN layer at a controllable height, the AlN template with moderatetemperature AlN interlayer was designed and then annealed at 1700°C for one hour to induce the formation of voids,which was inspired by the formation mechanism of the voids in PVDAlN layer during the HTA process. The voids were introduced around the interlayer and the crystal quality of the AlN template improved. This work provides a potential simple method to introduce voids into AlN at a controllable height.

    2. Experimental procedure

    Thec-plane sapphire substrates were used to grow AlN layers by MOCVD(AIX 200/4 RF-S).NH3was used as the N precursor and TMAl was used as the Al precursor. First, the nucleation layer was grown at about 950°C with a V/III ratio of 11000. Then, the nucleation layer wasin situannealed at about 1330°C and the high-temperature AlN(HT-AlN)layer was grown at 1280°C with a V/III ratio of 1100. The AlN interlayer was grown at 1050°C with a V/III ratio of 3700.Finally, to introduce voids into AlN layer, the AlN template wasout situannealed at 1700°C for one hour in pure N2atmosphere.

    In order to characterize the properties of AlN templates,the x-ray diffraction rocking curve(XRC)was used to characterize the crystal quality of AlN(equipment model:BRUKER,D8 Discover), and Raman measurement was adopted to estimate the stress in the AlN layer(equipment model: HORIBA,HR Evolution). A scanning electron microscope (SEM) was used to characterize the cross-sectional morphology of AlN(equipment model: Hitachi S-400)and an atomic force microscope (AFM) was used to exhibit the surface morphology of the AlN interlayer(equipment model: BRUKER,MultiMode 8).

    3. Results and discussion

    Fig. 1. (a) The epitaxy structure of the reference sample. (b) The in situ temperature and 405 nm reflection monitoring curves of the reference sample. (c)The epitaxy structure of the IL-AlN template and(d)the corresponding in situ temperature and 405 nm reflection monitoring curves.

    Figure 1(a)shows the structure of the AlN template without AlN interlayer,which was designed as the reference sample. Thein situmonitoring curves of the reference sample are shown in Fig. 1(b). The HT-AlN was grown on the annealed nucleation layer without an interlayer. There is a total of 12.5 periods in thein situreflection curve and the curve decreases at first and then increases. It was found that the reflective intensity of the 6thperiod is the lowest among the 12.5 periods, which means the growth mode changes from three-dimensional to two-dimensional growth during the epitaxy of HT-AlN. The epitaxial structure of the AlN template with an interlayer(abbreviated as IL-AlN template)is shown in Fig. 1(c) and thein situmonitoring curves are shown in Fig. 1(d). Process 1 (about 220 s) and 3 (about 180 s) represent the growth of the AlN nucleation layer and AlN interlayer,respectively. Process 2(about 900 s)and 4(about 3000 s)represent the growth of HT-AlN.From Fig.1(d),it can be noted that there is a total of 12 periods in thein situreflection monitoring curve, and the growth of the interlayer is located at the first half of the 4thperiod. The results indicate that the interlayer is located at a height of about a 1/3 of the thickness of the AlN layer. A similar result can be obtained by analyzing the growth time. The intensity of the 4thperiod reflective curve drops sharply compared to that of the 3rdperiod,which indicates that three-dimensional island growth has occurred during the growth of the interlayer. After the growth of the AlN interlayer, the reflective intensity of the HT-AlN increases rapidly, which indicates that two-dimensional growth mode has occurred.

    Fig.2. (a)and(b)The(0002)plane and(10-12)plane XRCs of the reference sample with/without 1700 °C annealing,respectively; (c)and(d)the(0002)plane and(10-12)plane XRCs of the IL-AlN template with/without 1700 °C annealing,respectively; (e)the Raman shift spectrum of the IL-AlN template before and after 1700 °C annealing. (f)The enlarged picture of AlN E2(high)peaks in(e).

    The crystal quality of the as-grown AlN templates and annealed AlN templates was characterized by XRC. The results are shown in Figs. 2(a) to 2(d). After 1700°C annealing, the full width at half-maximum (FWHM) of the (10-12)plane XRC decreases evidently for both the reference sample and IL-AlN template. After annealing, the FWHM of the(10-12) plane XRC decreases from 971 arcsec to 292 arcsec for the IL-AlN template. Meanwhile, the FWHM of the(0002) plane XRC remains almost unchanged before and after annealing (110 arcsec and 138 arcsec). The results indicate that the dislocations were annihilated during the HTA process. According to the formula for calculating the dislocation density in Ref. [18], the calculated total dislocation density(TDD) of the annealed IL-AlN template is 5.1×108cm-2,which is one magnitude lower than that of the AlN before annealing (5.26×109cm-2). Furthermore, Raman measurement was taken to exhibit a change in the stress in the AlN layer. The Raman shift spectrum of the IL-AlN template before/after annealing is shown in Fig.2(e),and the peak of sapphire(418 cm-1)is taken as calibration.[21]Figure 2(f)is the enlarged picture of the AlN E2 (high) peak because the E2(high) peak of AlN is commonly used to calculate the stress in AlN.It was found that the E2(high)peak of AlN blueshifts after HTA,which means there is higher compressive stress in the annealed AlN layer than in the AlN without annealing.[22]The higher compressive stress proves the decrease in crystal boundary density and dislocation density in AlN.[18,22]The results indicate that the related physical phenomena are consistent with previous reports.[23,24]

    There are two theories to explain the formation mechanism of the voids in HTA PVD-AlN.One is that the voids are formed by the coalescence of the crystal boundaries, and the other is that the voids are formed by the migration and annihilation of the dislocations.[18–20]In fact, the two theories are fundamentally the same, since the crystal boundaries are the locations of dislocation aggregation.[25,26]Consequently,the dislocations will annihilate and form voids at the crystal boundaries with a high degree of probability during the HTA.Once the dislocations around the crystal boundary have almost been annihilated, the crystal boundary will disappear, which can be described as the coalescence of the crystal boundaries.Based on the above mechanisms and thein situreflection curves, as shown in Fig. 1, it can be inferred that the voids will appear around the middle of the reference sample after HTA.For the HTA IL-AlN template,the voids are expected to appear at a height of 1/3 of the thickness of the AlN epitaxial layer above the AlN/sapphire interface. In order to confirm these inferences, the cross-sectional SEM images of the AlN templates with and without annealing are shown in Fig.3.

    Fig.3. The cross-sectional SEM images at different locations of(a)the reference sample without annealing,(b)the annealed reference sample,(c)the IL-AlN template without annealing,(d)the annealed IL-AlN template with a magnification ratio of 45k and(e)the annealed IL-AlN template with a different magnification ratio. The voids are in the black circle and the channels are in the white-dashed rectangles.

    Figure 3(a)shows the cross-sectional images of the reference sample at different locations without annealing. No void can be found in the AlN layer. The cross-sectional images of the annealed reference sample at different locations are shown in Fig.3(b). It was found that the density of the voids is low and the voids tend to form in the middle of the sample with a wide distribution range. The phenomena can be explained by the low intensity of thein situreflection curve during the middle stage of the AlN growth,as shown in Fig.1(b). As a comparison, the cross-sectional SEM images of the IL-AlN template with/without annealing at different locations are shown in Figs.3(c)–3(e). Figure 3(c)shows the cross-sectional SEM images of the IL-AlN template without annealing at different locations. It can be clearly confirmed that there is no void in the AlN layer before annealing. The four pictures in Fig.3(d)are the cross-sectional SEM images of the IL-AlN template with 1700°C annealing at the same magnification ratio of 45k.The SEM images are calibrated by the black line at the interface of the AlN layers and sapphire substrates, and the positions of the voids are marked by the white-dashed line,which is slightly lower than the voids. From Fig.3(d),it can be seen that the voids are located at almost the same level above the AlN/sapphire interface. According to the SEM results, the thickness of the AlN layer is about 1.1 μm,and the voids are located at a horizontal level that is about 350 nm higher than that at the AlN/sapphire interface. In addition to the fact that the interlayer is located at a height of about 1/3 of the thickness of the AlN layer above the AlN/sapphire interface, the voids could be considered to be formed around the interlayer. Moreover, the square voids beneath the AlN/sapphire interface are formed by the decomposition of sapphire according to a previous report.[27]Figure 3(e) shows the cross-sectional SEM results of the annealed IL-AlN template with different magnification ratios. It is estimated that the voids are located around the interlayer and the possibility of pollution can be excluded.

    Fig. 4. The surface morphology of the AlN interlayer (a) before annealing and(b)after 1700 °C annealing for one hour.

    In order to confirm the possible formation mechanism on the voids in the AlN layer, the surface morphology of the AlN interlayer has been characterized by AFM, as shown in Fig. 4(a). It was confirmed that the surface of the AlN interlayer consists of large island-like structures, which confirms the existence of a large number of crystal boundaries. After 1700°C annealing, the islands will coalesce, and there are many islands with regular edge shape on the step-like surface morphology (some of the step edges are marked by arrows),as shown in Fig.4(b). Based on the AFM results,it was confirmed that the voids are formed by the coalescence of the crystal boundaries. However,it should be noted that there are channels on some voids,as shown in the white-dashed rectangles in Figs.3(b)and 3(e).These channels connect the voids to the surface of the AlN templates. This phenomenon may provide another possibility that some voids may be formed by the decomposition of AlN.Further research is required to confirm this inference.

    4. Conclusion and perspectives

    Voids have been introduced around the AlN interlayer by annealing the AlN template with the AlN interlayer. The formation mechanism of the voids is mainly attributed to the coalescence of crystal boundaries, but some of the voids may be formed by the decomposition of AlN. Meanwhile,the dislocation density decreased to 5.10×108cm-2from 5.26×109cm-2. This work provides a potential method to introduce voids into AlN at a designated layer with a certain height, which improves the crystal quality of AlN. There are still some issues to be improved in further research work. For example,the density and volume of the voids should be further increased,and the voids should be introduced periodically into the AlN layer along with the growth orientation.

    Acknowledgments

    Project supported by the National Key Research and Development Program of China(Grant No.2017YFB0404100),the National Natural Science Foundation of China (Grant Nos. 61827813, 61974144, and 62004127), the Key Research Program of the Chinese Academy of Sciences(Grant No. XDPB22), the Key-Area Research and Development Program of Guangdong Province, China (Grant Nos. 2020B010169001 and 2020B010174003), and the Science and Technology Foundation of Shenzhen (Grant No.JSGG20191129114216474).

    猜你喜歡
    江流新科
    新科世界冠軍有他們五位
    羽毛球(2023年6期)2023-06-08 08:04:32
    A self-driven photodetector based on a SnS2/WS2 van der Waals heterojunction with an Al2O3 capping layer
    江流兒故事類型與民間“報冤”心態(tài)
    戲曲研究(2022年1期)2022-08-26 09:07:04
    吹響鄉(xiāng)村文化振興的新號角——讀《橫江流韻》隨想
    西江月(2021年2期)2021-11-24 01:16:14
    新科空調(diào)逆勢增長200% 2019年銷售目標200萬套
    家用電器(2019年1期)2019-09-10 07:22:44
    曲江流飲
    目 光
    雪蓮(2016年4期)2016-05-26 12:13:23
    西游記之大圣歸來
    品牌新征程 新科發(fā)力電視行業(yè)
    電腦迷(2015年5期)2015-05-30 10:48:04
    品牌新征程 新科發(fā)力電視行業(yè)
    電腦迷(2015年10期)2015-04-29 00:44:03
    丰满乱子伦码专区| 菩萨蛮人人尽说江南好唐韦庄 | 51国产日韩欧美| 国产精品蜜桃在线观看| 可以在线观看毛片的网站| 精品不卡国产一区二区三区| 哪个播放器可以免费观看大片| 久久人人爽人人爽人人片va| 亚洲综合精品二区| 亚洲精品456在线播放app| 人人妻人人看人人澡| 高清午夜精品一区二区三区| 亚洲美女视频黄频| 日本爱情动作片www.在线观看| 毛片女人毛片| 精品人妻一区二区三区麻豆| 看免费成人av毛片| 国产午夜精品久久久久久一区二区三区| 少妇的逼好多水| 午夜老司机福利剧场| 国内精品宾馆在线| 国产单亲对白刺激| 国产在线一区二区三区精 | 久久精品人妻少妇| 亚洲国产欧美在线一区| 亚洲国产最新在线播放| 欧美成人午夜免费资源| 黄色配什么色好看| 91aial.com中文字幕在线观看| 欧美一区二区国产精品久久精品| 大香蕉97超碰在线| 内地一区二区视频在线| 亚洲国产精品国产精品| 免费看av在线观看网站| 久久6这里有精品| 高清av免费在线| 九色成人免费人妻av| a级毛片免费高清观看在线播放| 高清av免费在线| 欧美性猛交╳xxx乱大交人| 国产黄色小视频在线观看| 亚洲av一区综合| 亚洲aⅴ乱码一区二区在线播放| 性插视频无遮挡在线免费观看| av女优亚洲男人天堂| 91精品国产九色| 国产日韩欧美在线精品| 欧美激情久久久久久爽电影| 黄片无遮挡物在线观看| 嫩草影院精品99| 国产黄色视频一区二区在线观看 | 国国产精品蜜臀av免费| 简卡轻食公司| 欧美潮喷喷水| 亚洲精品aⅴ在线观看| 国产精品人妻久久久影院| 性插视频无遮挡在线免费观看| 精品99又大又爽又粗少妇毛片| 十八禁国产超污无遮挡网站| 日本熟妇午夜| av免费观看日本| 午夜亚洲福利在线播放| 国产精品伦人一区二区| 亚洲,欧美,日韩| 欧美日本亚洲视频在线播放| 久久综合国产亚洲精品| 青春草国产在线视频| 97超碰精品成人国产| 亚洲精品亚洲一区二区| 狂野欧美激情性xxxx在线观看| 51国产日韩欧美| 国产精品人妻久久久久久| 日韩av不卡免费在线播放| 国产亚洲午夜精品一区二区久久 | 男人的好看免费观看在线视频| 日本一本二区三区精品| 大话2 男鬼变身卡| 国产精品三级大全| 少妇人妻精品综合一区二区| 久久久久久久久中文| 又粗又爽又猛毛片免费看| АⅤ资源中文在线天堂| 精品人妻熟女av久视频| 小蜜桃在线观看免费完整版高清| 亚洲精品日韩在线中文字幕| 综合色av麻豆| 桃色一区二区三区在线观看| 麻豆成人av视频| 亚洲欧美日韩无卡精品| 狠狠狠狠99中文字幕| 18禁动态无遮挡网站| 亚洲av二区三区四区| 久久99热这里只有精品18| 久久午夜福利片| av黄色大香蕉| 午夜福利在线观看免费完整高清在| 菩萨蛮人人尽说江南好唐韦庄 | 亚洲欧美日韩东京热| 精华霜和精华液先用哪个| 久久精品久久精品一区二区三区| 精品久久久久久成人av| 在线a可以看的网站| 我的女老师完整版在线观看| 国产亚洲精品久久久com| 精品久久久噜噜| 国产高潮美女av| 久久精品综合一区二区三区| 免费黄色在线免费观看| 高清视频免费观看一区二区 | 两个人视频免费观看高清| 亚洲av电影不卡..在线观看| 少妇高潮的动态图| 美女国产视频在线观看| 午夜精品在线福利| 免费一级毛片在线播放高清视频| 久久久午夜欧美精品| 美女xxoo啪啪120秒动态图| 久久精品久久久久久久性| av在线亚洲专区| 日本色播在线视频| 亚洲高清免费不卡视频| 又黄又爽又刺激的免费视频.| av.在线天堂| 久久精品影院6| 狂野欧美白嫩少妇大欣赏| 亚洲国产日韩欧美精品在线观看| 日本色播在线视频| 一级毛片我不卡| 亚洲在线自拍视频| 成人毛片60女人毛片免费| 国国产精品蜜臀av免费| 国产一级毛片在线| av福利片在线观看| 床上黄色一级片| 国产乱来视频区| 99久久人妻综合| 欧美不卡视频在线免费观看| 99久久中文字幕三级久久日本| 99在线视频只有这里精品首页| 免费av观看视频| 美女大奶头视频| 女人十人毛片免费观看3o分钟| 一级毛片电影观看 | 久久久久久久久久久免费av| 国产精品一及| 日本欧美国产在线视频| 久久久欧美国产精品| 黄片无遮挡物在线观看| 18禁在线无遮挡免费观看视频| av在线老鸭窝| 亚洲精品亚洲一区二区| 日韩av在线大香蕉| 成人综合一区亚洲| 亚洲精品乱码久久久久久按摩| 我要看日韩黄色一级片| 亚洲一区高清亚洲精品| 99久久精品一区二区三区| 国产精品久久久久久久久免| 高清毛片免费看| 天堂av国产一区二区熟女人妻| 国产精品久久久久久久电影| 成人三级黄色视频| 国产精品精品国产色婷婷| 久久精品夜色国产| 午夜精品一区二区三区免费看| 免费av不卡在线播放| 91av网一区二区| 成人特级av手机在线观看| 国内精品宾馆在线| 亚洲人成网站高清观看| 午夜福利在线观看免费完整高清在| 美女国产视频在线观看| 最近手机中文字幕大全| 亚洲精华国产精华液的使用体验| 久久久久精品久久久久真实原创| 久久国内精品自在自线图片| 97超碰精品成人国产| 成人国产麻豆网| 久久久久网色| 欧美人与善性xxx| 国产伦精品一区二区三区视频9| 2021少妇久久久久久久久久久| 久久亚洲国产成人精品v| 亚洲怡红院男人天堂| 1024手机看黄色片| 日本三级黄在线观看| 亚洲伊人久久精品综合 | 精品人妻熟女av久视频| av在线亚洲专区| 在线观看一区二区三区| 国产精品嫩草影院av在线观看| 亚洲精华国产精华液的使用体验| 久久99热这里只有精品18| 亚洲人与动物交配视频| 亚洲av二区三区四区| 国产一区二区在线av高清观看| 女的被弄到高潮叫床怎么办| 日本-黄色视频高清免费观看| 久久久久久国产a免费观看| 亚洲av不卡在线观看| 国产午夜福利久久久久久| 乱人视频在线观看| av在线老鸭窝| 亚洲精品日韩av片在线观看| 丝袜美腿在线中文| 99在线视频只有这里精品首页| 色尼玛亚洲综合影院| 日韩av在线免费看完整版不卡| 狠狠狠狠99中文字幕| 国产色婷婷99| 成人三级黄色视频| 久久久国产成人免费| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲av免费在线观看| 秋霞在线观看毛片| 三级男女做爰猛烈吃奶摸视频| 午夜免费激情av| 久久亚洲国产成人精品v| 一个人看视频在线观看www免费| 午夜福利网站1000一区二区三区| 黑人高潮一二区| 日本欧美国产在线视频| 欧美一级a爱片免费观看看| 寂寞人妻少妇视频99o| 日韩欧美三级三区| 久久国内精品自在自线图片| 精品久久久噜噜| 久久精品人妻少妇| 国产精品精品国产色婷婷| 国产美女午夜福利| 少妇的逼水好多| 国产精品1区2区在线观看.| 久久久亚洲精品成人影院| 国产探花在线观看一区二区| 日韩国内少妇激情av| 午夜免费激情av| 九九在线视频观看精品| 麻豆久久精品国产亚洲av| 五月伊人婷婷丁香| 日本av手机在线免费观看| 建设人人有责人人尽责人人享有的 | 国产成人精品久久久久久| 亚洲精品乱久久久久久| 精品欧美国产一区二区三| 国产精品电影一区二区三区| 精品人妻偷拍中文字幕| 一级毛片电影观看 | 内射极品少妇av片p| 日本wwww免费看| 99久久精品国产国产毛片| av专区在线播放| 国产爱豆传媒在线观看| 69av精品久久久久久| 美女被艹到高潮喷水动态| 久久久久精品久久久久真实原创| 麻豆精品久久久久久蜜桃| 国产一级毛片七仙女欲春2| 亚洲av电影在线观看一区二区三区 | 一级毛片久久久久久久久女| 午夜精品一区二区三区免费看| 欧美bdsm另类| 在线免费观看不下载黄p国产| 国产高清不卡午夜福利| 91在线精品国自产拍蜜月| 国产精品电影一区二区三区| 国产精品一及| 亚洲人成网站在线播| 亚洲精品亚洲一区二区| 男人和女人高潮做爰伦理| 欧美+日韩+精品| 国产黄a三级三级三级人| 九九爱精品视频在线观看| 国产精品福利在线免费观看| 亚洲国产精品成人久久小说| 色网站视频免费| 免费观看人在逋| 99久久精品一区二区三区| 色吧在线观看| 亚洲图色成人| 久久久亚洲精品成人影院| 最近手机中文字幕大全| 国语自产精品视频在线第100页| 中文字幕熟女人妻在线| 成人综合一区亚洲| 最近最新中文字幕免费大全7| 男人狂女人下面高潮的视频| 亚洲激情五月婷婷啪啪| 久久久国产成人免费| 欧美区成人在线视频| 日本av手机在线免费观看| 小蜜桃在线观看免费完整版高清| 亚洲av成人av| 99热这里只有精品一区| 成人毛片60女人毛片免费| 一边摸一边抽搐一进一小说| 免费无遮挡裸体视频| av在线天堂中文字幕| 免费观看精品视频网站| 七月丁香在线播放| 色尼玛亚洲综合影院| 日本色播在线视频| 久久精品久久久久久久性| 久久久亚洲精品成人影院| 99久国产av精品国产电影| 在线观看66精品国产| 午夜亚洲福利在线播放| 尾随美女入室| 麻豆国产97在线/欧美| 久久久久久久亚洲中文字幕| 久久久成人免费电影| a级毛色黄片| 天天躁夜夜躁狠狠久久av| 国内精品宾馆在线| av.在线天堂| 好男人视频免费观看在线| 久久久久久久久久成人| 成人漫画全彩无遮挡| 99热精品在线国产| 长腿黑丝高跟| 国产色爽女视频免费观看| 久久热精品热| 搡老妇女老女人老熟妇| 欧美人与善性xxx| 黑人高潮一二区| 非洲黑人性xxxx精品又粗又长| 亚洲第一区二区三区不卡| 六月丁香七月| 一个人看的www免费观看视频| 视频中文字幕在线观看| 伦精品一区二区三区| or卡值多少钱| 成人午夜精彩视频在线观看| 国产亚洲午夜精品一区二区久久 | 别揉我奶头 嗯啊视频| 国产 一区精品| 一级黄片播放器| 在线观看66精品国产| 九九热线精品视视频播放| 国产高清有码在线观看视频| 99久久中文字幕三级久久日本| av女优亚洲男人天堂| av在线亚洲专区| 久久久久久伊人网av| 午夜免费激情av| 啦啦啦韩国在线观看视频| 国产亚洲5aaaaa淫片| 免费搜索国产男女视频| 国产av一区在线观看免费| 日韩人妻高清精品专区| 两个人视频免费观看高清| 国产成人a区在线观看| 91aial.com中文字幕在线观看| 级片在线观看| 精品国产一区二区三区久久久樱花 | 日韩,欧美,国产一区二区三区 | 中文字幕人妻熟人妻熟丝袜美| 国产午夜福利久久久久久| 18禁在线播放成人免费| 国产亚洲av片在线观看秒播厂 | 两性午夜刺激爽爽歪歪视频在线观看| 七月丁香在线播放| 亚洲成人中文字幕在线播放| 久久婷婷人人爽人人干人人爱| 卡戴珊不雅视频在线播放| 精品久久久噜噜| 久久99蜜桃精品久久| 能在线免费看毛片的网站| 天堂av国产一区二区熟女人妻| 国产不卡一卡二| 久久久国产成人免费| www.av在线官网国产| 变态另类丝袜制服| 中文字幕免费在线视频6| 欧美一区二区精品小视频在线| 最近中文字幕高清免费大全6| 久久久久久久亚洲中文字幕| av国产免费在线观看| 成人av在线播放网站| 亚洲国产精品合色在线| 国产高清视频在线观看网站| 婷婷色av中文字幕| 午夜福利网站1000一区二区三区| 久久6这里有精品| 国产又色又爽无遮挡免| 久久久久久久久大av| 久久人人爽人人片av| 日本免费在线观看一区| 亚洲精品影视一区二区三区av| 欧美激情国产日韩精品一区| 色综合站精品国产| 国产 一区 欧美 日韩| 亚洲欧洲国产日韩| 99久国产av精品| 国产av在哪里看| 人妻少妇偷人精品九色| 精品一区二区三区人妻视频| 色播亚洲综合网| 亚洲成av人片在线播放无| 又粗又硬又长又爽又黄的视频| 级片在线观看| 日本wwww免费看| 中文字幕制服av| 亚洲自拍偷在线| 精品无人区乱码1区二区| 天天躁夜夜躁狠狠久久av| 久久久国产成人免费| 国产黄片美女视频| 国产亚洲午夜精品一区二区久久 | 精品久久久久久久久av| 久久精品国产亚洲av天美| 汤姆久久久久久久影院中文字幕 | 一本久久精品| 边亲边吃奶的免费视频| 51国产日韩欧美| 只有这里有精品99| 成人亚洲精品av一区二区| 久久久久精品久久久久真实原创| 国产又黄又爽又无遮挡在线| 国产成人福利小说| 91狼人影院| 岛国在线免费视频观看| 夫妻性生交免费视频一级片| 美女cb高潮喷水在线观看| 两个人的视频大全免费| 少妇人妻精品综合一区二区| 哪个播放器可以免费观看大片| 精品久久久久久成人av| 亚洲av免费在线观看| 亚洲丝袜综合中文字幕| 舔av片在线| 日韩,欧美,国产一区二区三区 | 在线观看av片永久免费下载| 欧美3d第一页| 午夜a级毛片| 精品久久久久久久久久久久久| 美女黄网站色视频| 赤兔流量卡办理| 免费看美女性在线毛片视频| 亚洲经典国产精华液单| 国产亚洲精品久久久com| 天天躁夜夜躁狠狠久久av| 久久精品久久久久久久性| 男人舔女人下体高潮全视频| 国产又黄又爽又无遮挡在线| 久久久久久久午夜电影| 特级一级黄色大片| 亚洲精品影视一区二区三区av| 欧美三级亚洲精品| 韩国av在线不卡| 3wmmmm亚洲av在线观看| 日本一本二区三区精品| 狂野欧美激情性xxxx在线观看| 国产三级中文精品| 日本欧美国产在线视频| 久久精品人妻少妇| 成人二区视频| 色吧在线观看| 18+在线观看网站| 岛国在线免费视频观看| 久久精品91蜜桃| 最近的中文字幕免费完整| 国产精品福利在线免费观看| 久久人人爽人人片av| 日本免费一区二区三区高清不卡| 亚洲精品乱久久久久久| 毛片一级片免费看久久久久| 国产亚洲精品av在线| 日韩精品有码人妻一区| 国产精品嫩草影院av在线观看| 午夜视频国产福利| 午夜福利在线在线| 久久6这里有精品| 91精品一卡2卡3卡4卡| www日本黄色视频网| 成人午夜高清在线视频| 午夜免费男女啪啪视频观看| 日韩中字成人| 人妻少妇偷人精品九色| 国产黄片美女视频| 免费看a级黄色片| 亚洲成人久久爱视频| 精品人妻偷拍中文字幕| 1024手机看黄色片| 国产老妇女一区| 午夜福利视频1000在线观看| 亚洲精品自拍成人| 亚洲美女搞黄在线观看| 国产黄a三级三级三级人| 特级一级黄色大片| 午夜福利视频1000在线观看| 只有这里有精品99| 中文字幕人妻熟人妻熟丝袜美| 亚洲欧洲日产国产| 岛国毛片在线播放| 国产片特级美女逼逼视频| 久久99精品国语久久久| 级片在线观看| 噜噜噜噜噜久久久久久91| 亚洲色图av天堂| 久久久色成人| 亚洲成人精品中文字幕电影| 丝袜喷水一区| 久久综合国产亚洲精品| 国产精品久久久久久久电影| 国产精品一二三区在线看| 亚洲伊人久久精品综合 | 久久精品人妻少妇| 国产精品久久电影中文字幕| 色哟哟·www| 免费看光身美女| 亚洲最大成人手机在线| 亚洲国产精品sss在线观看| 观看免费一级毛片| 成人漫画全彩无遮挡| 欧美日韩综合久久久久久| 非洲黑人性xxxx精品又粗又长| 亚洲av成人精品一二三区| 青春草视频在线免费观看| 嫩草影院新地址| 夜夜看夜夜爽夜夜摸| 国产精品一二三区在线看| 久久久久久伊人网av| 日韩欧美在线乱码| 毛片一级片免费看久久久久| 久久热精品热| 亚洲国产精品久久男人天堂| 成人特级av手机在线观看| 黄色配什么色好看| 国产精品一区www在线观看| 97人妻精品一区二区三区麻豆| 亚洲av成人精品一区久久| 视频中文字幕在线观看| 国内精品美女久久久久久| 欧美丝袜亚洲另类| av免费在线看不卡| 亚洲性久久影院| 99久久精品国产国产毛片| 91aial.com中文字幕在线观看| 国产高清三级在线| 亚洲av电影在线观看一区二区三区 | 女的被弄到高潮叫床怎么办| 一边亲一边摸免费视频| www.av在线官网国产| 国产人妻一区二区三区在| 精品久久久久久久久亚洲| 天堂网av新在线| 校园人妻丝袜中文字幕| 永久免费av网站大全| 国产69精品久久久久777片| 七月丁香在线播放| 欧美+日韩+精品| 国产精品嫩草影院av在线观看| 亚洲精品成人久久久久久| 99热精品在线国产| 91精品伊人久久大香线蕉| 午夜福利高清视频| 国产精品久久电影中文字幕| 91久久精品国产一区二区三区| 亚洲av二区三区四区| 久久精品国产亚洲网站| 久久久久久久久久黄片| 成人高潮视频无遮挡免费网站| 成人av在线播放网站| 搡女人真爽免费视频火全软件| 日韩欧美在线乱码| 午夜福利视频1000在线观看| 免费观看a级毛片全部| 可以在线观看毛片的网站| 亚洲精品影视一区二区三区av| 亚洲精品久久久久久婷婷小说 | 精品国产三级普通话版| kizo精华| 男人的好看免费观看在线视频| 成人三级黄色视频| 秋霞伦理黄片| 久久韩国三级中文字幕| 亚洲av中文av极速乱| 久久久a久久爽久久v久久| 嫩草影院新地址| 日本免费一区二区三区高清不卡| 99久久成人亚洲精品观看| 国产精品女同一区二区软件| 亚洲欧美精品自产自拍| 亚洲欧美精品综合久久99| 变态另类丝袜制服| 在线a可以看的网站| 欧美3d第一页| 有码 亚洲区| 精品不卡国产一区二区三区| 女人被狂操c到高潮| 亚洲熟妇中文字幕五十中出| 岛国毛片在线播放| 免费在线观看成人毛片| 五月玫瑰六月丁香| 国产黄片美女视频| 成年免费大片在线观看| 国产一区亚洲一区在线观看| 人妻制服诱惑在线中文字幕| 免费黄色在线免费观看| 黑人高潮一二区| 国产精品.久久久| 青春草国产在线视频| 久久人人爽人人爽人人片va| 免费av不卡在线播放| 成人二区视频| 久久精品综合一区二区三区| 精品国产一区二区三区久久久樱花 | 日韩在线高清观看一区二区三区| 亚洲最大成人手机在线| 搡女人真爽免费视频火全软件| 欧美日韩国产亚洲二区| 简卡轻食公司| 亚洲综合色惰| 看免费成人av毛片| 人妻系列 视频|