• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Enhancing performance of GaN-based LDs by using GaN/InGaN asymmetric lower waveguide layers

    2022-08-01 06:01:38WenJieWang王文杰MingLeLiao廖明樂JunYuan袁浚SiYuanLuo羅思源andFengHuang黃鋒
    Chinese Physics B 2022年7期

    Wen-Jie Wang(王文杰), Ming-Le Liao(廖明樂), Jun Yuan(袁浚),Si-Yuan Luo(羅思源), and Feng Huang(黃鋒)

    1Microsystem and Terahertz Research Center,China Academy of Engineering Physics,Chengdu 610200,China

    2Institute of Electronic Engineering,China Academy of Engineering Physics,Mianyang 621999,China

    Keywords: asymmetric waveguide structure,InGaN multiple quantum wells,optical absorption loss,optical

    1. Introduction

    Nitride materials are ideal materials for semiconductor lasers in the ultraviolettovisible spectrum range. With the advantages of small size, high efficiency, long life, and fast response speed, GaN-based semiconductor laser is widely used in laser display, laser lighting, underwater communication, biomedicine, and other civil and military fields.[1–8]In particular, the GaN-based violet laser diodes (LDs) have attracted attention as a new laser source for high-density optical disk storage.[9,10]To realize such applications,high power GaN LD is significantly important. However, the electrooptical power conversion efficiency of commercial GaN-based laser diodes is still less than 40%. The structural design and material growth of GaN-based violet LDs have been studied extensively in the past. But achieving ultra-high performance of GaN-based violet LDs is still a big challenge. There remain some problems to be solved further in the realization of high power GaN LD, such as high total optical loss and optical field leakage. Many methods have been proposed to suppress the total optical loss and improve the optical field distribution for GaN-based violet LDs,such as complex upper waveguide,[11–13]undoped thickoptical-waveguide (TOW) layer,[14,15]and the nanoporous GaN cladding layers.[16]These complex structures with undoped InGaN wave guides are difficult to realize the high quality epitaxy on a quantum well structure, especially near a p-AlGaN electron barrier layer with high doping concentration.

    At the same time,by increasing the thickness and refractive index of upper waveguide layer, the optical field distribution gradually moves into the N-type region,so that optical absorption loss is reduced and optical field distribution in Pregion is improved, which brings higher output power. However, when the optical field center is in quantum well region,how to further adjust optical field distribution and reduce optical absorption loss to improve the output power is not covered in the existing literature. Comparing with the traditional LD structure proposed by Nakamuraet al.,[17,18]the optical characteristics,especially optical field distribution,can be improved by using an asymmetric quantum wells with a thick last quantum barrier.[19]To solve this problem,an asymmetric InGaN quantum well LD with the optical field center in the quantum well region, is selected as a research object in this work. The influence of GaN/InGaN lower waveguide layer on the photoelectric performance of GaN-based violet LDs is investigated numerically by using the PIC3D software.The influence of InGaN-IL parameters on the optical absorption loss and optical field distribution are clarified by designing a composite GaN/InGaN lower waveguide layer,so as to explore the ways to further improve the output power of asymmetric quantum wells LDs.

    2. Device structure and simulation setup

    The schematic diagram of asymmetric quantum well violet GaN-based LD with composite GaN/InGaN asymmetric lower waveguide structure is shown in Fig. 1, where the thickness and doping concentration of each layer are indicated. The violet GaN-based LD consists of a 1-μm thick Si-doped n-type GaN layer, a 1-μm thick Si-doped ntype Al0.08Ga0.92N cladding layer (n-CL), a composite lower waveguide layer(LWG)which is comprised of a 100-nm thick Si-doped n-type GaN layer and an InGaN-IL,a multiple quantum well (MQW) active area, a 20-nm thick Mg-doped ptype Al0.2Ga0.8N electron blocking layer (EBL), a 100-nm thick GaN upper waveguide layer (UWG), a 500-nm thick p-type Al0.07Ga0.93N cladding layer (p-CL), an 80-nm thick Mg-doped p-type GaN layer, and a 20-nm thick Mg-doped p++-type GaN contact layer. The active region consists of three period unintentionally-doped In0.15Ga0.85N/InGaN multiple quantum wells(MQWs).The InGaN barrier layer has the indium content changing from 4%to 1%in the upward direction of the substrate. Compared with the conventional threeperiod 3-nm thick InGaN/15-nm thick GaN quantum wells,the asymmetric quantum well can effectively improve the laser performance,especially increase the thickness of the last barrier layer.[19]In order to keep the thickness of the asymmetric quantum well consistent with the thickness of the conventional three-period-thick MQWs, the thickness of the well layer of the asymmetric quantum well is 3 nm,the same as that of the conventional quantum well, and the thickness of the last barrier layer is increased to make the center of optical field located in the MQW region and improve the optical field distribution. The thickness for each of the first three barrier layers is set to be 5 nm, and the thickness of the last barrier layer is set to be 45 nm, so that the optical field can be concentrated in the quantum well region. The cladding layer thickness n-CL is set to be 1 μm in order to better confine the light within the quantum well and waveguide layer. Thicker n-AlGaN layer is unnecessary and will increase the absorption loss.The optical and electrical performance of GaN-based LDs with GaN/InxGa1-xN asymmetric lower waveguide layers of different thicknesses or indium contents are investigated respectively. The thickness values of n-InGaN insertion layers are different, ranging from 0 nm to 600 nm, with the indium content being 0.02. On the other hand, the indium content of n-InGaN insertion layer varies from 0 to 0.07,with the thickness being 300 nm.

    In this work, the optical and electrical characteristics of these LD structures are theoretically simulated by the Crosslight Device Simulation Software (PIC3D, Crosslight Software Inc.). The PIC3D is designed to simulate the operation of GaN-based laser diode in three-dimensional space by self-consistently solving Poisson’s equation and current continuity equation through using the finite element method. In such a calculation, both the p-type electrode and n-type electrode are set to be of ideal Ohmic contact. The cavity lengths and ridge widths of these GaN-based lasers are all 800 μm and 2 μm,respectively. The P-electrode covers the ridge area and the N-electrode covers the entire underside.The screening factor is set to be 0.25,[20]and the band offset(ΔEc/ΔEg)is set to be 0.67.[21]Meanwhile,for the n-type layer and the p-type layer, their absorption coefficients are set to be 5 cm-1and 50 cm-1,[22]respectively, except for the heavily Mg-doped GaN contact layer, whose absorption coefficient is taken as 100 cm1. The reflectivity values of both front cavity surface and rear cavity surface are both set to be 0.19. Moreover,the refractive index values of AlxGa1-xN and InxGa1-xN are calculated from the refractive index formulas.[23–26]For the violet LDs with a lasing wavelength of around 416 nm, the refractive index values of InN, GaN and AlN are set to be 3.4167,2.5067, and 2.0767, respectively. The refractive index values of InxGa1-xN and AlxGa1-xN are calculated using an approximate method as follows:

    Fig. 1. Schematic diagram of device for asymmetric quantum well GaNbased violet LD with composite GaN/InGaN asymmetric lower waveguide structure.

    3. Results and discussion

    3.1. Effect of thickness of InGaN insertion layer

    At first,the influence of InGaN-IL on the emission properties of violet LDs is investigated by simulation when the thickness value varies from 0 nm to 600 nm, with the indium content maintained at 2%. The curves of output power and voltageversusinjection current for various values of In0.02Ga0.98N insertion layer thickness are shown in Fig. 2.According to the output power–current curve, the slope efficiency of layer is calculated and its variation with thickness is shown in the insert of Fig.2(b),indicating that the slope efficiency is much higher than that in Refs. [11,12], and slightly lower than that in Ref.[13]. The dependence of threshold current and output power(under an injection current of 160 mA)on InGaN insertion thickness as shown in Fig.3.

    Fig.2. Curves of(a)output power versus injection current when thickness of In0.02Ga0.98N insertion layer varies from 0 nm to 600 nm,and(b)curves of voltage versus injection current for violet LDs,with inserts showing slope efficiencies.

    Fig. 3. The output power and threshold current versus thickness of In0.02Ga0.98N-IL for violet LDs.

    It is found that the threshold current remains first at 38.2 mA when the thickness of InGaN-IL rises from 0 nm to 100 nm, and then markedly increases to 74.4 mA with the further increase of InGaN-IL thickness. Meanwhile, the output power reaches a maximum value of 176.13 mW when the InGaN-LWG thickness increases to 300 nm, which is 24%higher than that of the basic structure with 142 mW, and then decreases sharply when the thickness increases to over 300 nm. It demonstrates that for violet LDs, the composite GaN/In0.02Ga0.98N waveguide with In0.02Ga0.98N insertion thickness less than 600 nm has better performance than GaN waveguide,and the optimal thickness is 300 nm. In addition,the current–voltage curve is basically unchanged, indicating that the increase of InGaN-IL thickness does not significantly increase the resistance.

    In fact, the threshold current and the output power are mainly influenced by the optical confinement properties and optical field distribution.[27]Therefore, the influence of InGaN-IL thickness on the optical performance of GaN-based violet LDs will be discussed in detail below.

    Fig.4. Curves of(a)optical confinement factor and total optical loss and(b)center of optical field offset and FWHM versus thickness of In0.02Ga0.98NIL for violet LDs,with insert showing optical field distribution and dashed lines denoting InGaN-IL position.

    The data of optical properties reflecting optical field distribution are shown in Fig. 4, where the thickness of InGaNIL rises from 0 nm to 600 nm. In Fig. 4(a), the optical confinement factor (OCF) increases slightly from 2.4% to 2.56% when the thickness of InGaN-IL increases from 0 nm to 70 nm. Meanwhile, the total optical loss (TOL) decreases from 8.73 cm-1to 6.46 cm-1with the thickness of InGaNIL increasing. It indicates that the increasing of InGaN-IL thickness can reduce optical loss and a little enhance the confinement factor,thereby will better restricting the optical field.Therefore,the performance of violet LDs can be improved due to the decrease of TOL and increase of OCF.Simultaneously,it can be seen that with the increase of the IL layer thickness in Fig.4(a),the optical field concentrates more inside the InGaN-IL layer. However,the optical field peak deviates from the quantum wells. Even if more optical fields are distributed inside the InGaN-IL layer, the optical absorption loss further decreases, but the OCF may be reduced by shifting the peak position of the optical field.This is consistent with the trend of OCF in Fig.4(a)as the thickness of the barrier layer changes.Therefore,with the increase of the IL layer thickness,the peak position of the optical field moves from the MQW region to the n-type region,and the optical confinement factor slowly grows to a maximum value and then decreases rapidly. Meanwhile,the mode gain is the product of OCF and material gain. When the thickness exceeds 100 nm,the peak gain decreases gradually,confirming that the optical field gradually enters into the InGaN-IL layer,which is not conducive to OCF.The decrease of mode gain leads the threshold current to increase,which is consistent with the change trend of OCF in Fig.4(a).

    Furthermore,the more details of optical field distribution are shown in Fig.4(b). The center of optical field(COF)offset is used to describe the position of the optical field center relative to the quantum well region. The value represents the depth from the peak position of the optical field to the InGaNIL.Most of optical field moves far away from p-type area with the thickness of InGaN-IL increasing,thus reducing TOL due to the smaller absorption coefficient in n-type area. In addition, the center of optical field (COF) offset shifts slowly from quantum well region to the InGaN-IL and full width at half maximum (FWHM) of the optical field decreases from 0.32 μm to 0.29 μm when the thickness rises from 0 nm to 100 nm. It demonstrates that the optical field is better compressed and thus optical field is confined more near the MQWs region. As the InGaN-IL is inserted, the difference in refractive index between InGaN-IL and AlGaN cladding increases,and the optical field is far from the P-type region and better compressed into the InGaN-IL close to the quantum well region,thus reducing the TOL and slightly increasing the OCF.However, when the InGaN-IL thickness exceeds 100 nm, the optical field center gradually deepens into the InGaN waveguide layer. At the same time,the FWHM gradually increases,and the OCF decreases due to serious downward leakage of the optical field. The reduction of TOL can offset the adverse effects caused by the optical field leakage, so that the output power reaches a maximum value when the thickness of the InGaN-IL is 300 nm.Moreover,after the insertion layer thickness reaches to over 300 nm,a small reduction in TOL is still not enough to slow down the output power decline caused by optical field leakage. On the other hand,the band structure of LD is basically unchanged when the insertion layer thickness increase to 300 nm, and the percentage of electron leakage current(PELC)decrease within 1%,indicating that the InGaN insertion layer thickness has little influence on the electrical performance of this LD,which is consistent with the current–voltage curve in Fig.2(b).

    3.2. Effect of indium content of InGaN insertion layer

    As mentioned above, the LD with an optical light field center in the quantum well region can increase the output power by 24% by inserting a 300-nm thick InGaN-IL. However,it has not been determined whether the output power can be further improved. Therefore, based on the 300-nm thick insertion layer,we further explore the power improvement potential by changing the indium content of the InGaN-IL.

    Figure 5 shows that when the indium content in InGaNIL increases from 0 to 0.07, the threshold current increases from 40.1 mA to 55.2 mA.Meanwhile,when the indium content of InGaN-IL increases from 0 to 0.04, the output optical power first increases from 169 mW to 178.5 mW, which is 25.7%in enhancement with respect to the reference structure of asymmetric GaN waveguide LD.Compared with the effect of InGaN-IL thickness, the effect of indium content change on LD output power and threshold current are relatively small.When the indium content increases from 2%to 4%,the output power only increases by 2 mW and the increment ratio is less than 1.2%.

    Fig.5.Output power and threshold current versus indium content of InGaNIL for violet LD.

    Figure 6(a)shows that most of optical field leaks into the InGaN-IL when the indium content increases from 0 to 0.07.However, vast majority of optical field is concentrated in the GaN/InGaN LWG when the indium content is more than or equal to 0.04. Figure 6(b)shows that the center of optical field decreases abrupt from 2.35 μm to 2.26 μm with the indium content increasing and then reaches a constant at 2.26 mm when the indium content is more than 0.04. In addition, figure 6(b)also shows that the FWHM of optical field decreases from 0.41 μm to 0.28 μm when the indium content increases from 0 to 0.07,indicating that most of optical field moves far from MQW region and concentrates when the indium content is more than 0.04. It demonstrates that optical field leakage is enhanced due to the decrease of optical confinement caused by a large refractive index of GaN/InGaN LWG,thus threshold current increases obviously.

    Fig. 6. (a) Optical field distributions for various indium contents, and (b)center of optical field and FWHM versus indium content of InGaN-IL for violet LD,with red dotted line denoting interface between InGaN-IL layer and the MQW.

    Meanwhile,the trend of TOL and OCF changing with indium content in Fig. 7 also confirm the above statement and discussion. The TOL decreases rapidly, and moderates when the indium content is greater than or equal to 0.04. The reason is that as the center of the optical field gradually deepens into the InGaN-IL and is fixed at 2.26 μm,the proportion of the optical field with a low optical absorption coefficient in the composite waveguide layer and the quantum well region gradually increases,especially in the InGaN-IL.With the gradual increase of indium content,the rapid decrease of TOL can compensate for the adverse effects caused by the decrease of OCF,so that the LD output power reaches a maximum value when the indium content of InGaN-IL is 0.04. Similarly, the electrical properties of LD based on the GaN/InGaN composite lower waveguide layer structure show that the variation of indium content has a weak influence on the fluctuation of electron current leakage,and the fluctuation range is within 1.5%.

    Fig.7. Optical confinement factor and total optical loss versus indium content of InGaN-IL for violet LD.

    Fig.8. (a)Electron concentrations and(b)hole concentrations varying with position at 160 mA forward current for three samples.

    In addition,the influence of the thickness and the indium composition of InGaN-IL on the electron and hole concentration are analyzed,and the results are given in Fig.8,showing that the electron and hole concentration in the quantum well increase slightly with the change of the thickness and composition, while In4-300 increases more. However, the variation of InGaN-IL thickness does not significantly change the energy band,especially the electron barrier layer interface. The band diagram shows that the thickness and the indium composition of InGaN-IL have slight effects on the effective potential barrier height of electrons and holes. ΔEcand ΔEvare around 192.3 meV and 193.7 meV, respectively, which is also confirmed in the PLEC diagram. When the indium component of InGaN-IL is high,a potential well will be formed between the GaN low waveguide layer and the first quantum barrier layer as indicated in Fig.9. In this case,the carriers may converge and recombine in the potential well.As mentioned in Ref.[28],the calculation results of recombination rate show that the carrier in InGaN-IL increases with indium content increasing. Since this part of the carrier does not contribute to oscillation,it results in low injection ratio and waste of carriers. Therefore,when the indium content of InGaN-IL layer is greater than 4%,the decrease of current injection ratio is also the cause of LD deterioration. It is suggested that using GaN/InGaN instead of GaN as LWG can improve the performance of LD,but the indium content should be kept at a relatively low level.Therefore,when a 300-nm thick In0.04Ga0.96N insertion layer is used, the laser output power is improved by 25.7% compared with the LD reference structure of the symmetric GaN waveguide layer.

    Fig.9. (a)Energy band diagram of conduction band and(b)valence band,with InGaN-IL thickness being 300 nm and injection current being 160 mA.

    4. Conclusions

    In this work,the approach to improving the output power of violet GaN-based LD with the optical field centered in the quantum well region is proved by using asymmetric GaN/InGaN composite lower waveguide layer. Compared with the indium content of InGaN-IL,the thickness of InGaNIL is a decisive factor for improving the laser performance.The maximum output power of the laser reaches 178.5 mW,when the thickness of InGaN-IL is 300 nm and the indium content is 0.04. Further theoretical analysis indicates that the thickness and indium content of InGaN-IL are both beneficial to pushing the optical field towards the InGaN lower waveguide layer and greatly reducing the total optical loss, which makes up for the negative effect of the reduction of optical confinement factor, thereby improving the performances of GaN-based violet LDs.

    Acknowledgements

    Project supported by the National Natural Science Foundation of China (Grant Nos. 62004180 and 61805218), the Science Challenge Project, China (Grant No. TZ2016003-2-1), and the National Key Research and Development Program of China (Grant Nos. 2017YFB0403100 and 2017YFB0403103).

    成人欧美大片| 男人舔女人下体高潮全视频| 综合色av麻豆| xxxwww97欧美| 亚洲国产欧美网| 欧美三级亚洲精品| 免费电影在线观看免费观看| 毛片女人毛片| 一本精品99久久精品77| 亚洲专区国产一区二区| 免费电影在线观看免费观看| 久久久色成人| 欧美最黄视频在线播放免费| 精品一区二区三区人妻视频| 午夜免费观看网址| 禁无遮挡网站| 国产激情欧美一区二区| 亚洲 国产 在线| 天堂√8在线中文| 嫩草影院入口| 日本熟妇午夜| 欧美av亚洲av综合av国产av| 性色av乱码一区二区三区2| 97超级碰碰碰精品色视频在线观看| 可以在线观看毛片的网站| 亚洲国产高清在线一区二区三| 村上凉子中文字幕在线| 日韩成人在线观看一区二区三区| 色尼玛亚洲综合影院| 99热6这里只有精品| 99热6这里只有精品| 国产精品亚洲av一区麻豆| 成年女人毛片免费观看观看9| 国产久久久一区二区三区| 人妻丰满熟妇av一区二区三区| 精品久久久久久久人妻蜜臀av| 国产成+人综合+亚洲专区| 成年版毛片免费区| 欧美三级亚洲精品| 91字幕亚洲| 日韩欧美精品v在线| av欧美777| 免费高清视频大片| 免费看美女性在线毛片视频| 久久久色成人| 亚洲午夜理论影院| 国产精品影院久久| 国产伦一二天堂av在线观看| 丰满的人妻完整版| 中文字幕人成人乱码亚洲影| 国产三级中文精品| 亚洲精品成人久久久久久| 床上黄色一级片| 亚洲av日韩精品久久久久久密| 成年女人永久免费观看视频| 岛国视频午夜一区免费看| 他把我摸到了高潮在线观看| 中文字幕人妻丝袜一区二区| 欧美性猛交黑人性爽| 国产黄色小视频在线观看| av视频在线观看入口| 午夜免费激情av| 久久久久性生活片| 免费看日本二区| 国产综合懂色| 国产精品电影一区二区三区| 亚洲欧美日韩东京热| 神马国产精品三级电影在线观看| 极品教师在线免费播放| 日本撒尿小便嘘嘘汇集6| 91九色精品人成在线观看| av天堂在线播放| 欧美性猛交╳xxx乱大交人| 97超级碰碰碰精品色视频在线观看| 中文资源天堂在线| 国内揄拍国产精品人妻在线| 亚洲最大成人手机在线| 少妇的逼水好多| 亚洲av成人不卡在线观看播放网| 欧美性感艳星| 老司机午夜福利在线观看视频| 窝窝影院91人妻| 亚洲欧美日韩卡通动漫| 国产精品久久久久久人妻精品电影| 在线视频色国产色| 97人妻精品一区二区三区麻豆| 此物有八面人人有两片| 成人特级av手机在线观看| 久久久久九九精品影院| 亚洲人与动物交配视频| 午夜精品一区二区三区免费看| 欧美最新免费一区二区三区 | 丰满人妻熟妇乱又伦精品不卡| 国产午夜精品论理片| 一级黄色大片毛片| 中文字幕人成人乱码亚洲影| 噜噜噜噜噜久久久久久91| 久久久久九九精品影院| 美女 人体艺术 gogo| 高潮久久久久久久久久久不卡| 日日夜夜操网爽| 亚洲一区二区三区色噜噜| 亚洲欧美日韩无卡精品| 亚洲国产欧洲综合997久久,| 色播亚洲综合网| 国产亚洲欧美98| 波多野结衣巨乳人妻| av在线蜜桃| 丰满的人妻完整版| 午夜福利在线观看吧| 成年免费大片在线观看| 免费在线观看日本一区| 成人永久免费在线观看视频| 国产精品国产高清国产av| 国产精品98久久久久久宅男小说| 欧美乱码精品一区二区三区| 亚洲在线观看片| 国产免费男女视频| 日本成人三级电影网站| 国产精品久久久久久亚洲av鲁大| 黄色女人牲交| 中文字幕熟女人妻在线| 淫秽高清视频在线观看| 最近最新中文字幕大全免费视频| 国产淫片久久久久久久久 | 亚洲一区二区三区色噜噜| 婷婷精品国产亚洲av| www日本在线高清视频| 啦啦啦韩国在线观看视频| 国产色爽女视频免费观看| 天堂网av新在线| 内射极品少妇av片p| 欧美日韩综合久久久久久 | 亚洲精品美女久久久久99蜜臀| 99久久无色码亚洲精品果冻| av女优亚洲男人天堂| 久久久久精品国产欧美久久久| 国产色婷婷99| 变态另类成人亚洲欧美熟女| 国内少妇人妻偷人精品xxx网站| 宅男免费午夜| 51午夜福利影视在线观看| 日韩有码中文字幕| 精品久久久久久久久久久久久| 又黄又粗又硬又大视频| 国产高清视频在线播放一区| 亚洲av免费在线观看| 深夜精品福利| 欧美黑人巨大hd| 成人18禁在线播放| 韩国av一区二区三区四区| 国产免费一级a男人的天堂| 波多野结衣高清作品| 成人av在线播放网站| 中文资源天堂在线| 国产伦精品一区二区三区视频9 | 又黄又爽又免费观看的视频| 一二三四社区在线视频社区8| 少妇人妻精品综合一区二区 | 亚洲成人免费电影在线观看| 深爱激情五月婷婷| 久久人妻av系列| 亚洲专区中文字幕在线| 国产精品久久视频播放| 免费av观看视频| 3wmmmm亚洲av在线观看| 毛片女人毛片| 岛国在线观看网站| 亚洲精品国产精品久久久不卡| e午夜精品久久久久久久| 国产精品1区2区在线观看.| 亚洲熟妇中文字幕五十中出| 精品午夜福利视频在线观看一区| 亚洲成人久久性| 偷拍熟女少妇极品色| 欧洲精品卡2卡3卡4卡5卡区| 1000部很黄的大片| 母亲3免费完整高清在线观看| 看免费av毛片| 男女下面进入的视频免费午夜| 毛片女人毛片| 99久久九九国产精品国产免费| 日本精品一区二区三区蜜桃| 精品久久久久久成人av| 久久久久亚洲av毛片大全| 丝袜美腿在线中文| 波多野结衣巨乳人妻| 国产不卡一卡二| 久久九九热精品免费| 国产午夜精品论理片| 香蕉av资源在线| 亚洲人与动物交配视频| 又紧又爽又黄一区二区| 免费看美女性在线毛片视频| 成人一区二区视频在线观看| 久久这里只有精品中国| 少妇人妻精品综合一区二区 | 日本免费一区二区三区高清不卡| 久久久久国内视频| 两性午夜刺激爽爽歪歪视频在线观看| 国产一区二区激情短视频| 特大巨黑吊av在线直播| 国产乱人视频| 黄片大片在线免费观看| 欧美精品啪啪一区二区三区| 色综合站精品国产| 级片在线观看| 亚洲精品日韩av片在线观看 | 国产精品99久久99久久久不卡| 床上黄色一级片| 人妻久久中文字幕网| 1000部很黄的大片| 久久久久国内视频| 亚洲国产精品合色在线| 亚洲精品粉嫩美女一区| 日韩欧美国产在线观看| 3wmmmm亚洲av在线观看| 成人av在线播放网站| 白带黄色成豆腐渣| 国产精品自产拍在线观看55亚洲| 国产在视频线在精品| 此物有八面人人有两片| 日韩亚洲欧美综合| 欧美激情久久久久久爽电影| 嫩草影院精品99| 99久久成人亚洲精品观看| 男人舔奶头视频| 在线观看午夜福利视频| 亚洲欧美日韩东京热| 床上黄色一级片| 亚洲久久久久久中文字幕| 亚洲精品亚洲一区二区| 国产精品嫩草影院av在线观看 | 人妻久久中文字幕网| 国产精品综合久久久久久久免费| 午夜免费激情av| 内射极品少妇av片p| 久久精品影院6| 精品99又大又爽又粗少妇毛片 | 国产午夜福利久久久久久| 九色成人免费人妻av| 国产成人影院久久av| 久久久久久国产a免费观看| 免费人成视频x8x8入口观看| 国产精品亚洲av一区麻豆| 啦啦啦韩国在线观看视频| 在线观看免费视频日本深夜| 午夜免费观看网址| 高清毛片免费观看视频网站| 久久伊人香网站| 波野结衣二区三区在线 | 99久久精品热视频| 99久久无色码亚洲精品果冻| 精品午夜福利视频在线观看一区| 婷婷亚洲欧美| 婷婷六月久久综合丁香| 在线a可以看的网站| 国产av在哪里看| 丰满乱子伦码专区| 欧美日韩一级在线毛片| 亚洲av成人精品一区久久| 精品国产亚洲在线| 亚洲内射少妇av| 国产日本99.免费观看| 国产伦一二天堂av在线观看| 在线视频色国产色| 日本 欧美在线| 国产在线精品亚洲第一网站| 国产精品久久久久久久电影 | 高清毛片免费观看视频网站| 日韩欧美在线二视频| 亚洲va日本ⅴa欧美va伊人久久| 国产成人系列免费观看| 听说在线观看完整版免费高清| 国产精品亚洲av一区麻豆| 一个人看视频在线观看www免费 | 国产精品亚洲av一区麻豆| 91在线观看av| 五月伊人婷婷丁香| 免费看十八禁软件| av黄色大香蕉| 身体一侧抽搐| 女生性感内裤真人,穿戴方法视频| 亚洲人成伊人成综合网2020| 午夜日韩欧美国产| 美女大奶头视频| 日韩高清综合在线| 99精品在免费线老司机午夜| avwww免费| 97超级碰碰碰精品色视频在线观看| 国产免费一级a男人的天堂| 国模一区二区三区四区视频| 国产乱人伦免费视频| 欧美日韩乱码在线| 中文资源天堂在线| 亚洲美女视频黄频| 男人和女人高潮做爰伦理| 亚洲在线观看片| 动漫黄色视频在线观看| 国产av不卡久久| 首页视频小说图片口味搜索| av天堂在线播放| 欧美日韩一级在线毛片| 亚洲精品在线美女| 母亲3免费完整高清在线观看| 熟妇人妻久久中文字幕3abv| 欧美性猛交黑人性爽| 免费观看精品视频网站| 男女床上黄色一级片免费看| 九色国产91popny在线| 国产精品av视频在线免费观看| 成年女人毛片免费观看观看9| 欧美又色又爽又黄视频| 国产欧美日韩一区二区精品| 一本综合久久免费| 久久精品国产清高在天天线| 亚洲第一电影网av| www.色视频.com| 欧美极品一区二区三区四区| 亚洲精品成人久久久久久| 97超级碰碰碰精品色视频在线观看| 精品电影一区二区在线| 给我免费播放毛片高清在线观看| 亚洲中文字幕日韩| 给我免费播放毛片高清在线观看| 夜夜看夜夜爽夜夜摸| 欧美成人a在线观看| 99国产精品一区二区三区| 国产精品精品国产色婷婷| 亚洲av中文字字幕乱码综合| 亚洲无线在线观看| 久久久久久久久中文| 国产一区二区激情短视频| 怎么达到女性高潮| 床上黄色一级片| 淫妇啪啪啪对白视频| 他把我摸到了高潮在线观看| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | av在线蜜桃| 亚洲七黄色美女视频| 脱女人内裤的视频| 搡女人真爽免费视频火全软件 | 久久精品91无色码中文字幕| 成人一区二区视频在线观看| 亚洲精品成人久久久久久| 日本一二三区视频观看| 人人妻人人看人人澡| 九九久久精品国产亚洲av麻豆| 欧美日韩一级在线毛片| www日本在线高清视频| 欧美黑人欧美精品刺激| 久久草成人影院| 老汉色∧v一级毛片| 69人妻影院| 精品久久久久久久久久免费视频| 亚洲美女黄片视频| 很黄的视频免费| 欧美+亚洲+日韩+国产| 国产成人aa在线观看| 午夜福利高清视频| 国产淫片久久久久久久久 | 国产三级在线视频| 国产69精品久久久久777片| 免费看a级黄色片| 国产视频内射| 国产成人系列免费观看| 午夜福利成人在线免费观看| 男女做爰动态图高潮gif福利片| 一卡2卡三卡四卡精品乱码亚洲| 91av网一区二区| 蜜桃亚洲精品一区二区三区| 国产一区二区在线观看日韩 | 精品人妻偷拍中文字幕| 欧美激情在线99| 国产精品 国内视频| 在线看三级毛片| 身体一侧抽搐| 亚洲性夜色夜夜综合| 老司机福利观看| 亚洲专区国产一区二区| АⅤ资源中文在线天堂| 在线观看日韩欧美| 国产精品98久久久久久宅男小说| 国产91精品成人一区二区三区| 一区二区三区免费毛片| 可以在线观看毛片的网站| 午夜影院日韩av| 亚洲av一区综合| 99热这里只有是精品50| 国产午夜精品久久久久久一区二区三区 | 国产在视频线在精品| 国产精品影院久久| 久久九九热精品免费| 国产伦在线观看视频一区| 日本精品一区二区三区蜜桃| 亚洲avbb在线观看| 欧美三级亚洲精品| 久久6这里有精品| 成人欧美大片| 3wmmmm亚洲av在线观看| 精品一区二区三区视频在线 | 99国产精品一区二区蜜桃av| 日日摸夜夜添夜夜添小说| 啪啪无遮挡十八禁网站| 午夜免费成人在线视频| 久久国产乱子伦精品免费另类| 99在线视频只有这里精品首页| h日本视频在线播放| 嫩草影院精品99| 免费人成在线观看视频色| 国产私拍福利视频在线观看| 成年免费大片在线观看| 亚洲精品一卡2卡三卡4卡5卡| 久久久久久久午夜电影| 欧美另类亚洲清纯唯美| 久久精品人妻少妇| 69av精品久久久久久| 欧美高清成人免费视频www| 亚洲国产欧洲综合997久久,| 最新在线观看一区二区三区| 欧美最新免费一区二区三区 | 麻豆久久精品国产亚洲av| 欧美成人性av电影在线观看| 少妇的逼水好多| 久久中文看片网| 久久久国产成人精品二区| 男女午夜视频在线观看| 别揉我奶头~嗯~啊~动态视频| 国产乱人伦免费视频| 久久久精品欧美日韩精品| 久久久久久久亚洲中文字幕 | eeuss影院久久| 国产成人av教育| 日本黄大片高清| 一本久久中文字幕| 国产精品98久久久久久宅男小说| 有码 亚洲区| 欧美成人免费av一区二区三区| 老汉色∧v一级毛片| 丝袜美腿在线中文| 精品国内亚洲2022精品成人| 国产主播在线观看一区二区| 久久草成人影院| 波多野结衣高清无吗| 国产精品久久久久久人妻精品电影| 香蕉久久夜色| 偷拍熟女少妇极品色| 小蜜桃在线观看免费完整版高清| av国产免费在线观看| 日韩亚洲欧美综合| 日韩精品中文字幕看吧| 18禁美女被吸乳视频| 人人妻人人看人人澡| 免费高清视频大片| 亚洲国产精品久久男人天堂| eeuss影院久久| 国产精品亚洲av一区麻豆| 老熟妇仑乱视频hdxx| 国产亚洲av嫩草精品影院| 国产成+人综合+亚洲专区| 日韩欧美免费精品| 国产伦精品一区二区三区四那| 91麻豆精品激情在线观看国产| 免费在线观看成人毛片| 每晚都被弄得嗷嗷叫到高潮| www.www免费av| 白带黄色成豆腐渣| 搡老妇女老女人老熟妇| 中文资源天堂在线| 最新中文字幕久久久久| 桃色一区二区三区在线观看| 国产99白浆流出| 免费人成视频x8x8入口观看| 亚洲av五月六月丁香网| 嫩草影院精品99| 一本精品99久久精品77| 中文字幕人成人乱码亚洲影| 欧美黄色淫秽网站| 亚洲av成人不卡在线观看播放网| 久久性视频一级片| 手机成人av网站| 一夜夜www| 国产午夜精品论理片| 久久久久久大精品| 真人做人爱边吃奶动态| 国产欧美日韩精品亚洲av| 亚洲人成网站在线播| 啦啦啦免费观看视频1| 国产精品 欧美亚洲| 久久精品国产自在天天线| 非洲黑人性xxxx精品又粗又长| 精品国产亚洲在线| 国产精品嫩草影院av在线观看 | 久久精品亚洲精品国产色婷小说| 热99在线观看视频| 亚洲久久久久久中文字幕| www日本黄色视频网| 久久草成人影院| 国产成人系列免费观看| 欧美中文日本在线观看视频| 午夜免费成人在线视频| 一级黄片播放器| 此物有八面人人有两片| 精品无人区乱码1区二区| 又粗又爽又猛毛片免费看| 国产成人aa在线观看| 好男人电影高清在线观看| 熟女人妻精品中文字幕| 国产爱豆传媒在线观看| 一级作爱视频免费观看| 国产爱豆传媒在线观看| 狂野欧美白嫩少妇大欣赏| 日本免费一区二区三区高清不卡| 熟女人妻精品中文字幕| 国产三级中文精品| 少妇的丰满在线观看| av欧美777| 日本在线视频免费播放| www.色视频.com| 制服人妻中文乱码| 国产高清视频在线观看网站| 国产精品野战在线观看| 欧美性猛交╳xxx乱大交人| 欧美高清成人免费视频www| 99国产综合亚洲精品| 欧美激情久久久久久爽电影| 日日干狠狠操夜夜爽| 少妇高潮的动态图| 嫩草影院入口| 九九在线视频观看精品| 久久久久国内视频| 久久香蕉精品热| 久久久国产成人免费| 日韩欧美国产一区二区入口| 国产麻豆成人av免费视频| 日韩欧美国产一区二区入口| 老司机午夜福利在线观看视频| 国产精品av视频在线免费观看| 真实男女啪啪啪动态图| 老汉色av国产亚洲站长工具| 看黄色毛片网站| 一夜夜www| 又紧又爽又黄一区二区| 好男人在线观看高清免费视频| 国产爱豆传媒在线观看| 亚洲一区高清亚洲精品| 精品国产三级普通话版| 国产高清三级在线| 国产成人福利小说| 亚洲一区二区三区不卡视频| 91久久精品国产一区二区成人 | 久久久成人免费电影| 久久人妻av系列| 岛国视频午夜一区免费看| 亚洲在线自拍视频| 国产一区二区亚洲精品在线观看| 久久精品国产综合久久久| 最近视频中文字幕2019在线8| netflix在线观看网站| 制服丝袜大香蕉在线| 一个人看的www免费观看视频| a在线观看视频网站| 两个人的视频大全免费| 国产私拍福利视频在线观看| 淫妇啪啪啪对白视频| 精品乱码久久久久久99久播| 免费人成在线观看视频色| 色综合站精品国产| 久久久久久久久中文| 精品免费久久久久久久清纯| 欧美最新免费一区二区三区 | 中文字幕熟女人妻在线| 欧美精品啪啪一区二区三区| 久久久久久久精品吃奶| 色老头精品视频在线观看| 免费搜索国产男女视频| 小说图片视频综合网站| 日韩有码中文字幕| 美女免费视频网站| 天堂影院成人在线观看| 久久久国产精品麻豆| 亚洲国产日韩欧美精品在线观看 | 亚洲欧美日韩东京热| 午夜福利视频1000在线观看| 国产免费一级a男人的天堂| 国产成人av教育| 国产三级在线视频| 欧美中文综合在线视频| 深夜精品福利| 在线国产一区二区在线| 男女之事视频高清在线观看| 亚洲色图av天堂| 午夜老司机福利剧场| 91久久精品电影网| 免费在线观看成人毛片| 国产主播在线观看一区二区| 国产欧美日韩精品一区二区| 51午夜福利影视在线观看| 国语自产精品视频在线第100页| 成人无遮挡网站| 欧美一区二区精品小视频在线| 久久草成人影院| 五月玫瑰六月丁香| 国产激情欧美一区二区| 超碰av人人做人人爽久久 | 精品久久久久久,| 老司机福利观看| 99久久精品热视频| 亚洲人成网站高清观看| 变态另类丝袜制服| 特级一级黄色大片| 午夜福利在线观看吧| 97碰自拍视频| 精品久久久久久成人av| 国产高清视频在线观看网站|