• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Multi-target ranging using an optical reservoir computing approach in the laterally coupled semiconductor lasers with self-feedback

    2022-08-01 06:01:28DongZhouZhong鐘東洲ZheXu徐喆YaLanHu胡亞蘭KeKeZhao趙可可JinBoZhang張金波PengHou侯鵬WanAnDeng鄧萬安andJiangTaoXi習(xí)江濤
    Chinese Physics B 2022年7期
    關(guān)鍵詞:萬安東洲

    Dong-Zhou Zhong(鐘東洲), Zhe Xu(徐喆), Ya-Lan Hu(胡亞蘭), Ke-Ke Zhao(趙可可), Jin-Bo Zhang(張金波),Peng Hou(侯鵬), Wan-An Deng(鄧萬安), and Jiang-Tao Xi(習(xí)江濤),2

    1Intelligent Manufacturing Faculty,Wuyi University,Jiangmen 529020,China

    2School of Electrical,Computer,Telecommunications Engineering,University of WollongGong,2522,Australia

    Keywords: coupled semiconductor lasers,lidar ranging,optical reservoir computing,chaos synchronization

    1. Introduction

    The chaotic lidar is a lidar system utilizing the nonlinear dynamics of semiconductor lasers.[1–3]A chaotic lidar can be used as an enabling technology for many applications, such as artificial intelligence,precision range finding,object tracking and locating,through-wall detection,driverless navigation system and so on.[4–7,13–19]Among other applications,chaotic lidar ranging (CLR) has attracted considerable attention due to its advantages over short-pulse and continuous wave(CW)lidar ranging, such as low probability of intercept, high resolution in ranging and velocity,strong anti-interference ability,easy generation and low cost.[1–3,8]

    There are mainly two ways for the implementation of CLRs. The first one is based on the computation of the cross-correlation between the reflected return signal and the replica of the signal transmitted.[1–9,15,16]Such correlationbased methods take advantage of the broad bandwidth of the chaotic laser and can achieve resolution up to centimeter-level.Although progress was made to increase the resolution[4–9]in recent years, further improvement becomes very difficult due to the limit of the correlation and the interference of spontaneous emission noise and channel noise. Another way of implementing CRLs is with a synchronized chaotic lidar. A synchronization chaotic lidar system has two chaotic lasers:one called the drive laser, used to generate the probe signal,and the other referred to as response laser that is used to synchronize with the drive laser. In order to probe the target,the drive laser output is modulated with a microwave signal. The chaotic probe signal with a microwave signal is reflected by the target, then delayed, finally synchronized with a chaotic signal from the response laser output. The delayed microwave signal is decoded by using high-quality chaotic synchronization. The delay time in the microwave is extracted by using Hilbert transform. The distance of the target at an arbitrary position can be calculated by using delay time. In contrast to a cross-correlation-based chaotic lidar, synchronized chaotic lidars has the potential to provide improved ranging performance in accuracy and anti-noise ability since the quality of synchronization is very robust to noise.[18–20]

    The accuracy of the target ranging associated with synchronized chaotic lidar systems heavily depends on the quality and stability of chaotic synchronization. However,all existing techniques for completing chaos synchronization rely on the assumptions that the drive and the response laser systems are identical,i.e.,the rate-equations describing the two lasers must be the same and known a priori.[21–23]However,these assumptions do not hold in practice,as an inevitable mismatch always exists between the driving and response lasers.

    In recent years, reservoir computing (RC) has been proven to be an effective approach in the prediction of chaotic systems from data.[24–27]The delay-based RC first proposed by Appeltantet al.,[28]composed of a nonlinear node and a delay feedback loop, is proved to be an effective and simple hardware implementation for neural network computing in hardware.[29–38]Many hardware implementations of such delay-based RC have been reported in literature, such as the electronic system,[29,30]opto-electronic system,[31,32]all-optical system,[33–35]and laser dynamical system.[36–38]Among these techniques,the delay-based RC using nonlinear semiconductor lasers has the advantages of fast-speed, high efficiency and parallel computing capability for many benchmark tasks,[33–48]such as time series prediction,[39–43]optical packet header recognition,[44]speech recognition,[45]nonlinear channel equalization[46]and so on. A growing number of studies have shown that a well-trained reservoir computer can be well synchronized with its learned chaotic system by using a delay-based RC approach.[24–27]For example, in 2017,Anoniket al.proved experimentally that a reservoir can be trained to yield similar dynamics to its learned chaotic system (similar spectrum, Lyapunov index, etc).[47]Our previous work further shows that high-quality chaotic synchronization between the driving laser array and its trained reservoir in the existence of mismatch between their rate equations can be achieved by using a delay-based optical reservoir computing approach.[42]

    The 1-D lateral laser array(laterally coupled semiconductor lasers)with rich chaos dynamics represents an ideal candidate of an integrated chaotic light source,which has potential applications in multi-target chaotic lidar synchronous ranging.Compared with the multi-target ranging based on three uncoupled semiconductor lasers,the ranging to multi-target based on the 1-D lateral laser array are advantageous by a simple structure and thus there is easy fabrication on a single chip. For the application for the multi-target ranging using the 1-D lateral laser array, it is necessary to overcome the limitations of traditional optical chaos synchronization theory as described above.[21–23]The delay-based RC technology in training optical chaos synchronization provides a possible solution for this problem.[42]The stable and high-accuracy ranging to the multi-target can be achieved in the delay-based optical reservoir computing system based on the 1-D lateral laser array,owing to the realization of stable and high-quality chaos synchronization by the predictive learning,even if the existences of parameter mismatches between the driving laser element and its trained reservoir.

    Motivated by these described above, in this paper, as shown in Fig. 1, we propose three parallel delay-based optical chaotic RCs using laterally coupled semiconductor lasers both subject to self-feedback and optical injection, where the light injected into each laser is modulated by a delayed reflection probe signal from a target. These RCs can be described by the coupled wave theory developed by our previous work.[48]Based on these three-parallel delay-based RCs and Hilbert phase transformation principle,we further propose a novel scheme for multi-channel synchronized chaotic lidar ranging for multiple targets. For this scheme,we demonstrate the quality and stability of the lag chaos synchronization between a well-trained reservoir computer and its learned delay probe signal with a microwave signal. We explore the influences of the delay-time of RC and the interval of the virtual nodes on the training errors. Finally, we discuss the accuracies and the relative errors of the multi-target ranging.

    2. Experimental setup and theoretical method

    2.1. Experimental setup

    Figure 1 depicts a schematic diagram of synchronized chaotic lidar ranging for multi-targets by using three parallel delay-based RCs. Here, TLC-SL represents three laterally coupled semiconductor lasers,also referred to as a threeelement laser array. The TLC-SL1and TLC-SL2are the driving and response laser arrays, respectively. They both have three identical laser waveguides (LWGs) of width 2a, which are edge-to-edge separated 2d. The LWG A locates between the LWG B and the LWG C. The LWGs A, B, and C in the TLC-SL1are also denoted as lasers A1, B1and C1, respectively, and those in the TLC-SL2are also called as lasers A2,B2, and C2, respectively. The three driving laser elements in the TLC-SL1are chaotic radar sources to be learned for their synchronizations. With both delay-time feedback and optical injection,the three response laser elements in the TLC-SL2are utilized as nonlinear nodes to realize three-parallel delay RCs.The six neutral density filters(NDFs)are used to control light strength.The variable attenuators(VAs)are used to control the feedback strengths. The optical isolators (ISs) are applied to avoid light feedback.The AM1,AM2,and AM3are amplitude modulators.mA,mBandmCare the sinusoidal microwave signals. The fiber beam splitters (FBSs) (s=1–3) separate the output light into the photodetector and the input layer,respectively. The FBS4divides the external light from the driving semiconductor laser (D-SL) into three identical components,which are respectively injected into three phase modulations(PM1,PM2and PM3).

    The system presented by Fig. 1 is composed of the transmitting module (TM), multi-target detection module(MTDM), three input layers, three parallel reservoirs, three output layers and ranging calculation modules(RCMs). In the TM and MTDM, three beams of chaotic light waves are respectively emitted by lasers A1,B1and C1with self-feedback,and they are respectively modulated withmA,mB,andmC(sinusoidal microwave signals)using amplitude modulators,and these amplitude-modulated chaotic light waveforms are called the probe signals,such as PS-A,PS-B,and PS-C.These three probe signals are transmitted to by the optical transmitting antennas(OTA1–3),then reflected by the three targets and back to the optical receiving antennas(ORAs).Note that the signals collected by the receiving antennas can be considered as a delayed version of the three probe signals,which are denoted asuA(t-τA),uB(t-τB)anduC(t-τC).

    Fig.1. Schematic diagram of synchronized chaotic lidar ranging for the multi-target by utilizing three parallel delay-based optical reservoir computers using three laterally coupled semiconductor lasers(see texts for the detailed description).

    2.2. Theoretical method

    The nonlinear dynamics of the three laser-elements in the TCL-SL1with self-feedback can be described by the coupled mode theory developed by our previous work presented in Ref.[48]as follows:

    In the reservoir layers, the dynamics of the three laserelements in the TCL-SL2with both delay-time feedback and optical injection can be modeled as

    whereEdis the amplitude of CW output from the D-SL;cis the speed of light in vacuum;n0is the refractive index of the laser waveguides A, B, and C in the TCL-SL2. Thej-th masked input signalSj(t)is multiplied by thej-th input datauj(n′j), the mask signal, thej-th modulated signal and the scaling factorγ,which can be expressed as

    where the term Mask is chaos signal and presented in Ref. [49]. In these three input data,kA=τA/h,kB=τB/h,andkC=τC/h.his the step size.τAis the channel delay between the TA1and RA1.τBis that between the TA2and RA2.τCis that between the TA3and RA3.

    whereωjis the angular frequency of thej-th microwave signal;andAis the amplitude.By using the synchronous division presented in Fig. 1, these three-channel decoding microwave signals can be obtained by

    Under three lag synchronization solutions(see Eq.(22)),these decoding microwave signals are derived from Eqs.(25)and(26)as follows:

    According to Hilbert transform, the analytic signal ofmj(t)is written as

    and the distance of these three targets can be derived as

    wherecis the speed of light in vacuum.

    3. Results and discussion

    We calculate numerically Eqs.(1)–(14)by using the fourorder Runge–Kutta method with a stephof 1 ps. For the numerically solving Eqs.(1)–(7)for the TCL-SL1,6000 samples of input data are recorded under the sampling interval of 10 ps.After discarding the first 1000 samples(to eliminate transient states),we use the 3000 points for training the three reservoirs(RA,RB,and RC),and take their remaining 2000 points to test these reservoirs. Moreover,three mask signals are all chaotic signals generated by two mutually-coupled SLs, as presented in Ref.[49].The intervals of these mask signals are all denoted byθand set to 20 ps. The amplitudes of the mask signals are adjusted, making their standard deviations to be 1 and mean values of 0. The periodTof the input data is set as 8 ns,and hence the data processing speed is 125 Mb/s. The number of virtual nodesNis considered as 400, whereN=T/θ. The delay timeτ2=T+θ. The scaling factorγis set as 1.

    For the prediction tasks of the nonlinear dynamics of the lasers A1,B1,and C1,the training error,i.e.,thej-th normalized mean-square error(NMSEj)between thej-th input data(uj(n-kj))and thej-th reservoir(Rj)outputyj(n),is calculated to measure the performance of the Rj, which is defined as

    whereLis the total number of data in the testing data set;the term var represents the variance. The NMSE with subscripts ofjindicates how far the time seriesyj(n) generated by thej-th reservoir (Rj) deviates from thej-th delayed time seriesuj(n′j). NMSEj= 0 means thatyj(n) is perfectly matched withuj(n′j). When NMSEj=1 indicates that they are no similarities at all. Moreover, while NMSEjis less than 0.1, the trained reservoirs(RA,RBand RC)can infer the output chaotic trajectories from the lasers A1, B1, and C1, respectively. In other words,thej-th delayed input time seriesuj(n′j)from the laser-jelement in the TCL-SL1wishes to synchronize with the trained predicted valuesyj(n) from the Rjoutput, which can be characterized by using the correlation coefficient as follows:

    3.1. Training errors for the chaotic dynamics

    To further explore the predictive performances of three parallel trained reservoirs to the chaotic trajectories of threechannel delayed probe signals. Figure 3 displays three training errors(NMSEA,NMSEBand NMSEC)as a function of the delay-timeτ2underθ=20 ps,τA=10 ns,τB=15 ns, andτC=20 ns. It can be clearly seen from Fig.3 that in the region ofτ2between 1 ns and 10 ns,these training errors are less than 0.065, but they show a rise in oscillation with the increase ofτ2. The reason that a longer delay-timeτ2results in an oscillation rising training error may be explained as follows. In this work,whenθis fixed at 20 ps,T=τ2-θandN=τ2/θ-1,a largerNis accompanied by a largerτ2,indicating that a higher dimension state space. In such a case, the predictions of the trained reservoirs to the delayed probe signals becomes unstable and more difficult,resulting in a larger NMSE. Moreover,for the prediction of three-channel delayed probe signals,figure 4 shows their training errors as a function of the virtual node intervalθ. One sees from this figure that withTfixed at 8 ns,these three training errors appear in a cliff-like decline whenθincreases from 4 ps to 12 ps,then gradually stabilize to 0.0474 with the increase ofθfrom 12 ps to 200 ps. The reason is explained as follows: a smallθinduces to the reduction of the trained reservoirs response,showing larger training errors. Asθincreases from 15 ps to 200 ps, the response of the trained reservoir will be further enhanced, resulting in less training errors. In addition,although the dimension of the state space further decreases with the increase ofθ, there are still enough virtual nodes for training reservoir,making these training errors small and varied between 0.0474 and 0.055.

    Fig.3. (a)The NMSEA as a function of the delay-time τ2 for the prediction of the trained reservoir RA to uA(n′A); (b)the NMSEB as a function of τ2 for the prediction of the trained reservoir RB to uB(n′B);(c)the NMSEC as a function of τ2 for the prediction of the reservoir RC to uC(n′C). Here,τA =10 ns;τB=15 ns;τC=20 ns and other parameters except for τ2 are the same as those in Fig.2.

    Fig.4. (a)The NMSEA as a function of the virtual node interval θ for the prediction of the trained reservoir RA to uA(n′A);(b)the NMSEB as a function of θ for the prediction of the trained reservoir RB to uB(n′B);(c)the NMSEC as a function of θ for the prediction of the reservoir RC to uC(n′C). Here,τA=10 ns;τB=15 ns;τC=20 ns and other parameters except for θ are the same as those in Fig.2.

    3.2. Predictive learning of three-channel lag chaotic synchronizations

    3.3. Synchronized chaotic lidar ranging to multi-target

    Fig.7. (a)Time traces of the phases φmA and φ′mA;(b)those of the phases φmB and φ′mB;and(c)those of the phases. Here,τA=10 ns,τB=15 ns,τC=20 ns and other parameters are the same as those in Fig.2.

    Fig. 8. (a) The temporal trace of the measured distance dA for the target TA; (b) that of the measured distance dB for the target TB; and (c) that of the measured distance dC for the target TC. Here,τA=10 ns,τB=15 ns,τC=20 ns and other parameters are the same as those in Fig.2.

    Fig.9. Maps of the three relative errors evolutions in the parameter space of τ and τA (τB or τC). Here,(a)REA;(b)REB;(c)REC. State 1: 0 <RE j ≤0.1%and dark-blue; state 2: 0.1%<REj ≤0.2%and light-blue; state 3: 0.2%<REj ≤0.3%and blue-green; state 4: 0.3%<RE j ≤0.4%and green; state 5:0.4%<RE j ≤0.6%and yellow.

    Finally,the relative errors REA,REB,and RECare introduced to describe the accuracy of the target ranging as follows:

    where the symbol“||”represents absolute value. We quantize these relative errors for observation. State 1: 0<REA, REB,REC≤0.1%;state 2: 0.1%<REA,REB,REC≤0.2%;state 3: 0.2%<REA, REB, REC≤0.3%; state 4: 0.3%<REA,REB,REC≤0.4%;state 5: 0.4%<REA,REB,REC≤0.6%.Under high-quality lag chaotic synchronizations, figure 9 depicts the evolutions of these three relative errors in the parameter spaces ofτandτA,τandτB,τandτC. It is found from Fig. 9 that their relative errors are all less than 1%, and stay in state 1 in these three large parameter spaces. In addition,when the channel delaysτA,τB,andτCare all fixed at 10 ns or 16 ns,their relative errors appear an increase in a slight fluctuation and reach to 0.55%.Therefore,all relative errors of these three targets ranging are small and less than 0.6%, indicating that the ranging scheme can achieve high accuracy.

    From these results observed from Figs.6–8, under highquality lag chaotic synchronization obtained by the delayedbased reservoir computing approach, the ranging to three targets has good real-time stability. Their absolute errors reach millimeter magnitude, and their relative errors are very small and less than 0.6%.

    4. Conclusions

    To sum up,we proposed to use a machine-learning technique by means of three parallel optical chaotic reservoirs for realizing the ranging to three targets, respectively. The system proposed consists of the driving three-element laser array with self-feedback, multi-target detection, three input layers,three parallel reservoirs, three output layers, and ranging calculation. Here,these three optical reservoir computers are implemented by the chaotic three-element laser array with both delay-time feedback and optical injection. Three-channel delayed probe signals from the driving three-element laser array with self-feedback are modeled by these three trained reservoir computers,respectively. Our findings show that any onechannel delayed probe signal can synchronize well with its corresponding trained reservoir computer. In other words,high-quality lag chaotic synchronization between them can be achieved even despite the existence of some mismatches between the key parameters of the response three-element laser array and the driving three-element laser array. In addition,the three-channel synchronized probe signals are utilized for the ranging to three targets. Our investigation results indicate that stable and real-time ranging can be achieved for three targets.

    Significantly,most previous works focused on laser-based on chaotic radar ranging by using the cross-correlation between the reflected return signal and the replica of the signal transmitted.[1–9,15,16]In these works, the resolution is used to judge the accuracy of the ranging to target. Such correlationbased methods take advantage of the broad bandwidth of the chaotic laser and can achieve resolution up to centimeterlevel,indicating that the absolute errors for the ranging to target reach centimeter level. Our previous works reported in Refs.[18,19]explored another new way of implementing the ranging to target by using the synchronized chaotic lidar between driving laser and response one,where the relative errors for the ranging were obtained as less than 2.7%and 11%,respectively,based on the traditional complete chaos theory. By comparison,in this paper,based on the optical reservoir computing approach, the absolute errors for the ranging to multitarget reach millimeter level, and the corresponding relative errors are very small and less than 0.6%. Therefore, the results presented in this paper are better than those in the other reported works. Moreover,when the driving lasers and the response ones consist of four or more-element laser array, four or more-channel delayed probe signals from the driving four or more-element laser array with self-feedback can be modeled by the four or more reservoir computers implemented by the response four or more-element laser array with both delay-time feedback and optical injection,respectively. Using the reservoir computing method,any one of the four or morechannel delayed probe signals can synchronize well with its corresponding trained reservoir computer. Under this condition, the stable and real-time ranging can be realized for four or more targets.

    Acknowledgments

    Project supported by the National Natural Science Foundation of China (Grant No. 62075168), GuangDong Basic and Applied Basic Research Foundation (Grant No. 2020A1515011088), and Special Project in Key Fields of Guangdong Provincial Department of Education of China(Grant No.2020ZDZX3052 and 2019KZDZX1025).

    猜你喜歡
    萬安東洲
    做蛋撻
    浙江萬安科技股份有限公司
    專用汽車(2020年2期)2020-04-08 10:57:50
    貓鼠會(huì)談
    新成員來了
    蘇萬安
    寶藏(2019年3期)2019-03-28 05:24:22
    特別企劃
    蘇萬安 藏石欣賞
    寶藏(2018年12期)2019-01-29 01:51:16
    圣誕節(jié)的那雙手套
    我家的走調(diào)大王
    東洲曲
    国产成人a∨麻豆精品| 精品国产乱码久久久久久男人| 国产精品偷伦视频观看了| 欧美一级毛片孕妇| 美女国产高潮福利片在线看| 国产亚洲av片在线观看秒播厂| 99国产精品免费福利视频| 免费看十八禁软件| www.精华液| 大片免费播放器 马上看| 欧美 日韩 精品 国产| 欧美老熟妇乱子伦牲交| 桃红色精品国产亚洲av| 高清在线国产一区| 男人爽女人下面视频在线观看| 涩涩av久久男人的天堂| 国产男女超爽视频在线观看| 99久久精品国产亚洲精品| 中文字幕av电影在线播放| 精品国产超薄肉色丝袜足j| 久久精品aⅴ一区二区三区四区| 国产亚洲精品久久久久5区| 亚洲欧美成人综合另类久久久| xxxhd国产人妻xxx| 妹子高潮喷水视频| 国产在线视频一区二区| 后天国语完整版免费观看| 久久午夜综合久久蜜桃| 秋霞在线观看毛片| 久久久欧美国产精品| 精品福利永久在线观看| 久久午夜综合久久蜜桃| 精品国产超薄肉色丝袜足j| 91麻豆精品激情在线观看国产 | 我的亚洲天堂| 国产一级毛片在线| 国产在线视频一区二区| 国产一区二区在线观看av| 国产成人免费无遮挡视频| 老司机靠b影院| 男女床上黄色一级片免费看| 在线观看免费午夜福利视频| netflix在线观看网站| 男人舔女人的私密视频| 国产精品av久久久久免费| 亚洲国产av新网站| 99九九在线精品视频| 亚洲 国产 在线| 男女床上黄色一级片免费看| 久9热在线精品视频| 青青草视频在线视频观看| 日韩一区二区三区影片| 亚洲国产精品999| 汤姆久久久久久久影院中文字幕| 亚洲欧洲精品一区二区精品久久久| 狂野欧美激情性bbbbbb| 一区二区日韩欧美中文字幕| 视频在线观看一区二区三区| 亚洲欧洲日产国产| 韩国高清视频一区二区三区| 啦啦啦 在线观看视频| 国产欧美日韩一区二区精品| 亚洲欧美日韩高清在线视频 | 免费在线观看完整版高清| 亚洲精品久久久久久婷婷小说| 亚洲欧洲精品一区二区精品久久久| 少妇 在线观看| 在线永久观看黄色视频| 如日韩欧美国产精品一区二区三区| 国产精品一区二区免费欧美 | 日韩一卡2卡3卡4卡2021年| 国产成人精品久久二区二区免费| 99久久人妻综合| 成人免费观看视频高清| 最新在线观看一区二区三区| 岛国在线观看网站| h视频一区二区三区| 亚洲国产欧美一区二区综合| 亚洲欧洲精品一区二区精品久久久| 精品亚洲成国产av| 欧美激情 高清一区二区三区| kizo精华| 亚洲国产日韩一区二区| 国产免费福利视频在线观看| 亚洲国产欧美一区二区综合| 男人操女人黄网站| 精品欧美一区二区三区在线| 黄色怎么调成土黄色| 亚洲欧美一区二区三区久久| 老司机影院成人| 丝袜在线中文字幕| 免费少妇av软件| 国产欧美日韩精品亚洲av| 亚洲欧美一区二区三区黑人| 亚洲人成电影免费在线| 中文字幕色久视频| 欧美久久黑人一区二区| 伊人久久大香线蕉亚洲五| 国产成人精品在线电影| 欧美一级毛片孕妇| 精品国产超薄肉色丝袜足j| 国产在线视频一区二区| 久久久久久亚洲精品国产蜜桃av| 下体分泌物呈黄色| 久久毛片免费看一区二区三区| 日韩大码丰满熟妇| 午夜日韩欧美国产| 男人添女人高潮全过程视频| 国产色视频综合| 啦啦啦中文免费视频观看日本| 午夜精品国产一区二区电影| 精品免费久久久久久久清纯 | 69精品国产乱码久久久| 美国免费a级毛片| 国产在线观看jvid| 91国产中文字幕| 脱女人内裤的视频| 免费少妇av软件| 久久天躁狠狠躁夜夜2o2o| 国产人伦9x9x在线观看| 飞空精品影院首页| 亚洲av日韩在线播放| 午夜成年电影在线免费观看| 免费在线观看影片大全网站| 免费女性裸体啪啪无遮挡网站| 一级片'在线观看视频| 久久久久国产精品人妻一区二区| 成年人免费黄色播放视频| 一区二区av电影网| 老熟妇乱子伦视频在线观看 | 亚洲免费av在线视频| 欧美性长视频在线观看| av视频免费观看在线观看| 在线观看免费日韩欧美大片| 亚洲色图综合在线观看| 亚洲成人免费av在线播放| 男女下面插进去视频免费观看| 亚洲欧洲精品一区二区精品久久久| 欧美亚洲日本最大视频资源| 狠狠婷婷综合久久久久久88av| 人妻久久中文字幕网| 亚洲欧美日韩另类电影网站| 国产三级黄色录像| 免费久久久久久久精品成人欧美视频| 麻豆乱淫一区二区| 国产精品九九99| 桃花免费在线播放| 亚洲熟女毛片儿| 国产在线视频一区二区| 一本色道久久久久久精品综合| 黄色视频在线播放观看不卡| 在线精品无人区一区二区三| 国产男人的电影天堂91| 麻豆乱淫一区二区| 肉色欧美久久久久久久蜜桃| 精品少妇久久久久久888优播| 丝瓜视频免费看黄片| 欧美xxⅹ黑人| 久久青草综合色| 国产野战对白在线观看| 青草久久国产| 热99国产精品久久久久久7| 午夜福利一区二区在线看| 日本av免费视频播放| 欧美日韩国产mv在线观看视频| 欧美精品高潮呻吟av久久| 亚洲精品自拍成人| 黑人操中国人逼视频| 欧美97在线视频| 欧美精品一区二区免费开放| 五月天丁香电影| 欧美黄色片欧美黄色片| 亚洲第一欧美日韩一区二区三区 | 亚洲全国av大片| 精品免费久久久久久久清纯 | 国产男女内射视频| av线在线观看网站| 最新的欧美精品一区二区| 91精品国产国语对白视频| 国产一区有黄有色的免费视频| 桃红色精品国产亚洲av| 欧美国产精品va在线观看不卡| 考比视频在线观看| 男女边摸边吃奶| 久久精品国产亚洲av香蕉五月 | 国产成人一区二区三区免费视频网站| 久久久精品94久久精品| 欧美精品亚洲一区二区| av在线app专区| 国产av精品麻豆| 精品久久久久久电影网| 99国产精品99久久久久| 久久久久国产精品人妻一区二区| tube8黄色片| 亚洲人成77777在线视频| 欧美人与性动交α欧美精品济南到| 男女国产视频网站| 手机成人av网站| 国产日韩欧美在线精品| 国产成人精品在线电影| bbb黄色大片| 看免费av毛片| 啦啦啦啦在线视频资源| 在线永久观看黄色视频| 欧美精品人与动牲交sv欧美| 午夜激情久久久久久久| 两性午夜刺激爽爽歪歪视频在线观看 | 人人妻人人爽人人添夜夜欢视频| 久久国产精品影院| 日日夜夜操网爽| 91字幕亚洲| h视频一区二区三区| 人成视频在线观看免费观看| 一级毛片电影观看| 一二三四在线观看免费中文在| 日韩精品免费视频一区二区三区| 大型av网站在线播放| av网站在线播放免费| 手机成人av网站| av在线老鸭窝| 日本黄色日本黄色录像| 黄色视频不卡| 欧美激情极品国产一区二区三区| 免费人妻精品一区二区三区视频| 国产精品欧美亚洲77777| 国产成+人综合+亚洲专区| 国产xxxxx性猛交| 欧美精品一区二区大全| 18禁裸乳无遮挡动漫免费视频| 日韩免费高清中文字幕av| 欧美精品高潮呻吟av久久| 日韩欧美免费精品| 777米奇影视久久| 精品久久久精品久久久| 亚洲专区中文字幕在线| 美女高潮到喷水免费观看| 亚洲色图 男人天堂 中文字幕| 中文字幕最新亚洲高清| 国产精品1区2区在线观看. | 欧美日韩成人在线一区二区| 欧美中文综合在线视频| 美女国产高潮福利片在线看| 国产真人三级小视频在线观看| 伊人亚洲综合成人网| 欧美大码av| 国产成人系列免费观看| 精品久久久久久电影网| 999精品在线视频| 国产福利在线免费观看视频| 一区二区三区乱码不卡18| 深夜精品福利| 久久ye,这里只有精品| 亚洲成人免费av在线播放| 亚洲天堂av无毛| 国产精品99久久99久久久不卡| 国产免费现黄频在线看| 啦啦啦中文免费视频观看日本| h视频一区二区三区| 亚洲伊人久久精品综合| 好男人电影高清在线观看| 亚洲精品自拍成人| 亚洲自偷自拍图片 自拍| 欧美日本中文国产一区发布| 亚洲国产精品一区三区| 欧美变态另类bdsm刘玥| 日本猛色少妇xxxxx猛交久久| 99久久人妻综合| 中文欧美无线码| 男人爽女人下面视频在线观看| 一个人免费在线观看的高清视频 | 精品一品国产午夜福利视频| 各种免费的搞黄视频| 少妇粗大呻吟视频| 亚洲天堂av无毛| 少妇 在线观看| 男女之事视频高清在线观看| 9191精品国产免费久久| 日韩熟女老妇一区二区性免费视频| 久久久久精品国产欧美久久久 | 国产极品粉嫩免费观看在线| 欧美日韩黄片免| a级毛片在线看网站| 一本大道久久a久久精品| 国产欧美亚洲国产| 久久久久久久精品精品| 亚洲国产精品999| 日本猛色少妇xxxxx猛交久久| av在线app专区| 99香蕉大伊视频| 亚洲成人免费电影在线观看| 这个男人来自地球电影免费观看| 老司机在亚洲福利影院| 满18在线观看网站| 中文字幕精品免费在线观看视频| 久久中文字幕一级| av电影中文网址| 国产欧美亚洲国产| 丰满迷人的少妇在线观看| 男女无遮挡免费网站观看| av片东京热男人的天堂| 国产精品影院久久| 美女主播在线视频| 欧美日韩亚洲高清精品| 久久久国产成人免费| 亚洲中文字幕日韩| 亚洲五月婷婷丁香| 建设人人有责人人尽责人人享有的| 亚洲国产精品一区二区三区在线| 一本久久精品| 最近中文字幕2019免费版| 日日夜夜操网爽| 深夜精品福利| 久久久久精品国产欧美久久久 | 99热网站在线观看| 新久久久久国产一级毛片| 国产极品粉嫩免费观看在线| 18禁观看日本| bbb黄色大片| 亚洲精品中文字幕在线视频| 欧美精品一区二区免费开放| 亚洲精品中文字幕在线视频| 制服诱惑二区| 老司机靠b影院| 久久性视频一级片| 亚洲精品在线美女| 男人操女人黄网站| 欧美日韩亚洲高清精品| 久久久国产成人免费| 久久久精品区二区三区| 桃红色精品国产亚洲av| 热re99久久精品国产66热6| 电影成人av| 男人爽女人下面视频在线观看| 天堂中文最新版在线下载| 一区二区三区乱码不卡18| 午夜福利免费观看在线| 亚洲成人手机| 国产亚洲欧美在线一区二区| 热re99久久国产66热| 黄色视频不卡| 国产成人a∨麻豆精品| 日韩三级视频一区二区三区| 亚洲精品av麻豆狂野| 十八禁网站免费在线| 亚洲情色 制服丝袜| 1024香蕉在线观看| 91老司机精品| 久久久久精品人妻al黑| 啦啦啦视频在线资源免费观看| 深夜精品福利| 亚洲色图综合在线观看| 国产在线视频一区二区| 免费一级毛片在线播放高清视频 | 免费在线观看黄色视频的| 999精品在线视频| tocl精华| 久久久久久久国产电影| 精品一区二区三区四区五区乱码| 十八禁高潮呻吟视频| 极品人妻少妇av视频| 丝瓜视频免费看黄片| 人人妻人人澡人人看| 亚洲专区中文字幕在线| 色婷婷av一区二区三区视频| 亚洲成人免费av在线播放| 99热国产这里只有精品6| 啦啦啦啦在线视频资源| 亚洲人成电影免费在线| 亚洲伊人色综图| 亚洲欧美成人综合另类久久久| 狠狠精品人妻久久久久久综合| 99精品久久久久人妻精品| 午夜视频精品福利| 国产一区二区在线观看av| 18禁观看日本| 99热网站在线观看| 久久国产精品男人的天堂亚洲| 国产成人欧美在线观看 | 自线自在国产av| 亚洲欧美成人综合另类久久久| 欧美+亚洲+日韩+国产| 国产精品秋霞免费鲁丝片| av线在线观看网站| 首页视频小说图片口味搜索| 免费少妇av软件| 高清av免费在线| 久久精品熟女亚洲av麻豆精品| 亚洲第一欧美日韩一区二区三区 | 一本一本久久a久久精品综合妖精| 久久久久久久久免费视频了| 国产精品九九99| 亚洲中文日韩欧美视频| 国产亚洲精品久久久久5区| 免费日韩欧美在线观看| a级毛片在线看网站| 久久人人爽人人片av| 视频在线观看一区二区三区| 婷婷色av中文字幕| bbb黄色大片| av天堂在线播放| 99热网站在线观看| 男人添女人高潮全过程视频| 亚洲欧洲精品一区二区精品久久久| 亚洲第一青青草原| 丁香六月欧美| 精品国产乱码久久久久久男人| 99国产精品一区二区三区| 男女下面插进去视频免费观看| 老司机在亚洲福利影院| 91国产中文字幕| 老司机靠b影院| 视频区图区小说| 97在线人人人人妻| 久久久国产一区二区| av视频免费观看在线观看| 中国国产av一级| 亚洲精品美女久久久久99蜜臀| 日日夜夜操网爽| 国产精品一区二区在线观看99| 人妻人人澡人人爽人人| 欧美精品人与动牲交sv欧美| 动漫黄色视频在线观看| 黄色片一级片一级黄色片| 十八禁高潮呻吟视频| 精品久久蜜臀av无| 久久天堂一区二区三区四区| 亚洲精品久久午夜乱码| 久久女婷五月综合色啪小说| 欧美精品啪啪一区二区三区 | 欧美人与性动交α欧美软件| 日韩人妻精品一区2区三区| 亚洲欧美激情在线| 午夜精品久久久久久毛片777| 男人舔女人的私密视频| 亚洲第一欧美日韩一区二区三区 | 亚洲精品粉嫩美女一区| 咕卡用的链子| 爱豆传媒免费全集在线观看| 亚洲专区中文字幕在线| 狂野欧美激情性xxxx| 精品人妻在线不人妻| 丰满迷人的少妇在线观看| 黄色视频不卡| 亚洲自偷自拍图片 自拍| 电影成人av| 动漫黄色视频在线观看| 亚洲国产av影院在线观看| 国产精品久久久av美女十八| 高清在线国产一区| www.av在线官网国产| 99久久99久久久精品蜜桃| 狠狠狠狠99中文字幕| 国产精品99久久99久久久不卡| 亚洲五月婷婷丁香| 亚洲精品一区蜜桃| 国产成人啪精品午夜网站| 蜜桃在线观看..| 窝窝影院91人妻| 久久人妻福利社区极品人妻图片| 国产精品一区二区精品视频观看| 久久久国产成人免费| 精品人妻一区二区三区麻豆| 国产成人啪精品午夜网站| 深夜精品福利| 一区二区三区乱码不卡18| 亚洲黑人精品在线| 老汉色∧v一级毛片| 99热网站在线观看| 考比视频在线观看| 国产成人免费无遮挡视频| 国产伦人伦偷精品视频| 亚洲欧美日韩另类电影网站| 国产国语露脸激情在线看| 国产一区有黄有色的免费视频| av一本久久久久| 亚洲精品美女久久久久99蜜臀| 国产免费一区二区三区四区乱码| 母亲3免费完整高清在线观看| 在线观看www视频免费| 亚洲国产av新网站| 人妻 亚洲 视频| 一区二区三区四区激情视频| 国产免费福利视频在线观看| 性色av一级| 三级毛片av免费| 青春草视频在线免费观看| 久久综合国产亚洲精品| 美女脱内裤让男人舔精品视频| 丝袜脚勾引网站| 久久九九热精品免费| av天堂在线播放| 国产成人啪精品午夜网站| 捣出白浆h1v1| 两性午夜刺激爽爽歪歪视频在线观看 | 99九九在线精品视频| 啪啪无遮挡十八禁网站| 悠悠久久av| 18禁裸乳无遮挡动漫免费视频| 他把我摸到了高潮在线观看 | 好男人电影高清在线观看| 老司机福利观看| 99精品欧美一区二区三区四区| 咕卡用的链子| a在线观看视频网站| 国产在线一区二区三区精| 亚洲欧洲日产国产| 女性生殖器流出的白浆| 欧美日韩精品网址| 一进一出抽搐动态| 青春草视频在线免费观看| xxxhd国产人妻xxx| 亚洲国产精品一区二区三区在线| 999精品在线视频| 少妇的丰满在线观看| 国产不卡av网站在线观看| 国产1区2区3区精品| 交换朋友夫妻互换小说| 久久久久久久国产电影| 国产激情久久老熟女| 日韩,欧美,国产一区二区三区| av不卡在线播放| 国产色视频综合| 免费黄频网站在线观看国产| 久久久久久久久免费视频了| 免费观看av网站的网址| 激情视频va一区二区三区| 十分钟在线观看高清视频www| 国产91精品成人一区二区三区 | 无遮挡黄片免费观看| 成人影院久久| 黄色视频,在线免费观看| 侵犯人妻中文字幕一二三四区| 精品国产一区二区久久| 久久毛片免费看一区二区三区| 国产成人精品久久二区二区免费| 久久天躁狠狠躁夜夜2o2o| av线在线观看网站| 制服人妻中文乱码| 亚洲九九香蕉| 999久久久精品免费观看国产| 亚洲精品乱久久久久久| 十八禁网站免费在线| www日本在线高清视频| 亚洲天堂av无毛| 日韩 欧美 亚洲 中文字幕| 50天的宝宝边吃奶边哭怎么回事| 日韩欧美免费精品| 亚洲精品国产区一区二| 自拍欧美九色日韩亚洲蝌蚪91| 十八禁网站网址无遮挡| 亚洲国产精品成人久久小说| 欧美日韩福利视频一区二区| 日韩欧美一区视频在线观看| 大片免费播放器 马上看| 1024视频免费在线观看| 国产在线一区二区三区精| 国产精品一区二区在线不卡| 欧美日韩亚洲综合一区二区三区_| 天堂俺去俺来也www色官网| 国产成人免费观看mmmm| 亚洲成av片中文字幕在线观看| 热99国产精品久久久久久7| 美女主播在线视频| 一区二区日韩欧美中文字幕| 精品少妇内射三级| 欧美日韩成人在线一区二区| 国产成人系列免费观看| 啦啦啦在线免费观看视频4| 一级片免费观看大全| 人人妻,人人澡人人爽秒播| 2018国产大陆天天弄谢| 成人免费观看视频高清| 亚洲专区国产一区二区| 91国产中文字幕| 成人国产一区最新在线观看| 精品欧美一区二区三区在线| 啦啦啦啦在线视频资源| 亚洲,欧美精品.| 丰满人妻熟妇乱又伦精品不卡| 两个人免费观看高清视频| 亚洲精品国产色婷婷电影| 亚洲av美国av| 日日爽夜夜爽网站| 国产av精品麻豆| 亚洲国产精品成人久久小说| 亚洲av国产av综合av卡| 不卡一级毛片| 国产一区二区在线观看av| 日本欧美视频一区| 青春草亚洲视频在线观看| www.av在线官网国产| 国产在视频线精品| 电影成人av| 免费在线观看影片大全网站| 少妇人妻久久综合中文| 日本欧美视频一区| 国产一区二区 视频在线| videosex国产| 成年人午夜在线观看视频| 国产成人影院久久av| 欧美日韩亚洲高清精品| 日韩大片免费观看网站| 日韩欧美一区视频在线观看| 久久久久久久精品精品| 精品国产一区二区三区久久久樱花| a 毛片基地| 欧美人与性动交α欧美精品济南到| 涩涩av久久男人的天堂| 夫妻午夜视频| 日韩三级视频一区二区三区| 夜夜骑夜夜射夜夜干| 麻豆av在线久日| 在线亚洲精品国产二区图片欧美| 日韩中文字幕视频在线看片| 久久中文看片网|