• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Enhanced cold mercury atom production with two-dimensional magneto-optical trap

    2022-08-01 06:01:18YeZhang張曄QiXinLiu劉琪鑫JianFangSun孫劍芳ZhenXu徐震andYuZhuWang王育竹
    Chinese Physics B 2022年7期

    Ye Zhang(張曄), Qi-Xin Liu(劉琪鑫), Jian-Fang Sun(孫劍芳),Zhen Xu(徐震),?, and Yu-Zhu Wang(王育竹)

    1Shanghai Institute of Optics and Fine Mechanics,Chinese Academy of Sciences,Shanghai 201800,China

    2Key Laboratory of Quantum Optics,Chinese Academy of Sciences,Shanghai 201800,China

    3University of Chinese Academy of Sciences,Beijing 100049,China

    Keywords: magneto-optical trap,atomic beam,neutral mercury atom,laser cooling and trapping

    1. Introduction

    With the development of laser cooling and trapping techniques, cold atoms are now widely used in quantum simulation,quantum computation,and precision measurement. One of the important applications is cold atoms-based frequency standards,including microwave clocks and optical clocks. To improve the performance of an atomic clock, it is necessary to reduce the dead time by increasing the loading rate of cold atom in the 3D-MOT. On the other hand, it is important to maintain a relatively long lifetime of cold atoms in optical lattice, which requires an ultra-high vacuum in the science chamber. There are two widely used pre-loading schemes to increase the loading rate of a 3D-MOT. One is the Zeeman slower,which is adopted in many cold atom setups,especially in those atoms with low saturated vapor pressure at room temperature, such as the strontium and the ytterbium atoms. The other is the 2D-MOT, which generates low velocity atomic flux by laser cooling from a vapor cell or by laser collimation from a thermal beam. It has the advantages of compactness, versatility, good collimation, and isotope selection.It avoids long decelerating tube, large Zeeman coil, residual thermal atomic beam, and mechanical shutter, so it is popularly used in the research of cold atom physics. Several different configurations[1–4]have been demonstrated, and these have been used in atomic fountain,[5]atom interferometry,[6]and quantum gases[7]for alkali atoms[8–11]and alkali-earthlike atoms.[12]Recently, it has also been demonstrated that atomic flux can be enhanced by multi-frequency or sideband frequency 2D-MOT.[13,14]

    Nevertheless, each kind of element has its specific merit and difficulty as well for laser cooling. Even though the 2DMOT configuration has been widely used in alkali atoms and alkali-earth-like atoms,the application in mercury(Hg)atoms is still difficult. Firstly, the vapor pressure of Hg atoms at room temperature is much higher than that of other metal atoms. It is necessary to use a two-chamber system to achieve a high vacuum in the science chamber. Secondly, the natural line-width of cooling transition for mercury atoms isΓ=1.27 MHz,which is narrower than those for alkali-metal atoms(Rb/Cs/K/Li,about 6 MHz)and alkali-earth-like atoms(Sr/Yb about 30 MHz), and the capture velocity range of the 3D-MOT is smaller. Finally, compared with others, the cooling transition at 253.7 nm is in the deep ultra-violet (DUV)region. Although it can be obtained through frequency quadrupling from a high power infrared laser,[15–19]maintaining a high power and continuous output is still difficult.

    Although there are many technical challenges,mercury is still selected as a candidate of optical frequency standard,and it is recommended as one of the secondary representations of second by BIPM[20]due to its low sensitivity to black-body radiation. It has been laser-cooled and loaded into a magic wavelength optical lattice,and its absolute frequency has been determined by primary fountain clock and also by Sr/Yb optical lattice clock.[21–23]It is attractive for its higher sensitivity to test the variation of fine-structure constant.[24]At present,the stability is limited mainly by its long cycle time, which makes it particularly important to achieve a faster production of cold mercury atoms.

    In this work, we report an experiment on enhancing the production of cold mercury atom source for neutral mercury lattice clock, which effectively improves the loading rate of mercury cold atoms with optimized 2D-MOT and push beam.A smart light path arrangement is used to solve the problem of insufficient DUV light. Two stable cooling laser systems are used for 2D-MOT and 3D-MOT,respectively.One for 2DMOT is frequency stabilized at atomic spectrum of 253.7 nm,and the other for 3D-MOT is locked on the former by optical frequency locked loop. After optimizing the detuning and the power of 2D-MOT beam and push beam, about 1.3×106mercury atoms are loaded into the 3D-MOT for202Hg, corresponding to a loading rate of 1.0×106atoms/s. Using the 2D-MOT and the push beam,the loading rate is enhanced by a factor of 8.4 higher than using the pure 3D-MOT.This cold mercury atom source will be used in mercury lattice clock,which can effectively shorten the cycle time in a clock operation.

    2. Experimental setup

    The vacuum system is mainly composed of an Hg-source chamber,a 2D-MOT chamber and a science chamber.The 2DMOT and the science chambers are made of nonmagnetic titanium alloy to avoid unpredictable magnetic field. The homemade Hg-source is cooled to-41°C to keep a relatively low vapor pressure. More details are described in our previous work.[25]In order to maintain a relatively high vacuum in the 2D MOT chamber,an ion pump with a pumping speed of 3 L/s is placed at the end of the mercury source chamber, and finally a vacuum of 2×10-8Torr(1 Torr=1.33322×102Pa)is achieved in the 2D-MOT chamber.

    The 2D-MOT chamber has four UV fused silica(UVFS)windows each with a clear aperture of 20 mm in diameter as shown in Fig. 1. A pair of elongated coils are mounted on the 2D-MOT chamber,and produce a 2D quadruple magnetic field for the 2D-MOT. The magnetic field gradient is about 25 Gs/cm(1 Gs=10-4T).Two windows in thexdirection are used for push beam.

    The science chamber and the 2D-MOT chamber which have a distance of 11 cm in between are connected by a differential pumping tube. The differential pumping tube is 30-mm long, which includes a 12-mm-long tube with 1.5-mm inner diameter and a conical nozzle. The conical nozzle is gold plated to reduce the vapor pressure of mercury atoms in the science chamber based on the adsorption of gold to mercury. The science chamber is connected to an ion pump with a pumping speed of 40 L/s, and finally has a vacuum of 2×10-10Torr. A pair of anti-Helmholtz coils are mounted on the science chamber to produce the magnetic field for 3DMOT,and the gradient is about 15 Gs/cm in the center. Three pairs of rectangular coils are used to compensate for the geomagnetic field to lower than 10 mG.

    Fig. 1. Apparatus of 2D-MOT and 3D-MOT. 1: push beam; 2: 2D-MOT beam(single folded path);3:differential pumping tube;4:3D-MOT beams;5: Brewster windows.

    To ensure the laser power at 253.7 nm and to conveniently tune the frequency of the two cooling lasers,we use two homemade deep ultraviolet (DUV) lasers at 253.7 nm as the cooling laser for 2D-MOT and 3D-MOT,respectively.[26]In order to maintain a long-term operation, we operate the DUV laser for 3D-MOT at relatively low power of 80 mW, even though each of these two lasers can generate output power more than 100 mW.A 50-μm pin-hole is used to reshape the DUV beam.Then the light is split into three beams, each with a radius of 4 mm and maximum power of 14 mW.Each beam is reflected after a quarter wave plate to form a standard six-beam configuration for a 3D-MOT. Compared with our earlier work with folded single-beam 3D-MOT,[27]this configuration can improve the intensity balance between the counter-propagating cooling beams.

    The DUV laser for the 2D-MOT is operated at 40 mW.After the spatial filter with a pin-hole and beam shaping with cylindrical lenses, the cooling beam has a size of about 10 mm×8 mm. In order to maximize the intensity of the cooling laser for the 2D-MOT, a single beam-folded configuration is adopted,and a maximum intensity of 5ISATis reached,whereISATis 10.2 mW/cm2. The rest of the DUV light is used for the frequency modulation saturated absorption spectroscopy(SAS)locking and push beam as shown in Fig.2. In this configuration,the independent operation for the detuning of cooling laser and push beam can be achieved by adjusting the frequencies of these three AOMs. After locking the frequency of the 2D-MOT cooling laser on SAS, the frequency of 3D-MOT cooling laser is adjusted by an optical frequency locking loop (OFLL)[28]between the two fundamental seed lasers. The atom number in 3D-MOT is counted by fluorescence image on an electron multiplying CCD (EMCCD, Andor, iXon3 885). Four galvanometers are used to switch the push beam,the cooling beams for 2D-MOT and 3D-MOT for time sequence as shown in Fig.2.

    Fig. 2. Schematic diagram of cold mercury atom laser system. ECDL: external cavity diode laser; AOM: acousto-optical modulator; BS: beam splitter;HR:high reflection mirror;FA:fiber laser amplifier;PMF:polarization-maintained fiber;HWP:half wave plate;QWP:quarter wave plate;PD:photodiode;PBS:polarizing beam splitter;DB:dichroic beam splitter;PZT:piezo transducer;GAL:galvanometer;L:lens;DM:“D”shaped mirror;EMCCD:electron multiplying charge couple device.

    3. Enhanced production of cold mercury atom

    The atom numberNin a 3D-MOT can be calculated from the following rate equation:[29]

    whereRis the loading rate andγis the loss rate of the 3DMOT. The loading rate is normally influenced by the capture range of the 3D-MOT and the flux of the atom source. In this configuration, the atom source is determined by the performance of the 2D-MOT. The saturated atom number reachesN0=R/γ. IfN=0 att=0,the atom number at timetis

    With the above setup,we capture the cold atoms in the science chamber,and the enhancement effect is observed with the help of the 2D-MOT and the push beam. For the 3D-MOT, each cooling laser beam has an intensity of 2.8ISAT,the detuning is optimized to be-8Γ,and the magnetic gradient is optimized to be 15 Gs/cm. With these parameters, we use the loading rate and the saturated atom number to optimize the 2D-MOT performance. To detect the atom number by the fluorescence detection,the detuning of detection laser is tuned to-2Γ,and a 6-ms pulse of detection light is incident into the cold atoms in thex–zplane after having switched off the cooling laser in theydirection.

    The capture velocity for laser cooling can be described as[30]

    where ˉhis the Planck constant,kis the wave vector,mis the mass of a202Hg atom,andrcis the radius of the cooling beam.According to the parameters used in the experiment, the capture velocity is 5 m/s. Since the most probable velocity of mercury atoms is 157 m/s at room temperature,and the atoms in a mercury vapor obey the Maxwell–Boltzmann velocity distribution, very few atoms are in the velocity range of 0 m/s–5 m/s. Therefore, the loading rate of the 3D-MOT is much lower than that without the help of atomic flux from the 2DMOT.

    Figure 3 shows a typical loading process of cold mercury atom in the 3D-MOT. The loading rate and saturated atom number in the 3D-MOT effectively increase with the help of the 2D-MOT beam and the push beam as shown in Table 1.The loading rate of the 3D-MOT increases by a factor of 3.1 with using the 2D-MOT beam, and by a factor of 8.4 with using both the 2D-MOT beam and the push beam. The optimized loading rate is 1.0×106atoms/s,and the saturated atom number is 1.3×106.

    Fig.3. 3D-MOT loading curves with using both of and neither of 2D-MOT and push-beam.

    Table 1. Atom number,loading rate and loss rate in the 3D-MOT.

    The effective enhancement of the loading rate depends on the optimization of the parameters of the 2D-MOT.Several key factors affect the loading process in the 3D-MOT,such as the intensity and the detuning of the 2D-MOT beam. Because of the limited cooling laser power and optical windows, the size of the 2D-MOT beam is 10 mm×8 mm and the laser intensity is 5ISAT. The magnetic field gradient is 25 Gs/cm so as to maximize the capture velocity.The 2D-MOT captures and collimates the mercury atoms to form an intense atom flux with low transversal velocity. The detuning of the 2D-MOT beam is optimized to enhance the loading rate of 3D-MOT,which is influenced by the capture rate and the transverse temperature of 2D-MOT. For a bigger detuning, normally it has a larger capture range for 2D-MOT under a certain magnetic field gradient. And the Doppler cooling theory indicates that[31]for a smaller detuning it has a smaller transverse temperature,i.e.a smaller transverse velocity. Therefore, more atoms in the 2D-MOT can pass through the differential pumping tube. As shown in Fig.4,the optimized detuning of the 2D-MOT beam is determined to be-4Γ. Considering the capture range of the 3D-MOT,the total atomic flux is estimated at 4×107atoms/s.

    Fig. 4. Characterization of atom number versus 2D-MOT beam detuning,with loading time being 1.5 s.

    Although the loading rate of the 3D-MOT improves with using the 2D-MOT setup,it can be further enhanced with using the push beam. The diameter of push beam is about 1.5 mm,which is close to the size of differential pumping tube. The scattering force of the push beam drives some atoms to change their longitudinal velocities and then they can fly into the 3DMOT area. Since the scattering force of the push beam on the atoms is regarded as being in the longitudinal direction of the 2D-MOT,we take the motion of atom as one-dimensional motion in simulation. According to the theory of laser cooling,the scattering force[32]is

    wheres=I/ISAT,Iis the laser intensity,Δ=δ-k·vz,δis the laser detuning,vzis the velocity of mercury atom in thezdirection. The scattering force is determined by the laser detuning,laser power and the velocity of atom. To analyze how it works on the atom,we trace the atoms with different initial longitudinal velocities as shown in Fig.5,and we find that some atoms with negative velocities can be driven into the atoms with positive velocities. If the final velocity is larger than the capture velocity of the 3D-MOT,the atoms cannot be loaded into the 3D-MOT.And if the initial velocity is too large,the atoms will run out of the region of the 2D-MOT backward, and then the atoms cannot go through the differential pumping tube. So some atoms within special velocity region can be pushed into the 3D-MOT,and the loading rate is enhanced.

    Fig. 5. Simulations of the velocity and the position of atoms at different initial velocities when detuning is 3.5Γ and intensity is 2ISAT.

    Apparently, the detuning of push beam plays an important role in determining which atoms can be pushed into the 3D-MOT. We trace an atom with an initial velocity of 3 m/s varying with different detunings, and the results are shown in Fig. 6(a). If the detuning is too small, even more atoms will be pushed into the region of positive velocity,i.e.original atoms with negative velocity turn into the atoms with positive velocity, but the final velocity will exceed the capture velocity of 3D-MOT.If the detuning is too large,the final velocity will be too small, or kept on the negative velocity side,i.e.,these atoms cannot enter into the 3D-MOT region. Considering these effect, an appropriate detuning can maximize the loading rate of the 3D-MOT. Because the natural line-width of mercury atom is rather smaller than that of alkali atom,the capture velocity is relatively small,and therefore the range of the optimized detuning is a little bit narrow.

    Another key effect is caused by the laser intensity as shown in Fig. 6(b). When the laser power is too weak, the atoms will run out of the 2D-MOT region before its velocity turns positive,so the atoms cannot enter into the science chamber. As the laser power increases,the atoms can be turned into the atoms with a positive velocity in the 2D-MOT region,and finally captured by the 3D-MOT.But the scattering force will be saturated according to formula (4), and the final velocity will be out of the capture velocity of the 3D-MOT.Therefore,when the laser power increases,not only more atoms will turn over to the 3D-MOT,but also they have greater possibility to be pushed out of the capture velocity.

    Fig. 6. Simulations of movement of atoms at (a) s = 1.7ISAT and (b)δ =4.5 MHz.

    To optimize the push beam, we measure the cold atom number and the results are shown in Fig. 7. The optimized power is about 0.35 mW, which corresponds to 1.7ISAT. The atom number increases linearly with the laser power of the push beam increasing. But with the laser power being above the optimized power, the atom number is not obviously enhanced. And the optimized detuning of push beam is-3.5Γ.The atom number decreases on both sides of the optimized detuning.

    Fig.7.Characterization of 2D-MOT depending on(a)push beam power and(b)push beam detuning.

    The experimental results in Table 1 show that the loss rate increases as the loading rate increasing. The loss is normally caused by the collisions of background gases,the atom beam,the scattering light,and the push beam.Owing to the low atom number,i.e.low density of atoms in the 3D MOT,the collision between cold atoms is negligible. The collision between the cold atoms and the background gases is the main reason for the loss in 3D-MOT.As shown in Table 1,the loss from background gases is determined to be 0.75/s. With the 2D-MOT beam, the loss rate is about 1.0 s-1, and the increased loss probably comes from the collimated atomic beam. Because the atomic beam is collimated and roughly aims at the center of the 3D-MOT region, the collision happens frequently between the high velocity mercury atoms from the atomic beam and the cold atoms in the 3D-MOT.With using the 2D-MOT and the push beam,the additional loss is from the push beam,because its frequency is not far from the transition frequency of cold atoms.

    As discussed above,although the loading rate is increased by a factor of 8.4 with using the 2D-MOT and the push beam,the loss rate is also enlarged 1.8 times, which is attributed mainly to the interactions between the collimated atomic beam and the push beam on the cold atom in the 3D-MOT.This kind of loss can be removed by displacing the 3D-MOT away from the intense atomic beam and the push beam,which has already been used in some experiments,[7]so that the saturated atom number can be further increased. Unfortunately, we cannot use this method in our experiment,because it requires a larger capture area,i.e.a larger cooling beam. Nevertheless,the enhanced loading rate shortens the loading time to 100 ms for the preparation of 105cold atoms, which is valuable to a neutral mercury lattice clock in the future.

    4. Conclusions

    In this paper, we build a setup to produce cold mercury atoms, in which the configuration of the 2D-MOT plus the push beam is adopted. The collimated atomic flux from the 2D-MOT can effectively enhance the loading rate, and it can prevent too much atoms out of the higher mercury vapor chamber from directly entering into the science chamber. So it improves the vacuum. With this setup,the loading rate of202Hg atoms is increased by a factor of 8.4,and about 1.3×106mercury atoms are loaded into the 3D-MOT.The enhancement of the loading rate can effectively shorten the loading time,which is beneficial to reducing the dead time of optical clock.It is important to reduce the quantum projection noise limit. We can make some modifications to improve the performance of the 2D-MOT in the future,such as extending the cooling length of the 2D-MOT with an upgraded DUV laser.This device will be applied to our neutral mercury optical lattice clock,which will play an important role in improving the stability of the clock.

    男女午夜视频在线观看 | 亚洲欧美精品自产自拍| 蜜桃国产av成人99| 亚洲欧美中文字幕日韩二区| 色哟哟·www| 一级毛片 在线播放| 九色成人免费人妻av| 国产免费视频播放在线视频| 人妻系列 视频| 日本欧美视频一区| 亚洲国产精品一区二区三区在线| 一级毛片 在线播放| 亚洲精品av麻豆狂野| 欧美精品亚洲一区二区| 成人综合一区亚洲| 天天操日日干夜夜撸| 亚洲av男天堂| 美国免费a级毛片| 久久久久久久大尺度免费视频| 赤兔流量卡办理| 久久女婷五月综合色啪小说| 观看美女的网站| 亚洲五月色婷婷综合| 精品国产一区二区三区四区第35| 日本黄大片高清| 久久青草综合色| www.熟女人妻精品国产 | 少妇人妻精品综合一区二区| 亚洲国产色片| 亚洲色图综合在线观看| 高清在线视频一区二区三区| 久久久久精品性色| 下体分泌物呈黄色| 亚洲伊人色综图| 欧美变态另类bdsm刘玥| 国产av精品麻豆| 欧美亚洲 丝袜 人妻 在线| 99热网站在线观看| 久久人人爽人人爽人人片va| 亚洲av福利一区| 国产1区2区3区精品| 午夜激情av网站| 久久精品国产鲁丝片午夜精品| 午夜免费观看性视频| 国产有黄有色有爽视频| 日韩中字成人| 中文字幕人妻熟女乱码| av又黄又爽大尺度在线免费看| 成人18禁高潮啪啪吃奶动态图| 午夜91福利影院| 麻豆精品久久久久久蜜桃| 丝袜美足系列| 亚洲婷婷狠狠爱综合网| 黄网站色视频无遮挡免费观看| 国产在线一区二区三区精| 考比视频在线观看| 永久网站在线| 欧美日韩视频精品一区| 九色成人免费人妻av| 国产日韩一区二区三区精品不卡| 免费观看无遮挡的男女| 一本大道久久a久久精品| 建设人人有责人人尽责人人享有的| 国产精品久久久av美女十八| 丁香六月天网| 在线免费观看不下载黄p国产| 亚洲欧美色中文字幕在线| 高清毛片免费看| 赤兔流量卡办理| 大话2 男鬼变身卡| 国产成人91sexporn| 久久久久久伊人网av| 亚洲精品色激情综合| av一本久久久久| 国产亚洲午夜精品一区二区久久| 精品久久国产蜜桃| 亚洲国产欧美在线一区| 亚洲欧洲日产国产| 在线观看免费高清a一片| 最近的中文字幕免费完整| 侵犯人妻中文字幕一二三四区| 亚洲欧美中文字幕日韩二区| 午夜免费鲁丝| 免费大片18禁| 久久韩国三级中文字幕| 国产成人av激情在线播放| 久久99热这里只频精品6学生| 久久国内精品自在自线图片| 黄色视频在线播放观看不卡| 三级国产精品片| 国产成人精品一,二区| 亚洲性久久影院| 久久久国产精品麻豆| 欧美日韩一区二区视频在线观看视频在线| 国产精品一国产av| 国产成人精品婷婷| 黄片播放在线免费| 亚洲av免费高清在线观看| 婷婷成人精品国产| av视频免费观看在线观看| 少妇的逼水好多| 色网站视频免费| 男女下面插进去视频免费观看 | 国国产精品蜜臀av免费| 好男人视频免费观看在线| 一二三四在线观看免费中文在 | 午夜福利乱码中文字幕| 欧美激情极品国产一区二区三区 | 91精品国产国语对白视频| 2021少妇久久久久久久久久久| 热re99久久精品国产66热6| 成人综合一区亚洲| 日韩熟女老妇一区二区性免费视频| 男女免费视频国产| 国产精品秋霞免费鲁丝片| 色视频在线一区二区三区| 亚洲人与动物交配视频| 水蜜桃什么品种好| 美女视频免费永久观看网站| 久久久久久久大尺度免费视频| 国产日韩欧美在线精品| 国产又色又爽无遮挡免| 国产精品.久久久| 国产 一区精品| 黑人欧美特级aaaaaa片| 国产日韩欧美视频二区| av视频免费观看在线观看| 亚洲丝袜综合中文字幕| 美女中出高潮动态图| 国产成人精品一,二区| 国产免费又黄又爽又色| 深夜精品福利| 国产成人一区二区在线| 色网站视频免费| 如日韩欧美国产精品一区二区三区| xxx大片免费视频| 王馨瑶露胸无遮挡在线观看| 性色av一级| 日韩欧美一区视频在线观看| 久久久国产精品麻豆| 哪个播放器可以免费观看大片| 免费av中文字幕在线| 一区二区三区乱码不卡18| 人妻一区二区av| 欧美人与善性xxx| 亚洲欧美清纯卡通| 99热这里只有是精品在线观看| 又黄又爽又刺激的免费视频.| kizo精华| 亚洲成色77777| 老司机影院毛片| 国产有黄有色有爽视频| 国产成人精品无人区| 黄片无遮挡物在线观看| 一边亲一边摸免费视频| 丝袜脚勾引网站| 亚洲精品国产av蜜桃| 亚洲国产看品久久| 亚洲第一区二区三区不卡| 国产男女超爽视频在线观看| 久久久久久久久久久久大奶| 日产精品乱码卡一卡2卡三| 久久精品国产自在天天线| 色吧在线观看| 一级a做视频免费观看| 在线天堂最新版资源| 久久久a久久爽久久v久久| 999精品在线视频| 飞空精品影院首页| 亚洲美女搞黄在线观看| 男女午夜视频在线观看 | 午夜福利网站1000一区二区三区| a级毛片在线看网站| 永久免费av网站大全| 寂寞人妻少妇视频99o| 久久精品国产亚洲av涩爱| 人体艺术视频欧美日本| 亚洲av欧美aⅴ国产| 久久人人爽人人爽人人片va| 日韩欧美精品免费久久| 女性被躁到高潮视频| 韩国av在线不卡| 在线免费观看不下载黄p国产| 极品少妇高潮喷水抽搐| 免费av不卡在线播放| 国产毛片在线视频| 色94色欧美一区二区| videosex国产| 高清黄色对白视频在线免费看| 亚洲一码二码三码区别大吗| 69精品国产乱码久久久| 亚洲天堂av无毛| 亚洲精品视频女| 日韩中文字幕视频在线看片| 亚洲成人手机| 曰老女人黄片| 麻豆精品久久久久久蜜桃| 巨乳人妻的诱惑在线观看| 国产成人精品无人区| 亚洲一级一片aⅴ在线观看| 一区二区三区四区激情视频| 国产爽快片一区二区三区| 夫妻性生交免费视频一级片| 免费不卡的大黄色大毛片视频在线观看| 美女国产高潮福利片在线看| 97超碰精品成人国产| 日本色播在线视频| 亚洲成人手机| 天天影视国产精品| 亚洲精品日韩在线中文字幕| 久久99热这里只频精品6学生| 韩国精品一区二区三区 | 国产精品久久久久成人av| 国产淫语在线视频| 免费人妻精品一区二区三区视频| 亚洲 欧美一区二区三区| 91成人精品电影| 精品人妻偷拍中文字幕| 综合色丁香网| 久久精品国产鲁丝片午夜精品| 寂寞人妻少妇视频99o| 国产亚洲最大av| 亚洲国产成人一精品久久久| 精品国产一区二区三区久久久樱花| 爱豆传媒免费全集在线观看| 国内精品宾馆在线| 日韩电影二区| 久久久亚洲精品成人影院| 伦理电影免费视频| 亚洲精品第二区| 色5月婷婷丁香| 两个人看的免费小视频| 亚洲经典国产精华液单| 午夜福利乱码中文字幕| 国产成人欧美| 日本爱情动作片www.在线观看| 久久青草综合色| 日本av手机在线免费观看| 啦啦啦中文免费视频观看日本| 91在线精品国自产拍蜜月| 国产乱来视频区| 日本91视频免费播放| 亚洲精品aⅴ在线观看| 啦啦啦中文免费视频观看日本| 一级爰片在线观看| 日本wwww免费看| 久久久久国产精品人妻一区二区| 日本免费在线观看一区| 综合色丁香网| 日韩视频在线欧美| 永久免费av网站大全| 日韩中字成人| 免费观看a级毛片全部| 人人妻人人澡人人看| 激情五月婷婷亚洲| 人妻人人澡人人爽人人| 在线天堂中文资源库| 午夜久久久在线观看| 丝瓜视频免费看黄片| 国产黄色免费在线视频| 久久国内精品自在自线图片| 久久女婷五月综合色啪小说| 91在线精品国自产拍蜜月| 午夜福利乱码中文字幕| 爱豆传媒免费全集在线观看| 久久精品国产a三级三级三级| av网站免费在线观看视频| 免费观看性生交大片5| 在线观看免费视频网站a站| 亚洲美女视频黄频| 晚上一个人看的免费电影| 成人毛片a级毛片在线播放| 在线观看免费高清a一片| 亚洲人成网站在线观看播放| 国产成人精品婷婷| 内地一区二区视频在线| 免费女性裸体啪啪无遮挡网站| 日日撸夜夜添| 午夜久久久在线观看| 又黄又粗又硬又大视频| 国产精品蜜桃在线观看| 国产成人精品一,二区| 五月开心婷婷网| 91aial.com中文字幕在线观看| 性色avwww在线观看| 久久精品熟女亚洲av麻豆精品| 超色免费av| 18禁裸乳无遮挡动漫免费视频| 美女xxoo啪啪120秒动态图| 一级毛片我不卡| 丰满饥渴人妻一区二区三| 尾随美女入室| 国产激情久久老熟女| 日日啪夜夜爽| 亚洲av成人精品一二三区| 国产亚洲一区二区精品| 亚洲精品日韩在线中文字幕| a 毛片基地| 人体艺术视频欧美日本| av卡一久久| 高清视频免费观看一区二区| 久久午夜综合久久蜜桃| 国产精品国产av在线观看| 黑人高潮一二区| 欧美成人午夜免费资源| 久久精品国产自在天天线| 欧美成人午夜精品| 日韩一本色道免费dvd| 精品久久久精品久久久| 亚洲人成77777在线视频| 日本av手机在线免费观看| 午夜视频国产福利| 日韩av免费高清视频| 丁香六月天网| 国产成人免费观看mmmm| 精品亚洲乱码少妇综合久久| 亚洲欧洲国产日韩| 国产爽快片一区二区三区| 街头女战士在线观看网站| 九色亚洲精品在线播放| 美女大奶头黄色视频| 我要看黄色一级片免费的| 国产白丝娇喘喷水9色精品| 久久人人爽av亚洲精品天堂| 中国美白少妇内射xxxbb| 午夜久久久在线观看| 又黄又爽又刺激的免费视频.| 国产国语露脸激情在线看| 国产无遮挡羞羞视频在线观看| a级毛片在线看网站| 国产精品熟女久久久久浪| 国产成人精品福利久久| 一区二区三区四区激情视频| 亚洲国产日韩一区二区| av在线播放精品| 午夜福利,免费看| 久久久精品94久久精品| 国产av一区二区精品久久| av又黄又爽大尺度在线免费看| 亚洲伊人色综图| 少妇被粗大猛烈的视频| 三上悠亚av全集在线观看| 两性夫妻黄色片 | 国产又爽黄色视频| 在线观看三级黄色| 久久久久久久亚洲中文字幕| 亚洲av.av天堂| 韩国精品一区二区三区 | 国产亚洲av片在线观看秒播厂| 日韩中字成人| 中文字幕免费在线视频6| 香蕉国产在线看| 亚洲五月色婷婷综合| 欧美精品人与动牲交sv欧美| 国产精品99久久99久久久不卡 | 国产成人精品福利久久| 啦啦啦视频在线资源免费观看| 女人精品久久久久毛片| 纯流量卡能插随身wifi吗| 91国产中文字幕| 欧美人与性动交α欧美软件 | 亚洲欧美一区二区三区国产| 久久久亚洲精品成人影院| 亚洲欧美中文字幕日韩二区| 久久久久久久久久久久大奶| 51国产日韩欧美| 22中文网久久字幕| 97人妻天天添夜夜摸| 永久免费av网站大全| 2021少妇久久久久久久久久久| 国产有黄有色有爽视频| av不卡在线播放| av.在线天堂| 国产在视频线精品| 国产免费福利视频在线观看| 美女国产高潮福利片在线看| 22中文网久久字幕| 韩国av在线不卡| 婷婷色麻豆天堂久久| 97精品久久久久久久久久精品| 国产精品 国内视频| av女优亚洲男人天堂| 成人毛片60女人毛片免费| 女性被躁到高潮视频| 最近最新中文字幕大全免费视频 | 亚洲精品乱码久久久久久按摩| 国产精品一区www在线观看| 男的添女的下面高潮视频| 下体分泌物呈黄色| 国产黄色免费在线视频| 欧美丝袜亚洲另类| 美女主播在线视频| 久久久久久人人人人人| 国产精品秋霞免费鲁丝片| 黑人巨大精品欧美一区二区蜜桃 | 美女中出高潮动态图| 啦啦啦在线观看免费高清www| 国产xxxxx性猛交| 亚洲综合色网址| 美女中出高潮动态图| 亚洲内射少妇av| 久久这里有精品视频免费| 男女边吃奶边做爰视频| 久久久欧美国产精品| av天堂久久9| 欧美激情 高清一区二区三区| 亚洲av电影在线观看一区二区三区| 国产精品不卡视频一区二区| xxxhd国产人妻xxx| 成人亚洲精品一区在线观看| 国语对白做爰xxxⅹ性视频网站| 老司机影院毛片| 精品久久久精品久久久| 亚洲第一区二区三区不卡| www日本在线高清视频| 天天操日日干夜夜撸| 欧美精品亚洲一区二区| 久久99精品国语久久久| 久久久久久人人人人人| 国产成人91sexporn| av在线老鸭窝| 国产国拍精品亚洲av在线观看| 青春草视频在线免费观看| 色哟哟·www| 国产又色又爽无遮挡免| 校园人妻丝袜中文字幕| 国产精品一区二区在线观看99| 18禁在线无遮挡免费观看视频| 精品国产一区二区三区久久久樱花| 夜夜骑夜夜射夜夜干| 日本黄大片高清| 国产 精品1| 最新的欧美精品一区二区| 啦啦啦啦在线视频资源| 亚洲欧洲国产日韩| 久久久久久久亚洲中文字幕| 夫妻午夜视频| 在线精品无人区一区二区三| 嫩草影院入口| 亚洲av日韩在线播放| 国产精品99久久99久久久不卡 | 香蕉丝袜av| 日韩免费高清中文字幕av| 看免费成人av毛片| 亚洲欧洲精品一区二区精品久久久 | 国产男人的电影天堂91| 亚洲欧美一区二区三区国产| 看十八女毛片水多多多| 亚洲欧洲精品一区二区精品久久久 | 亚洲国产看品久久| 精品一区二区免费观看| 丝袜在线中文字幕| 国产极品天堂在线| 欧美日韩av久久| 日本黄大片高清| 51国产日韩欧美| 日本与韩国留学比较| 久久久久久人人人人人| 色婷婷av一区二区三区视频| 亚洲三级黄色毛片| 黑人欧美特级aaaaaa片| 少妇的丰满在线观看| 国产在线一区二区三区精| 免费不卡的大黄色大毛片视频在线观看| 青春草视频在线免费观看| 亚洲精品国产色婷婷电影| 99国产精品免费福利视频| 国产成人a∨麻豆精品| 中文字幕另类日韩欧美亚洲嫩草| 亚洲人与动物交配视频| 婷婷色综合大香蕉| 少妇精品久久久久久久| 激情五月婷婷亚洲| 欧美激情极品国产一区二区三区 | 欧美精品人与动牲交sv欧美| 亚洲av综合色区一区| 国产精品秋霞免费鲁丝片| 国产精品麻豆人妻色哟哟久久| 国国产精品蜜臀av免费| 亚洲精品美女久久av网站| 久久精品国产综合久久久 | 热re99久久精品国产66热6| 日韩精品有码人妻一区| 少妇精品久久久久久久| 搡老乐熟女国产| 国产在线免费精品| 国内精品宾馆在线| 免费人妻精品一区二区三区视频| 丝瓜视频免费看黄片| 亚洲国产精品专区欧美| 欧美成人午夜免费资源| 26uuu在线亚洲综合色| 午夜激情av网站| 亚洲成色77777| 久久青草综合色| 少妇被粗大的猛进出69影院 | 久久国产亚洲av麻豆专区| 在线精品无人区一区二区三| 在线观看国产h片| 久热这里只有精品99| 国产成人精品婷婷| 在线观看一区二区三区激情| 菩萨蛮人人尽说江南好唐韦庄| 久热久热在线精品观看| 制服诱惑二区| 九色亚洲精品在线播放| 国产熟女欧美一区二区| 亚洲高清免费不卡视频| 在线天堂最新版资源| 少妇猛男粗大的猛烈进出视频| 熟女av电影| 午夜激情久久久久久久| 久久人人97超碰香蕉20202| av播播在线观看一区| 国产日韩欧美视频二区| 一级毛片黄色毛片免费观看视频| 久久久久久久久久久久大奶| 国产精品久久久久久av不卡| 伦理电影大哥的女人| 高清不卡的av网站| 99国产精品免费福利视频| 久久久久久久精品精品| 国产在线免费精品| 中文字幕av电影在线播放| 亚洲精品美女久久av网站| 国产综合精华液| 少妇被粗大的猛进出69影院 | 亚洲精品乱码久久久久久按摩| 91精品国产国语对白视频| 黄色配什么色好看| 午夜福利视频精品| 免费av不卡在线播放| 大片免费播放器 马上看| 国产精品.久久久| 91精品伊人久久大香线蕉| 亚洲av电影在线进入| 在现免费观看毛片| 国产精品一国产av| 欧美精品高潮呻吟av久久| 久久综合国产亚洲精品| 欧美日韩一区二区视频在线观看视频在线| 国产日韩欧美视频二区| 七月丁香在线播放| 欧美老熟妇乱子伦牲交| 午夜福利影视在线免费观看| 在线观看免费日韩欧美大片| 午夜福利视频在线观看免费| 久久久久人妻精品一区果冻| 人体艺术视频欧美日本| 99热这里只有是精品在线观看| 日日撸夜夜添| 国产伦理片在线播放av一区| 婷婷色综合www| 国产永久视频网站| 青春草国产在线视频| 日本黄大片高清| av免费观看日本| 国产精品一二三区在线看| 午夜av观看不卡| 欧美亚洲日本最大视频资源| 91国产中文字幕| 51国产日韩欧美| 国产黄色免费在线视频| 国产精品久久久久久精品电影小说| 最近中文字幕2019免费版| 热re99久久国产66热| 国产高清不卡午夜福利| 亚洲综合精品二区| 你懂的网址亚洲精品在线观看| 在现免费观看毛片| 久久免费观看电影| 国产精品国产三级国产专区5o| 香蕉国产在线看| 国产欧美日韩一区二区三区在线| 国产国语露脸激情在线看| 一个人免费看片子| 久久久久久久精品精品| 交换朋友夫妻互换小说| 高清毛片免费看| 国产高清国产精品国产三级| 一级毛片黄色毛片免费观看视频| 亚洲av综合色区一区| 午夜激情久久久久久久| 日韩熟女老妇一区二区性免费视频| 一二三四在线观看免费中文在 | 一本久久精品| 男人操女人黄网站| 精品一品国产午夜福利视频| 亚洲高清免费不卡视频| 亚洲精品,欧美精品| 国产日韩欧美在线精品| 啦啦啦视频在线资源免费观看| 男女啪啪激烈高潮av片| 乱码一卡2卡4卡精品| 日本av手机在线免费观看| 欧美精品一区二区大全| 亚洲国产精品国产精品| 久久综合国产亚洲精品| 永久免费av网站大全| 99久久人妻综合| 亚洲情色 制服丝袜| 亚洲一码二码三码区别大吗| 男人舔女人的私密视频| 久久久久人妻精品一区果冻| 日本-黄色视频高清免费观看| 中文字幕制服av| 成人影院久久| 欧美xxⅹ黑人| 自线自在国产av| 精品第一国产精品| 男女下面插进去视频免费观看 | 精品久久国产蜜桃| 精品国产一区二区三区久久久樱花| 成人二区视频| 97在线视频观看|