• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Li(2p ←2s)+Na(3s)pressure broadening in the far-wing and line-core profiles

    2022-08-01 05:59:40TalbiLamoudiReggamiBouazzaAliouaandBouledroua
    Chinese Physics B 2022年7期

    F Talbi, N Lamoudi, L Reggami, M T Bouazza,4,?, K Alioua, and M Bouledroua

    1Physics Department,Badji Mokhtar University,B.P.12,Annaba 23000,Algeria

    2Laboratoire de Physique des Rayonnements,Badji Mokhtar University,B.P.12,Annaba 23000,Algeria

    3Laboratoire d’Etude des Surfaces et Interfaces de la Mati`ere Solide(LESIMS),Badji Mokhtar University,B.P.12 Annaba 23000,Algeria

    4Laboratoire LAMA,Laboratoire des Mat′eriaux Avanc′es(LAMA),Badji Mokhtar University,B.P.12 Annaba 23000,Algeria

    5Laboratoire de Physique de la Mati`ere et du Rayonnement LPMR,Universit′e Ch′erif Messaidia,B.P.1553,Souk-Ahras 41000,Algeria

    Keywords: pressure broadening,line-core broadening,far-wing spectra,photoabsorption

    1. Introduction

    The investigations on the line core and the far wings of molecular spectral profiles have been lately become a subject of great interest in astrophysics,spectroscopy,quantum chemistry and laser physics. In fact,the interpretations of the collisional broadened line profiles of alkali-metal atoms allow us to investigate the interstellar mediums,because several observations demonstrate that the environment of astronomical objects are primary dominated by the alkali-metal atoms.[1–3]Due to this high importance, a large number of experimentalists and theoreticians have long been interested in studying the spectral line broadening in the core and in the far wings caused by the interaction of alkali-metal atoms with atoms of their surrounding environment. The theoretical studies have employed semi-classical[4–6]and quantum[7–12]models.Over the last few years,our group has simulate quantum-mechanically the photoabsorption spectra of alkali-metal atoms broadened by collision with like, unlike or rare-gas atoms. In our recent paper,[13]we have carried out the absorption spectra of a radiating sodium atoms Na(3p←3s) perturbed by ground lithium Li(2s) atoms. The current paper is concerned with the quantal study of pressure-broadening phenomena which affects the Li(2p←2s) resonance line in the wings and core when the lithium atoms are interacting with ground sodium Na(3s)atoms. In the next section we will describe the method used to construct the required potential-energy curves and the transition dipole moments. In Section 3, we will use them to carry out the radiative lifetime of the ro-vibrational levels of the excited molecular states. In Section 4, we will calculate the diffusion coefficients of ground Li(2s) and excited Li(2p) lithium atoms in sodium gas to see how accurate the LiNa potentials are. Section 5 is divided into two subsections,Subsection 5.1 is devoted to the computation of the reducedabsorption coefficients; this part is more concerned with the designation of satellite peak positions and origins in the blue and red wings. In Subsection 5.2,the width and shift of linecore will be evaluated and their variation laws with temperature will be examined.

    Unless otherwise stated, atomic units (a.u.) are used all over this paper; in particular, energies are in Hartrees (Eh),distances in Bohrs(a0),and ˉh=1.

    2. Potential and dipole moments constructions

    The quantum-mechanical investigation of the line broadening in the core or in the wings of the lithium Li(2p←2s)spectra,perturbed by ground sodium atoms,needs to be started by the determination of the potential-energy curves along which the dimers Li(2s)+Na(3s) and Li(2p)+Na(3s) interact. More precisely, this section is devoted to the construction of the singlet X1Σ+and triplet a3Σ+potential-energy curves via which Li(2s)interacts with Na(3s)and of the singlet A1Σ+and B1Π and the triplet b3Π and c3Σ+potential curves via which Li(2p)interacts with Na(3s).

    To this aim,we adopted theab initiodata points generated by Aubert–Fr′econ M,[14]which we extended smoothly to the Born–Mayer potential[15]V(R)~αexp(-βR), in the shortrange internuclear distancesR, and to the well-known formV(R)~-∑nCnR-n, in the long-range distances. In these formulas,αandβare two constant parameters andCn, withn=6,8,and 10,are the dispersion coefficients adopted from Marinescu and Sadeghpour.[16]All these constants are listed in Table 1.

    Table 1. Adopted short- and long-range parameters (in a.u.) for the construction of ground Li(2s)+Na(3s)and excited Li(2p)+Na(3s)potentialenergy curves. All the dispersion coefficients are from Marinescu and Sadeghpour.[16] Numbers in square brackets represent powers of ten: [m]=10+m.

    Fig.1. Li(2s)+Na(3s)and Li(2p)+Na(3s)potential-energy curves V(R)variation with the internuclear distance R. All singlet and triplet curves are compared with theoretical data from Ref.[17].

    Figure 1 shows the constructed potential curves relative to the singlet and triplet LiNa molecular states. Some of the theoretical data points of Schmidt–Minket al.[17]are also presented for comparison. Mabrouk and Berriche[18]determined the energy difference 0.0679 between both 2s–3s and 2p–3s asymptotic dissociation limits,which is identical to the experimental value cited in Ref.[18]. This energy turns to be very close to 0.0680 computed by Aubert–Fr′econ.[14]The corresponding spectroscopic data derived from the present curves,namely, the equilibrium distanceRe, the dissociation energyDe, and the minimum-to-minimum electronic excitation energyTe, are given and compared with some theoretical[17–20]and measured values[21–23]in Table 2.To further verify the accuracy of the constructed potentials,we have determined their rotational-vibrational energy levels and compared them with the corresponding available published data. Tables 3 and 4 display, for a few number of vibrational quantum numberv,the rotational-vibrational energy levels-E(v,J), withJ=0 for Σ states andJ=1 for Π states.

    Table 2. Spectroscopic constants related to the ground and excited LiNa dimer. They are compared with some published results.

    Table 3. Rotationless-vibrational energy levels-E(v,J),in cm-1,of the singlet LiNa molecular states.

    Table 4. Rotationless-vibrational energy levels-E(v,J),in cm-1,of the triplet LiNa molecular states.

    We also need to know in the following calculations the transition dipole momentsD(R) (TDMs) correlated with the allowed molecular transitions among the singlet A1Σ+←X1Σ+and B1Π←X1Σ+and the triplet b3Π←a3Σ+and c3Σ+←a3Σ+states. In the present constructions we utilize the data points generated by Aubert–Fr′econ M,[14]which we connected in small distances to a linear form and for large distancesRtoD(R)~D∞+AR-3, proposed by Chu and Dalgarno.[24]Here,D∞?2.359 is the atomic dipole moment obtained asR →∞, and the calculations yieldA=+3474.61 andA=-1668.11 for the ΣΣ and ΣΠ transitions, respectively. The TDM curves are shown in Fig.2, where the X–A dipole moments are compared withab-initiodata points from Mabrouk and Berriche.[18]

    Fig.2.Transition dipole moments as a function of internuclear R.The singlet X–A moments are compared with theoretical data from Ref.[18].

    3. Radiative lifetimes

    We propose in this section to calculate with our constructed potentials and transition dipole moments the radiative lifetimes of the ro-vibrational levels of the excited LiNa molecular states.

    The radiative lifetimeτ= 1/A(v′JΛ′) of an upper rotational-vibrational molecular state (v′JΛ′) is defined in quantum mechanics as the inverse of the sum of the probabilities[11,25]

    withΛbeing the projection of the orbital angular momentum on the internuclear axis.[25]The free states are associated with the energy-normalized wave functions,while the bound states are space-normalized wave functions.

    The obtained lifetime results of a few rotationalvibrational levels, relative to the singlet A1Σ+and B1Π and to the triplet b3Σ+and c3Π states, are compiled in Table 5.In addition, by considering in the vicinity of the dissociation limits the highest rotationless-vibrational states, it is possible to determine the atomic radiative lifetimeτafor Li(2p)excited state.This can be done by averaging the four lifetimes that correspond to the highest rotationless vibrational levels,shown in bold in Table 5.In such a case,the atomic lifetimeτais related to the statistically weighted sum ofA(v′JΛ′)with

    The present theoretical calculations yield the radiative lifetime 27.16 ns for the 2p lithium state. The deduced value is consistent with the experimentally determined values 27.1018(14) ns of Le Royet al.,[26]27.09(4) ns of Schmittet al.,[27]27.11(6) ns of Volz and Schmoranzer,[28]and 27.22(20) ns of Carlsson and Sturesson.[29]McAlexanderet al.deduced from their experiments the values 26.99(16) ns for the7Li(2p2P°) state,[31]and 27.102(2) ns,for the7Li(2p2P°1/2) state.[31]The NIST recommended value is 27.11 ns.[32]

    In all cases,the above comparisons show minute discrepancies with published works,which lead us to fully trust in our constructed LiNa potentials and TDMs.

    Table 5. LiNa radiative lifetimes(in ns)of the singlet,A1Σ+ and B1Π,and triplet,b3Σ+ and c3Π,states.

    4. Diffusion properties

    We have also suggested, to assess the potential-energy curves constructed above, to look at the diffusion of ground Li(2s) and excited Li(2p) atoms into a dilute gas made of sodium atoms. The temperature-dependent diffusion coefficientD(T)for dilute gas is calculated by using the Chapman–Enskog method.[33]For one temperatureTand atomic densityn,this coefficient is given by

    wherekBis Boltzmann’s constant,μis the reduced mass of the two colliding atoms,andΩ(1,1)(T)is the collision integral defined as

    withQD(E) being the quantum-mechanical effective cross section in diffusion

    wherek= (2μE)1/2is the wave number andηlis the phase shift obtained by solving the corresponding radial wave Eq.(2).For the diffusion of the ground Li(2s)atom in sodium gas,the diffusion cross section is given by the average

    and by the following average:

    for the diffusion cross section of the excited Li(2p)in sodium gas.

    The diffusion coefficients in the temperature range 100 K–2000 K at gas pressurep=1 atm are listed in Table 6 for ground and excited states. To our knowledge,no published results are available for the LiNa system, so our results may serve as a prediction for future works.

    Table 6. Diffusion coefficients D(T)for ground Li(2s)and excited Li(2p)in Na(3s)at several temperatures.

    5. Far-wing and line-core pressure broadening

    In the remaining sections, we are interested in the pressure broadening phenomena that a lithium atom absorbing a photon undergoes while it interacts with a ground sodium atom. The Li(2p←2s)photoabsorption is practically examined when the absorbing atom is moving into a dilute sodium gas at a fixed temperatureT. In such a case,the natural spectrum is physically affected in its line core and its far wings.Thus, the aim of this work is twofold: (i)to determine quantum mechanically the far-wing absorption profiles of the absorbing atom, and (ii) to quantify the amount of broadening of the 2p←2s line and its displacement from the unperturbed wavelengthλ0?670.8 nm.

    5.1. Far-wing spectra

    The collisional broadening phenomenon has been reviewed by Allard and Kielkopf[34]and Szudy and Baylis.[35]However,the far-wing pressure broadening process is quantified in molecular spectroscopy by means of the reduced absorption coefficients. The main relationships for these coefficients are given in Refs.[12,36].

    For the case of the LiNa quasi molecule, the total reduced absorption coefficient is the sum of contribution corresponding to the four allowed transitions A1Σ+←X1Σ+,B1Π←X1Σ+,b3Π←a3Σ+,and c3Σ+←a3Σ+. Usually,for an allowed molecular transition, the photoabsorption coefficient is the sum of four absorption coefficients corresponding to four possible transitions, namely, bound–bound (b–b),bound–free (b–f), free–bound (f–b), and free–free (f–f). The equations which give different reduced absorption coefficients relating to each type of transition are given by the following expressions:

    Figure 3 illustrates our results of simulation of the reduced photoabsorption coefficients corresponding to LiNa system carried out with our full quantum-mechanical calculations,at the temperatureT=2000 K for wavelengths ranging from 400 nm to 1200 nm. In our computation,we have taken into account all the bound and quasibound ro-vibrational levels, and we have used a frequency step Δν=10 cm-1. The total spectrum represented in Fig.3(a)shows clearly the existence of two satellites in the red wing located around 862 nm and 1070 nm. In Fig.3(b),we display the contribution of the four partial transitions. From this curve, it is easy to see that the singlet A←X and B←X bands dominate the red and blue wings,respectively. Indeed,the A←X transitions generate the 1070 nm satellite in the red wing,whereas both triplet b←a and c←a transitions are solely presented in the blue wing and have almost no effects on the general shape of the total spectrum.However,the b←a transitions participate with the satellite occurring at 862 nm.

    From the classical theory,[34,35]the positions of such satellites are expected to occur at wavelengths corresponding to the extrema of the potential difference curves. Hence we have plotted in Fig. 4 the potential difference ΔVA←X,ΔVB←X, ΔVb←a, and ΔVc←ain terms of internuclear distanceR.Effectively,ΔVA←X,ΔVb←a,and ΔVB←Xpresent an extrema atRequal to 0.053 a.u., 0.041 a.u., and 0.104 a.u., respectively, corresponding to the wavelengths 868 nm, 1115 nm,and 440 nm. The potential difference curve ΔVc←adisplays no extrema. As the potential difference predicts the possible existence of satellite near the wavelength 440 nm,we represent,in Fig.5 in arbitrary units,the modified reduced absorption coefficient(Δω)2×kr(Δω),calculated at 2000 K as function of the frequency detuning Δω=|ω-ω0|in cm-1from the lithium atomic resonance lineω0. This modification, suggested by Lyyraet al.,[37]is able to highlight the weak satellites. Figure 5(a)shows the existence of a satellite for Δω=6310 cm-1in the blue wing,which corresponds to the wavelength 470 nm,close to the value predicted by the potential difference ΔVB←X.Figure 5(b)confirms the existence of two satellites in the red wing,already detected.

    Fig.4. The LiNa difference potentials.

    Fig. 5. Modified reduced absorption coefficient (Δω)2×kr(Δω) at T =2000 K as a function of detuning Δω =|ω-ω0|.

    We have also investigated the effect of temperature on the profile of the photoabsorption spectrum for temperature range 1500 K–4000 K. It is noted that the spectrum intensity decreases with increasing temperature, as shown in Fig. 6 because the spectrum is dominated by the A←X (in the red wing) and B←X (in the blue wing) contributions which are mainly resulted from bound-bound transitions. AsTincreases, the population of the lower levels decreases leading to a drastic diminution of the photoabsorption spectrum intensity. Table 7 recapitulates the three satellite positions.

    Once the calculations are achieved for the line-wing profile,it is now interesting to look also at the pressure broadening phenomena in the line-core.

    Fig.6. Temperature effect on the shape of the photoabsorption profile. The temperatures are ranging from 1500 K to 4000 K.

    5.2. Line-core pressure broadening

    The atomic spectral lines are not really narrow and symmetrical, this is caused by several effects, such as natural,Doppler and pressure broadenings.[34]We are here interested in the phenomenon of pressure broadening which remains dominant in the considered temperature range.

    The part of this study treats the core region of the resonance line. In other words, we attempt to calculate the full width at half maximumwand the shiftsof the the lithium resonance line atom Li(2s-2p)perturbed by the sodium Na(3s)atoms,where these atoms form a gas in the vicinity of emitting atoms. To accomplish this calculation,we adopted the simplified quantum mechanical model of Baranger.[38]This model treats the case where the spin-orbit effect is neglected in the range of considered temperatures.

    Line-width and line-shift The line-widthwand the lineshiftsof Li(2p←2s) resonnance line perturbed by Na(3s)atoms are expressed by the following formula:[38]

    where the minus sign in the shift means a blue or a red shift andnis the density number of the perturbing gas. The average〈v·Qw〉avand〈v·Qs〉avare calculated assuming the Maxwell distribution of relative velocitiesv. In terms of relative energyE=(ˉhk)2/2μof the colliding atoms, these expressions become

    withQwandQsare the line-width and the line-shift cross sections,given by the sums[38]

    The elastic phase shiftsηl(E) for each energyEand angular momentumlare determined by solving numerically the radial wave equation

    in which the wavefunctionsψl(R)vary asymptotically asR →∞like

    which are defined by the following weighted averages[33]

    Our computed total line-width and line-shift cross sections for energies from 10-6a.u. to 1 a.u.are plotted on Fig.7.

    Fig.7. Line-width and line-shift cross sections varying with energy.

    Figure 8 illustrates the change of the rate coefficientsw/nands/nof the width and the shift, respectivily. We note the importance of these two coefficients at high temperature,and the same two figures show the significant divergence from the temperatureT. We present also in Table 8 some values of the width and the shift rates calculated by the quantum model of Baranger.[38]

    In order to find the variation law of the line-width and line-shift rates as a function of temperatureT,we fit correctly the computed results of these rates to the mathematical expression of the form~αTβwithαandβbeing constant parameters. Their values are listed in Table 9. Representations of the width and shift rates in termsof temperatureTare made on the same Fig.8.

    Table 8. The width and shift rate values at different temperatures.

    Table 9. Fitting parameters of the width and shift rate coefficients as they appear in ~αTβ.

    Fig.8. Width and shift rate coefficents w/n and-s/n as a function of temperature.

    6. Conclusion

    In this paper, we have primarily constructed the LiNa ground and excited interatomic potential curves as well as the transition dipole moments that connected them. To evaluate the reliability of our constructions, the rotational vibrational energy levels, the radiative lifetimes of excited states,and the diffusion coefficients have been carried out. We have then performed full quantum-mechanical calculation to simulate the Li(2p←2s)+Na(3s) absorption profile spectra and to determine the line-width and line-shift parameters. The results demonstrate the sensitivity of the far wing profiles on temperature and the appearance of two red satellite peaks located around the wavelength 862 nm and 1070 nm. However,the blue satellite predicted by the potential difference close to 440 nm has been detected by means to the modification already suggested by Lyyraet al.[37]which is able to highlight the weak satellite.

    Acknowledgments

    This work has been realized within the framework of the PNR project 8/423/4388. The authors acknowledge support from the Algerian Ministry of Higher Education and ANDRU.

    亚洲熟女精品中文字幕| 嫩草影院入口| 国产 精品1| 亚洲av在线观看美女高潮| 亚洲在久久综合| av网站免费在线观看视频| 日本vs欧美在线观看视频 | 男女无遮挡免费网站观看| 精品国产一区二区三区久久久樱花| 少妇人妻一区二区三区视频| 天美传媒精品一区二区| 狂野欧美白嫩少妇大欣赏| 国产亚洲av片在线观看秒播厂| 精品酒店卫生间| 少妇人妻一区二区三区视频| 亚洲色图综合在线观看| 啦啦啦啦在线视频资源| 亚洲欧美成人精品一区二区| 自拍偷自拍亚洲精品老妇| 国产一区亚洲一区在线观看| 国产亚洲精品久久久com| 久久久久久久久久久丰满| 精品酒店卫生间| 3wmmmm亚洲av在线观看| 日日摸夜夜添夜夜爱| 91精品国产九色| 国产色婷婷99| 成人毛片a级毛片在线播放| 久久久久视频综合| 男人爽女人下面视频在线观看| 国产日韩欧美亚洲二区| 夜夜看夜夜爽夜夜摸| 九九久久精品国产亚洲av麻豆| 亚洲色图综合在线观看| 亚洲av在线观看美女高潮| 久久久久久久久久久免费av| 日韩制服骚丝袜av| 插阴视频在线观看视频| 老女人水多毛片| 女性生殖器流出的白浆| 精品一区二区免费观看| 亚洲va在线va天堂va国产| 麻豆成人午夜福利视频| 久久久a久久爽久久v久久| 人人妻人人澡人人爽人人夜夜| 亚洲精品日韩av片在线观看| 免费观看性生交大片5| 99热全是精品| 欧美老熟妇乱子伦牲交| 国产精品成人在线| 国产黄片视频在线免费观看| 美女视频免费永久观看网站| 女性生殖器流出的白浆| 日韩大片免费观看网站| 2021少妇久久久久久久久久久| 久久人妻熟女aⅴ| 国产伦精品一区二区三区视频9| 高清不卡的av网站| 晚上一个人看的免费电影| 99国产精品免费福利视频| 欧美xxⅹ黑人| 亚洲自偷自拍三级| 曰老女人黄片| 国产免费又黄又爽又色| 亚洲精品乱码久久久久久按摩| 男女边吃奶边做爰视频| 婷婷色av中文字幕| 国产黄片美女视频| 一本色道久久久久久精品综合| 国语对白做爰xxxⅹ性视频网站| 亚洲国产精品国产精品| 寂寞人妻少妇视频99o| 在线观看三级黄色| 久久久久国产精品人妻一区二区| 丝袜在线中文字幕| 三级经典国产精品| 在线观看三级黄色| 人妻系列 视频| 亚洲精品一二三| 久久99精品国语久久久| 亚洲欧美日韩卡通动漫| 高清毛片免费看| av天堂中文字幕网| 国产男人的电影天堂91| 极品教师在线视频| 狂野欧美激情性bbbbbb| 久久久欧美国产精品| 在线观看av片永久免费下载| 青青草视频在线视频观看| 99热全是精品| 久久久久久久久久久免费av| 啦啦啦在线观看免费高清www| 久久国内精品自在自线图片| 成年女人在线观看亚洲视频| 亚洲精品久久久久久婷婷小说| 国产精品一区二区在线不卡| 18禁动态无遮挡网站| 亚洲第一av免费看| av福利片在线观看| 高清av免费在线| 国产成人aa在线观看| av视频免费观看在线观看| 日韩av不卡免费在线播放| a级毛片免费高清观看在线播放| 国产中年淑女户外野战色| 亚洲欧美成人精品一区二区| 国产精品秋霞免费鲁丝片| 热re99久久国产66热| 午夜精品国产一区二区电影| 欧美三级亚洲精品| 久久久精品94久久精品| 女的被弄到高潮叫床怎么办| 熟女电影av网| 激情五月婷婷亚洲| 自线自在国产av| 亚洲成人av在线免费| 国产精品国产三级国产av玫瑰| 国产精品嫩草影院av在线观看| 大又大粗又爽又黄少妇毛片口| 欧美精品一区二区大全| 日韩成人av中文字幕在线观看| 免费黄网站久久成人精品| 国产高清不卡午夜福利| 又粗又硬又长又爽又黄的视频| 亚洲欧美一区二区三区国产| 成年人免费黄色播放视频 | 国产精品久久久久久精品电影小说| 久久久精品免费免费高清| 91aial.com中文字幕在线观看| 一区二区三区四区激情视频| 中文字幕人妻熟人妻熟丝袜美| 亚洲av日韩在线播放| √禁漫天堂资源中文www| 少妇人妻精品综合一区二区| 黄色配什么色好看| 日韩中文字幕视频在线看片| 妹子高潮喷水视频| 亚洲第一区二区三区不卡| 国产亚洲午夜精品一区二区久久| 国产91av在线免费观看| 中文天堂在线官网| 少妇裸体淫交视频免费看高清| 九九爱精品视频在线观看| 九九在线视频观看精品| 九色成人免费人妻av| 麻豆乱淫一区二区| 看十八女毛片水多多多| 欧美另类一区| 久久精品国产亚洲av天美| 成年美女黄网站色视频大全免费 | 欧美日韩av久久| 亚洲精品一二三| 成人国产麻豆网| 免费观看的影片在线观看| av专区在线播放| 成人黄色视频免费在线看| 国产精品久久久久久av不卡| 人妻 亚洲 视频| 日本av免费视频播放| 热re99久久国产66热| 国产日韩欧美在线精品| av免费观看日本| 亚洲va在线va天堂va国产| 久热这里只有精品99| 街头女战士在线观看网站| 美女福利国产在线| 两个人免费观看高清视频 | 91成人精品电影| 亚洲激情五月婷婷啪啪| 日韩欧美精品免费久久| 国产精品麻豆人妻色哟哟久久| 久久久久久久久久久久大奶| 国产精品久久久久久av不卡| 国产精品不卡视频一区二区| 美女主播在线视频| 欧美精品亚洲一区二区| 精品少妇黑人巨大在线播放| av又黄又爽大尺度在线免费看| 亚洲人与动物交配视频| 国产精品一区二区在线观看99| 自拍欧美九色日韩亚洲蝌蚪91 | 日韩中字成人| 99久久精品国产国产毛片| 久久毛片免费看一区二区三区| 中文字幕精品免费在线观看视频 | 熟妇人妻不卡中文字幕| 男女边摸边吃奶| 一区二区三区四区激情视频| 美女中出高潮动态图| 国产精品成人在线| 色婷婷久久久亚洲欧美| 国产黄片美女视频| 在线观看美女被高潮喷水网站| 乱码一卡2卡4卡精品| 一级,二级,三级黄色视频| 中文字幕av电影在线播放| 午夜影院在线不卡| 只有这里有精品99| 99九九在线精品视频 | 免费观看无遮挡的男女| 亚洲第一av免费看| 久久精品国产自在天天线| 男人爽女人下面视频在线观看| 精品人妻熟女毛片av久久网站| 女人精品久久久久毛片| 在线观看www视频免费| 全区人妻精品视频| 久久精品久久精品一区二区三区| 久久毛片免费看一区二区三区| 国产伦精品一区二区三区视频9| 国产精品99久久99久久久不卡 | 大话2 男鬼变身卡| 综合色丁香网| 国产日韩欧美在线精品| 视频区图区小说| 久久久久国产精品人妻一区二区| 亚洲欧美一区二区三区黑人 | 国产精品久久久久久久电影| 国产黄片视频在线免费观看| 亚洲精品一二三| 桃花免费在线播放| 欧美3d第一页| 国产永久视频网站| 久久韩国三级中文字幕| 亚洲国产毛片av蜜桃av| 少妇人妻 视频| 亚洲精品第二区| 精品国产一区二区三区久久久樱花| 我要看日韩黄色一级片| 国产高清三级在线| 人人妻人人澡人人看| 少妇人妻精品综合一区二区| 你懂的网址亚洲精品在线观看| 成人漫画全彩无遮挡| 又黄又爽又刺激的免费视频.| av播播在线观看一区| 一本一本综合久久| av天堂中文字幕网| 日日爽夜夜爽网站| 99re6热这里在线精品视频| 亚洲国产欧美在线一区| 亚洲精品456在线播放app| 亚洲av日韩在线播放| 久久 成人 亚洲| 另类亚洲欧美激情| 一级毛片 在线播放| 天堂俺去俺来也www色官网| 国产欧美日韩一区二区三区在线 | 丰满人妻一区二区三区视频av| 色视频www国产| 男女免费视频国产| 精品国产国语对白av| 国产伦在线观看视频一区| 777米奇影视久久| 久久久久久久国产电影| 日本av免费视频播放| 久久久久精品性色| 国产熟女欧美一区二区| 啦啦啦视频在线资源免费观看| 两个人免费观看高清视频 | 午夜免费男女啪啪视频观看| 一级毛片 在线播放| 男人狂女人下面高潮的视频| 亚洲精品aⅴ在线观看| 久久 成人 亚洲| 80岁老熟妇乱子伦牲交| 亚洲一级一片aⅴ在线观看| 亚洲精品中文字幕在线视频 | 一区二区三区免费毛片| 国产毛片在线视频| 青春草亚洲视频在线观看| 欧美97在线视频| 国内揄拍国产精品人妻在线| 一级av片app| 男女边摸边吃奶| 美女cb高潮喷水在线观看| 亚洲久久久国产精品| 曰老女人黄片| 亚洲精华国产精华液的使用体验| .国产精品久久| 晚上一个人看的免费电影| 女性生殖器流出的白浆| 国产亚洲欧美精品永久| 久久精品国产亚洲网站| 夜夜看夜夜爽夜夜摸| 亚洲精品国产成人久久av| 热re99久久精品国产66热6| 插逼视频在线观看| 丰满乱子伦码专区| 成年av动漫网址| 午夜福利网站1000一区二区三区| 亚洲av电影在线观看一区二区三区| 国产在线一区二区三区精| 国产亚洲5aaaaa淫片| 嫩草影院入口| 成人午夜精彩视频在线观看| 妹子高潮喷水视频| 国产免费又黄又爽又色| av在线观看视频网站免费| 啦啦啦中文免费视频观看日本| 亚洲精品国产av蜜桃| av网站免费在线观看视频| 午夜免费鲁丝| 熟妇人妻不卡中文字幕| 国产精品一区二区性色av| 国国产精品蜜臀av免费| 成人二区视频| 国产黄片美女视频| 日韩中文字幕视频在线看片| 久久人人爽人人片av| 日韩熟女老妇一区二区性免费视频| 亚洲国产精品专区欧美| 亚洲欧美中文字幕日韩二区| 91精品一卡2卡3卡4卡| 一区二区av电影网| 99久国产av精品国产电影| 国产午夜精品一二区理论片| 国产极品粉嫩免费观看在线 | 极品人妻少妇av视频| 久久久久精品性色| 久久久久国产网址| 久久久国产一区二区| 在线观看人妻少妇| 久久久久久久久大av| 丝瓜视频免费看黄片| 看非洲黑人一级黄片| 另类精品久久| 亚洲精品,欧美精品| 国产中年淑女户外野战色| 男的添女的下面高潮视频| 男人和女人高潮做爰伦理| 国产熟女欧美一区二区| 春色校园在线视频观看| 你懂的网址亚洲精品在线观看| 99九九在线精品视频 | 人妻少妇偷人精品九色| 在线观看av片永久免费下载| 在线免费观看不下载黄p国产| 天堂中文最新版在线下载| 一本久久精品| 日本黄大片高清| 美女cb高潮喷水在线观看| 九九在线视频观看精品| 免费观看的影片在线观看| 99视频精品全部免费 在线| 久久韩国三级中文字幕| 久久久久久久久久人人人人人人| 亚洲综合精品二区| 国产熟女欧美一区二区| 亚洲av免费高清在线观看| 人体艺术视频欧美日本| 国产在视频线精品| 肉色欧美久久久久久久蜜桃| 高清欧美精品videossex| 精品国产一区二区三区久久久樱花| 大片免费播放器 马上看| 国产在线免费精品| 久久精品国产自在天天线| 国产精品久久久久久精品古装| 亚洲av中文av极速乱| 在线免费观看不下载黄p国产| 日韩一本色道免费dvd| 国产片特级美女逼逼视频| 天堂中文最新版在线下载| 欧美 亚洲 国产 日韩一| 熟女电影av网| 在线 av 中文字幕| 欧美精品一区二区大全| 99热6这里只有精品| 91午夜精品亚洲一区二区三区| av女优亚洲男人天堂| 午夜福利网站1000一区二区三区| 最近2019中文字幕mv第一页| 亚洲av中文av极速乱| 少妇熟女欧美另类| 国产精品偷伦视频观看了| 在线观看www视频免费| 黄片无遮挡物在线观看| 亚洲成人一二三区av| 少妇人妻一区二区三区视频| 亚洲人成网站在线播| 少妇丰满av| 在线亚洲精品国产二区图片欧美 | 久久人人爽av亚洲精品天堂| 99国产精品免费福利视频| 日本爱情动作片www.在线观看| 亚洲久久久国产精品| 久久青草综合色| 国产成人freesex在线| 色视频在线一区二区三区| 国产毛片在线视频| 免费观看无遮挡的男女| 人体艺术视频欧美日本| 精品一区二区三区视频在线| 婷婷色麻豆天堂久久| 99热6这里只有精品| 一区二区三区精品91| 韩国高清视频一区二区三区| 欧美bdsm另类| 久久人人爽av亚洲精品天堂| 在线精品无人区一区二区三| 美女福利国产在线| 久久人妻熟女aⅴ| 亚洲国产色片| 这个男人来自地球电影免费观看 | 亚洲,欧美,日韩| 国产黄片视频在线免费观看| 夫妻性生交免费视频一级片| 久久国内精品自在自线图片| 日韩一本色道免费dvd| a级毛色黄片| 午夜av观看不卡| 欧美成人精品欧美一级黄| 国产一区二区在线观看日韩| videos熟女内射| 久久久久久伊人网av| 成人美女网站在线观看视频| av一本久久久久| 亚洲欧美成人精品一区二区| 久久97久久精品| 国产高清不卡午夜福利| 亚洲精品国产av蜜桃| 亚洲欧美成人综合另类久久久| 涩涩av久久男人的天堂| 一级片'在线观看视频| 国产精品国产av在线观看| 久久人人爽av亚洲精品天堂| 国产黄片美女视频| 亚洲精品久久久久久婷婷小说| 麻豆精品久久久久久蜜桃| 黄片无遮挡物在线观看| av线在线观看网站| 精品午夜福利在线看| 久久久精品免费免费高清| 欧美性感艳星| 性高湖久久久久久久久免费观看| 一级毛片我不卡| 成人毛片60女人毛片免费| 亚洲熟女精品中文字幕| 欧美成人午夜免费资源| 国产男人的电影天堂91| 国产成人午夜福利电影在线观看| 精品久久国产蜜桃| 男女无遮挡免费网站观看| 日韩强制内射视频| 国产一区二区三区综合在线观看 | 综合色丁香网| 色网站视频免费| 国产片特级美女逼逼视频| 这个男人来自地球电影免费观看 | 色94色欧美一区二区| 我要看黄色一级片免费的| 精品人妻偷拍中文字幕| 国产成人精品婷婷| 国产又色又爽无遮挡免| 最近中文字幕高清免费大全6| 黑丝袜美女国产一区| 2021少妇久久久久久久久久久| 日韩av不卡免费在线播放| 亚洲av综合色区一区| 最新中文字幕久久久久| 国产高清三级在线| 中国国产av一级| 成人免费观看视频高清| 国产淫片久久久久久久久| 蜜臀久久99精品久久宅男| 久久久久久久国产电影| 欧美精品国产亚洲| 国产精品99久久久久久久久| 好男人视频免费观看在线| 纵有疾风起免费观看全集完整版| 色视频www国产| 国产伦精品一区二区三区视频9| 黄色欧美视频在线观看| 青青草视频在线视频观看| 老司机影院毛片| 欧美 亚洲 国产 日韩一| 一级,二级,三级黄色视频| 欧美成人精品欧美一级黄| 美女国产视频在线观看| 少妇被粗大的猛进出69影院 | 91aial.com中文字幕在线观看| 熟妇人妻不卡中文字幕| 亚洲内射少妇av| 一个人看视频在线观看www免费| 一级毛片我不卡| 日韩av不卡免费在线播放| 18禁动态无遮挡网站| 日韩中文字幕视频在线看片| 国产成人一区二区在线| 久久午夜福利片| 在线观看av片永久免费下载| 中文字幕免费在线视频6| 各种免费的搞黄视频| 亚洲精品一二三| 美女内射精品一级片tv| 日韩av在线免费看完整版不卡| 欧美 日韩 精品 国产| 亚洲精品色激情综合| 日日摸夜夜添夜夜添av毛片| 亚洲婷婷狠狠爱综合网| 日韩av不卡免费在线播放| 久久久久久久国产电影| 精品久久久久久久久av| 国产成人精品福利久久| 亚洲欧美中文字幕日韩二区| 看非洲黑人一级黄片| 男人添女人高潮全过程视频| 91在线精品国自产拍蜜月| 欧美三级亚洲精品| 超碰97精品在线观看| 97超视频在线观看视频| 久久久久久久久久成人| 2021少妇久久久久久久久久久| 在线观看免费日韩欧美大片 | 99精国产麻豆久久婷婷| 狂野欧美白嫩少妇大欣赏| 人人妻人人澡人人看| av专区在线播放| 久久国产亚洲av麻豆专区| 91久久精品电影网| 晚上一个人看的免费电影| 自拍欧美九色日韩亚洲蝌蚪91 | av不卡在线播放| 久久99精品国语久久久| 免费黄频网站在线观看国产| 男女国产视频网站| 亚洲av二区三区四区| 热99国产精品久久久久久7| 一区二区三区精品91| 在线观看人妻少妇| 国产亚洲午夜精品一区二区久久| 黄色一级大片看看| 人妻少妇偷人精品九色| 亚洲美女视频黄频| 国产又色又爽无遮挡免| 一区二区三区乱码不卡18| 男人舔奶头视频| 丝瓜视频免费看黄片| 国产亚洲午夜精品一区二区久久| 国产成人精品福利久久| 日韩免费高清中文字幕av| 汤姆久久久久久久影院中文字幕| 久久精品国产鲁丝片午夜精品| 一级毛片电影观看| 大陆偷拍与自拍| 丰满饥渴人妻一区二区三| 亚洲综合色惰| 伦精品一区二区三区| 国产精品嫩草影院av在线观看| 精品久久久久久久久亚洲| 国产色婷婷99| 亚洲,一卡二卡三卡| 国产成人精品无人区| 午夜精品国产一区二区电影| 黑人猛操日本美女一级片| 国产黄片美女视频| 少妇 在线观看| 国产成人免费观看mmmm| 午夜福利,免费看| 热99国产精品久久久久久7| 国产黄色免费在线视频| 中文字幕人妻熟人妻熟丝袜美| 国产精品女同一区二区软件| 免费观看在线日韩| 晚上一个人看的免费电影| 国产精品三级大全| 亚洲成人av在线免费| 三级国产精品片| 亚洲综合色惰| 99国产精品免费福利视频| 亚洲精品日本国产第一区| 日韩中字成人| 午夜免费男女啪啪视频观看| 亚洲欧美清纯卡通| 五月伊人婷婷丁香| 国产av一区二区精品久久| 性色avwww在线观看| 日本与韩国留学比较| 夜夜爽夜夜爽视频| 亚洲色图综合在线观看| 我的老师免费观看完整版| 欧美成人午夜免费资源| 亚洲av电影在线观看一区二区三区| 日本-黄色视频高清免费观看| 免费看日本二区| 多毛熟女@视频| 久久国产精品大桥未久av | 亚洲伊人久久精品综合| 欧美人与善性xxx| 亚洲精品日本国产第一区| 国产精品秋霞免费鲁丝片| 亚洲性久久影院| 欧美日韩av久久| 精品久久久久久电影网| 国产精品99久久久久久久久| 乱系列少妇在线播放| 精品国产一区二区久久| 麻豆成人av视频| 成年人午夜在线观看视频| 亚洲欧洲国产日韩| 欧美变态另类bdsm刘玥| 一区二区三区乱码不卡18| 成人黄色视频免费在线看| 80岁老熟妇乱子伦牲交| 91精品伊人久久大香线蕉| 天天躁夜夜躁狠狠久久av| 丝袜喷水一区| 久久韩国三级中文字幕| 国产极品天堂在线| 午夜影院在线不卡| 亚洲高清免费不卡视频| 欧美日韩视频精品一区| 少妇的逼水好多| av国产久精品久网站免费入址|