• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Electron emission induced by keV protons from tungsten surface at different temperatures

    2022-08-01 05:58:48LiXiaZeng曾利霞XianMingZhou周賢明RuiCheng程銳YuLiu柳鈺XiaoAnZhang張小安andZhongFengXu徐忠鋒
    Chinese Physics B 2022年7期
    關(guān)鍵詞:賢明

    Li-Xia Zeng(曾利霞), Xian-Ming Zhou(周賢明), Rui Cheng(程銳),Yu Liu(柳鈺), Xiao-An Zhang(張小安),, and Zhong-Feng Xu(徐忠鋒)2,,?

    1Ion Beam and Optical Physical Laboratory,Xianyang Normal University,Xianyang 712000,China

    2Institute of Science and Technology for Laser and Particle Beams,Xi’an Jiaotong University,Xi’an 710049,China

    3Institute of Modern Physics,Chinese Academy of Science,Lanzhou 730000,China

    Keywords: electron emission,x-ray,electronic stopping power,work function

    1. Introduction

    The interactions of charged ions and strong radiation with solid targets have been widely concerned in recent years. The underlying physical processes are very important for not only basic physics, but also technical applications, such as material surface modification, x-ray source equipment, radiation physics, plasma–wall interactions, and material surface analysis as well.[1–8]When a charged ion impacts solid target, it will deposit most of its potential energy into several atomic layers through the process of neutralization and de-excitation within femtoseconds.[3]At the same time, through inelastic collisions,the kinetic energy of the ion can be transferred into valence electrons or inner-shell electrons,resulting in the shell ionization. In this collision process,electrons and x-rays will be emitted with the ionization of incident ions and the decay of vacancies in the inner shell.[9,10]Therefore,electron emission and x-rays provide reliable information for studying particle properties and mechanism of ion–atom collision process.

    The electron emission process is usually described by the average number of electrons emitted each incident ion,that is,the electron emission yieldγ. As is well known, the electron emission yield is related to the charge state,velocity,incident energy,atomic number and incident angle of incident ions,and so on.[4–8]We have also studied the influence of state of charge of incident ion, recoil atoms, and target temperature on the electron emission yieldγ.[11–13]Electron emission caused by highly charged ions(HCIs)is usually divided into two different mechanisms, one is the potential emission (PE) process and the other is the kinetic emission (KE) process.[14,15]It is generally believed that electron emission is closely related to the deposition of electron excitation near the target surface.The kinetic electron emission (KEE) yield is believed to be related to the electronic stopping power of slow light ions.Energy deposition depends on the velocity and charge state of incident ions. The proportion of energy,which is used to generate electron emission,varies with the incident energy.

    The characteristic x-rays, which are produced by ionsolid interactions,mainly come from the de-excitation of hollow atoms in the low-energy region, and the attenuation of vacancy in the inner shell, caused by direct ionization during the bombardment of high-energy projectiles. The xrays have been extensively investigated experimentally, and many theories have been proposed to successfully describe this process. Common theories include the classical barriercrossing model for the evolution of incident ions around the surface, the binary encounter approximation (BEA), the plane-wave Born shell approximation of electron ionization(PWBA)and the energy-loss Coulomb-repulsive perturbation steady-state relativity(ECPSSR)for the ionization of the shell electrons.[16–18]A lot of researches have been done to study electron emission[1–3,11–13]and x-rays.[4,19]However, there are few studies on these two phenomena at the same time.[20]We have not found the researches about the electron emission from tungsten surface at different temperatures. Here in this work, we will explore the correlation between the two phenomena. Our recent experimental results on the kinetic electron and x-ray emission induced by keV protons from tungsten surface at different temperatures will be shown.

    In this paper, we present the experimental results about the electron emission yield from tungsten surface bombarded by protons in an energy range of 50 keV–250 keV at different target temperatures. The mechanism of electron emission is investigated and verified experimentally and theoretically.Our experimental results will be helpful in studying the electron and x-ray emission of tungsten, which has been selected and used as the first wall material of the International Thermonuclear Experimental Reactor(ITER).

    2. Experimental setup

    The experiment was carried out on the 320-kV electron cyclotron resonance ion source (ECRIS) platform of the Institute of Modern Physics, Chinese Academy of Sciences(IMP,CAS)in Lanzhou.[21]Many experiments on the study of highly charged ions incident on solid surfaces have been carried out on this platform.[11–13,20–22]Our experimental method can be seen elsewhere.[11–13]In the experiment, our experimental device was in an ultrahigh vacuum(UHV)target chamber(10-9mbar–10-10mbar,1 bar=105Pa). Figure 1 shows the experimental setup for electron emission yield measurement. It mainly consisted of four parts,namely,beam collimator,rejection aperture with a diameter of 3 mm,ultrahigh vacuum heater and cage.The beam collimator was used to prevent incident ions from hitting the rejection aperture directly and was 3 mm in diameter. A rejection electrode with a potential of-100 V was located in front of the cage. In this way,electrons were prevented from escaping and the electron collection efficiency was improved. The cage surrounded the target,and a voltage of±100 V was applied to the cage, for collecting or suppressing the electrons emitted from the target. The cage had 5 mm in aperture diameter serving as an ion beam entrance and collimated the incident ion beam before it reached the target surface.We collimated the beam by monitoring the current on the cage and the target. When the current on the cage was zero and the target current reached a maximum value, it was the best position. The sample in this experiment was solid polycrystalline tungsten with a purity of 99.99%. The sample was first mechanically polished, then washed in acetone and ethanol, and finally cleaned by heating in UHV.We used the UHV heater, which was produced by Heat Wave Labs, to control the target temperature. An insulating sheet was placed between the target and the heater. The incident protons were generated and extracted from a 14.5-GHz electron cyclotron resonance(ECR)ion source. As a result of being focused and collimated, the diameter of these incident proton beams was 3 mm. The current on the target was measured by Keithley 6485 picoammeter and integrated,with a time integration constant being about 25 s.

    Fig. 1. Schematic diagram of experimental setup used for measuring total electron yield.

    The total electron emission yieldγis given as[11–13]

    whereqis the state of charge of the incident ion,I+andI-are the target currents for±100 V of voltages applied to the cage.

    The emitted x-rays were measured by a silicon drift detector (SDD), and its effective detection area was 7 mm2. A window of 12.5-μm beryllium was placed directly in front of the detector.The distance between the SDD and the target surface was 80 mm,which was 135°with respect to the direction of incident ion beam. When the gain was set to be 100, the effective energy range of this detector was 0.5 keV–14.3 keV.The energy resolution of 5.9 keV was approximately 136 eV,when the peak time was 9.6 s. We used standard radioactive sources55Fe and241Am to calibrate and determined the efficiency through transmission measurement.

    3. Results and discussion

    It can be found from Fig. 2 that the incident ion beam current is very stable and almost constant in the experiment.The electrons escaping from the target surface are suppressed by applying a-100-V voltage to the cage, and they are collected under the opposite voltage. Our previous study shows that the total electron emission yield is independent of ion current,[13,21]so we do not repeat the measurements here.

    Fig. 2. Typical time-dependent currents recorded for electron emission induced by 200-keV protons at target temperature of about 286 °C,with Ibeam denoting current of incident beam.

    Total electron yields from tungsten surface induced by protons as a function of incident energy at different target temperatures are shown in Fig. 3. The error bars shown in the figure are statistical errors. Our experimental results of the total electron emission yield (γ) are consistent with the results ofγfor Ewing’s polycrystalline target within the error range.[20,23]The total electron yields have similar dependence on the proton energy at different target temperatures. It can be found from Fig.4 that the experimental curves have a similar change trend with the stopping power, calculated using SRIM.[24]Specifically,they start to increase from the low energy end, reach their maximum values at about 100 keV, and finally decrease with kinetic energy increasing.

    Fig.3. Electron yields from tungsten surface induced by protons as a function of incident energy at different target temperatures.

    Fig.4. Electronic stopping power Se and total stopping power St as a function of projectile energy for 50 keV–250 keV protons impacting solid tungsten target,calculated by SRIM.

    Because of their kinetic and potential energy and high ionization state, highly charged ions become effective carriers of energy. As mentioned earlier, electron emission processes caused by highly charged ions are usually divided into two types,namely the potential emission(PE)process and the kinetic emission(KE)process.[14,15]Therefore,the total electron emission yieldγcan be divided into the kinetic electron yieldγKEand the potential electron yieldγPE.For the potential emission process,the potential energy carried by the incident ion needs to be greater than twice the work functionWφof the solid target surface.

    Here,the first ionization energyEpotfor proton is 13.6 eV,more than twice the work functionWφfor the polycrystalline tungsten, which is 4.55 eV.[25]The maximum possible number of electrons caused by potential energy deposition can be given by[26]

    Here,nmaxis approximately equal to 1.51, which is nearly equal to the total yield at 50-keV incident energy,and is greater than the total yield at 250-keV incident energy when the target temperature is 491 K.However, this maximum cannot be achieved,and only a small part of the potential energy is used for potential electron emission, because part of the electrons excited by the potential energy cannot escape from the target surface.[26,27]In fact, owing to the incomplete neutralization of incident ions, the potential energy cannot be fully used to excite electrons. The classicalγPEis given by[27]

    Here,EFis the Fermi energy of the solid target. Using Eq.(3),we can estimate thatγPEis approximately equal to 0.08 in our experiment.It is only a very small part of the total yield,which is negligible compared withγKE.Therefore,the electron emission yieldγin our experiment results mainly from the KE process,that is to say,the total electron yield can be given as

    Kinetic energy electrons are caused mainly by directly ionizing the valence electrons and inner shell electrons,and the secondary ionization of outer shell electrons due to Auger transition.Direct ionization is directly related to the ionization cross sections of electrons in different shells. The factors that can affect the secondary ionization are inner shell ionization, the probability of Auger transition and the secondary ionization cross section. Obviously, this is smaller than the ionization cross section of the inner shell electrons. The studies have shown that inner shell ionization plays a negligible role in the KE process of low-energy light ion incidence.[18]This means that the contribution of the inner shell excitation and the Auger decay of the subsequence can be ignored. From this we can know that the escape of excited valence electrons is the main factor in our measured kinetic electron yield. AndγKEis often calculated from

    whereSeis the electronic stopping power,Ψis the incident angle of the incident ion,andBcan be regarded as a constant,which decreases slightly as the kinetic energy and atomic number of the incident ion increase.[28,29]In our measurement,the ion beam is incident perpendicular to the target surface,therefore,sin(Ψ)=1,so

    Figure 5 shows the ratio of total electron emission yieldγto electronic stopping powerSeas a function of the incident energy. Hereγis the experimental value we measured, andSeis calculated using SRIM as shown in Fig.4. We can find from Fig.5 that the ratio is not a fixed value, it will decrease slightly as the proton energy increases. Here,we will explain the down trend ofB. The ratio ofγ/Seis the coefficientB,which can be understood as the kinetic electron yield caused by the unit electronic stopping power. In the process of interaction between incident ions and target atoms, the kinetic energy of incident ions can be transferred to valence electrons and excite them,resulting in electron emission. Or the kinetic energy of the incident ions can be transferred to the inner-shell electrons,causing them to ionize and leave holes. The x-rays are generated along with the de-excitation of the holes. Here,there may be a competitive relationship in energy transfer between the inner shell electrons and the outer shell electrons.

    Fig.5. ratio of kinetic electron yield γ to electronic stopping power Se as a function of incident energy.

    Fig.6. Normalized tungsten x-ray spectra induced by protons impacting W target.

    In order to verify the above hypothesis about the dependence of the coefficientBon the energy of protons, we measure the x-rays emitted by protons incident on W target. Figure 6 shows the typical x-ray spectra from 125-keV–250-keV protons impacting W surface (the relative intensity at the energy of 50 keV–100 keV is too small to display). We normalize the x-ray spectra by the total number of incident ions.We observe different spectral lines with the energy of about 1.775 keV and identify them with the M shell x-rays of tungsten.

    The number of x-rays caused by each incident ion is defined as the x-ray yieldY. It can be calculated based on the x-ray counts obtained from the experiment.[4]The x-ray yieldYis expressed as

    whereNXis the x-ray count and obtained from the spectrum by using Gaussian fitting,Npis the total number of incident ions,ηis the detection efficiency of the silicon drift detector,andΩis the solid angle of the SDD,which is 1.1 msr in our work.

    Our targets can be regarded as thick targets. We can use the thick target equation to calculate the x-ray production cross section through using the measured x-ray yield and the energy loss of protons,[30]

    Here,nis the target atomic density, dE/dR(in units keV/cm)is the energy loss simulated by SRIM,[24]μis the absorption coefficient of the measured characteristic x-ray,θis the incident angle, which refers to the angle between the incident ion direction and the normal direction of the target surface,φis the observation angle with respect to the normal direction of the target surface,Y(E) is the x-ray yield per incident ion with the kinetic energy ofE, dY/dEmeans the slope of the measuredY(E)versus E, evaluated at the incident energy ofE.

    The M x-ray emission is closely related to the ionization cross sectionσMof the M shell. This ionization cross section can be obtained from the theoretical calculation of BEA and ECPSSR, and it can also be deduced from the experimental results of x-ray production cross sectionσX,[30]

    Hereωis the fluorescence yield. It can be seen from Fig. 7 that the BEA theory underestimates our experimental data at the incident energy higher than 100 keV and overestimates the experimental data at the incident energy of 50 keV. It is also found that ECPSSR, which is considered to be the best theory for simulating the inner-shell ionization of light ions,is in good agreement with the experimental results within the error range. Therefore, it is suitable to use the ECPSSR theory to describe the ionization of M shell. In our results,σMis about 101~4barn (1 barn=10-24cm2), which increases with incident proton energy increasing.

    In order to further verify the ionization competition of electrons in different shells,we also explore the distribution of energy loss of incident protons between the ionization of inner electrons and the ionization of valence electrons. As mentioned earlier, the kinetic electron emission is caused mainly by the excitation of valence electrons. This process can be described as direct collisions between the light ions and the valence electrons of the target. For tungsten target,4f,5d,and 6s are the three outermost shells,which contribute to the electron emission. We use the BEA model theory to calculate the three values of shell ionization cross sectionσias shown in Fig. 8. The results show thatσidecreases to about 109barn with incident energy increasing.

    From Figs.7 and 8,it can be found that the ratios of ionization cross section(σMandσi)to electronic stopping powerSepresent inverse trend as a function of the proton energy.This is essentially an indirect reflection of the observations of x-ray and electron emission. It directly proves the hypothesis that there is a competition of the ionization of electrons among different shells of the target, caused by the motion of the incident ions. For a given collision, if the kinetic energy of the incident ion contributes to the ionization of the inner shell electrons,it will not lead the outer shell electrons to excite, and vice versa. In addition,σMis about 4–8 orders of magnitude smaller thanσi. This also verifies that the electron emission caused by the inner-shell ionization can be ignored in our case, and the emitted electrons come mainly from the excited valence electrons.

    Fig.7. Ratio of ionization cross section of tungsten inner electrons to electron stopping energy power Se as a function of proton energy.

    Fig. 8. Ratio of ionization cross section of tungsten valence electrons to electron stopping power Se as a function of proton energy.

    4. Conclusions

    Electron emission yield from tungsten surface, induced by 50-keV–250-keV protons, has been measured at different target temperatures. We find that as the incident energy increases, the ratio of the total electron emission yield to the electronic stopping decreases. The escape of excited valence electrons is the main source of the measured kinetic electron yield. The contribution of inner shell ionization to secondary electron emission is negligible, because ionization cross section of the inn shell is about 4–8 orders of magnitude smaller than that of valence electrons. There is a competition of ionization between outer shell electrons and inner shell electrons.This leads the experimental results of electron x-ray emission to present opposite trends as a function of incident energy.Our results will provide very useful data for the study of electron emission,x-ray emission,and surface analysis of tungsten.

    Acknowledgements

    We are indebted to the staff of the 320-kV ECR platform and Plasma Physics at IMP for their technical support.

    Project supported by the National Natural Science Foundation of China (Grant Nos. 11605147, 11375138,and 11505248), the Natural Science Basic Research Plan in Shaanxi Province, China (Grant Nos. 2019JQ-493 and 2021JQ-812), the Scientific Research Program Funded by Shaanxi Provincial Education Department,Shaanxi Province,China (Grant Nos. 20JK0975 and 16JK1824), the Shaanxi University Young Outstanding Talents Support Program,the Xianyang Normal University Young and Middle-aged Top-notch Talents Project, Shaanxi Province, China (Grant No.XSYBJ202004),and the Academic Leader Project of Xianyang Normal University, Shaanxi Province, China (Grant No.XSYXSDT202109).

    猜你喜歡
    賢明
    誰的方法好
    不知道有多少水
    尚賢明:粵北山區(qū)的“海事初心”
    珠江水運(2020年24期)2021-01-19 13:09:54
    升值二手貨
    升值二手貨
    孫叔敖識寶
    升值二手貨
    特別文摘(2017年8期)2017-04-19 15:39:18
    「慢」生意
    愛你(2017年10期)2017-04-14 11:21:47
    升值二手貨
    莫愁(2017年4期)2017-02-15 07:03:31
    升值二手貨
    netflix在线观看网站| 国产欧美日韩精品亚洲av| 午夜福利在线观看免费完整高清在 | 免费搜索国产男女视频| 亚洲精品国产精品久久久不卡| 国产精品久久久久久精品电影| 网址你懂的国产日韩在线| 国产伦在线观看视频一区| 最新美女视频免费是黄的| 亚洲av不卡在线观看| 国产97色在线日韩免费| 色视频www国产| 一级作爱视频免费观看| 精品熟女少妇八av免费久了| 国产淫片久久久久久久久 | 久久99热这里只有精品18| 色在线成人网| 国产精品久久久久久亚洲av鲁大| 天天添夜夜摸| 国产精品女同一区二区软件 | 亚洲精品日韩av片在线观看 | av视频在线观看入口| 99久久无色码亚洲精品果冻| 一本久久中文字幕| 女警被强在线播放| 美女高潮的动态| 亚洲精品乱码久久久v下载方式 | 日本精品一区二区三区蜜桃| 九九热线精品视视频播放| 51午夜福利影视在线观看| 欧美成人a在线观看| 国产精品美女特级片免费视频播放器| 精品日产1卡2卡| 99热精品在线国产| 国产精品国产高清国产av| 亚洲国产精品999在线| 欧美性猛交╳xxx乱大交人| 黄色片一级片一级黄色片| 亚洲欧美日韩高清在线视频| 欧美日韩黄片免| 精品乱码久久久久久99久播| 麻豆国产av国片精品| 国产成人a区在线观看| 熟女电影av网| 女生性感内裤真人,穿戴方法视频| 久久久久九九精品影院| 免费人成在线观看视频色| 亚洲中文字幕一区二区三区有码在线看| 午夜免费观看网址| 麻豆国产av国片精品| 怎么达到女性高潮| 一区二区三区高清视频在线| 久久精品综合一区二区三区| 又爽又黄无遮挡网站| 91在线观看av| 3wmmmm亚洲av在线观看| 日韩高清综合在线| a级一级毛片免费在线观看| 老熟妇仑乱视频hdxx| 十八禁网站免费在线| 久久九九热精品免费| 亚洲在线自拍视频| 国产三级中文精品| 偷拍熟女少妇极品色| 国产97色在线日韩免费| 少妇高潮的动态图| 88av欧美| 成人性生交大片免费视频hd| 搡老熟女国产l中国老女人| 午夜免费成人在线视频| 观看美女的网站| 蜜桃亚洲精品一区二区三区| 黄色成人免费大全| 免费高清视频大片| 两人在一起打扑克的视频| 可以在线观看毛片的网站| 在线天堂最新版资源| 一进一出好大好爽视频| 久久性视频一级片| 日韩大尺度精品在线看网址| 午夜免费成人在线视频| а√天堂www在线а√下载| 蜜桃亚洲精品一区二区三区| 久久国产精品影院| 国产私拍福利视频在线观看| 久久久久九九精品影院| 国产色婷婷99| 国产三级在线视频| 我要搜黄色片| 老司机福利观看| 成人国产综合亚洲| 在线免费观看的www视频| 久久性视频一级片| 国产亚洲精品av在线| 亚洲精品一区av在线观看| 叶爱在线成人免费视频播放| 日本三级黄在线观看| 久久香蕉精品热| 亚洲av成人av| 国产69精品久久久久777片| 欧美乱色亚洲激情| av国产免费在线观看| 久久久久久久精品吃奶| 法律面前人人平等表现在哪些方面| 精品不卡国产一区二区三区| АⅤ资源中文在线天堂| 久99久视频精品免费| 国产激情偷乱视频一区二区| 久久久久亚洲av毛片大全| 叶爱在线成人免费视频播放| 国产高清videossex| 在线观看免费视频日本深夜| 久久久久久国产a免费观看| 97超级碰碰碰精品色视频在线观看| 国产精品亚洲美女久久久| 亚洲成人中文字幕在线播放| 欧美成人一区二区免费高清观看| 久久人妻av系列| av在线蜜桃| 国产一区二区激情短视频| 99热6这里只有精品| 熟妇人妻久久中文字幕3abv| 中文字幕人成人乱码亚洲影| 性色avwww在线观看| 淫妇啪啪啪对白视频| 国内少妇人妻偷人精品xxx网站| 久久久久久大精品| 亚洲男人的天堂狠狠| 国产精品1区2区在线观看.| 国产私拍福利视频在线观看| 在线看三级毛片| 欧美日韩瑟瑟在线播放| 国产国拍精品亚洲av在线观看 | 日韩中文字幕欧美一区二区| 亚洲精品粉嫩美女一区| 欧美极品一区二区三区四区| 国产精品1区2区在线观看.| 五月玫瑰六月丁香| 两人在一起打扑克的视频| 婷婷亚洲欧美| 精品乱码久久久久久99久播| 亚洲人与动物交配视频| 亚洲色图av天堂| 97超视频在线观看视频| 成年免费大片在线观看| 欧美激情久久久久久爽电影| 久久久久久久久大av| 麻豆成人午夜福利视频| 成人国产综合亚洲| 久久久久久国产a免费观看| 舔av片在线| 俺也久久电影网| 精品午夜福利视频在线观看一区| 看片在线看免费视频| 99视频精品全部免费 在线| 色噜噜av男人的天堂激情| 黄色视频,在线免费观看| 好男人在线观看高清免费视频| 午夜激情福利司机影院| 夜夜躁狠狠躁天天躁| 国产精品一区二区三区四区免费观看 | 一进一出抽搐gif免费好疼| 一进一出好大好爽视频| 亚洲av熟女| 最新在线观看一区二区三区| 波多野结衣巨乳人妻| 日韩欧美 国产精品| 18禁国产床啪视频网站| 亚洲精华国产精华精| 精品99又大又爽又粗少妇毛片 | 精品一区二区三区视频在线 | 亚洲人成网站在线播| 免费观看精品视频网站| 色老头精品视频在线观看| 日韩欧美 国产精品| 91麻豆精品激情在线观看国产| 欧美在线一区亚洲| 别揉我奶头~嗯~啊~动态视频| 真实男女啪啪啪动态图| 老熟妇乱子伦视频在线观看| 国产午夜精品久久久久久一区二区三区 | 亚洲av二区三区四区| 亚洲精品成人久久久久久| 性色av乱码一区二区三区2| 观看免费一级毛片| 九九在线视频观看精品| 男人舔女人下体高潮全视频| 久久中文看片网| а√天堂www在线а√下载| 很黄的视频免费| 天堂影院成人在线观看| 免费av不卡在线播放| 美女大奶头视频| 国产一区二区激情短视频| 男插女下体视频免费在线播放| 亚洲精品乱码久久久v下载方式 | 日韩欧美免费精品| aaaaa片日本免费| 中文字幕久久专区| 99视频精品全部免费 在线| 欧美在线黄色| 天美传媒精品一区二区| 免费在线观看成人毛片| 91在线观看av| 国内揄拍国产精品人妻在线| 美女高潮的动态| 成人特级黄色片久久久久久久| 国产精品女同一区二区软件 | 蜜桃久久精品国产亚洲av| 亚洲成人久久性| 男女之事视频高清在线观看| 午夜视频国产福利| 美女黄网站色视频| 99久久综合精品五月天人人| 精品人妻偷拍中文字幕| 久久亚洲真实| 欧美乱码精品一区二区三区| 中文字幕人妻丝袜一区二区| 国产精品久久久久久久久免 | 人人妻人人澡欧美一区二区| 99精品久久久久人妻精品| 岛国在线观看网站| 舔av片在线| 久久人妻av系列| 精品久久久久久,| 国产亚洲av嫩草精品影院| 国产探花极品一区二区| 九九热线精品视视频播放| 高清在线国产一区| 美女免费视频网站| 18禁黄网站禁片午夜丰满| 欧美最新免费一区二区三区 | 99久久无色码亚洲精品果冻| 特级一级黄色大片| 亚洲av日韩精品久久久久久密| 国产精品永久免费网站| 亚洲欧美日韩无卡精品| 精品无人区乱码1区二区| 亚洲成人免费电影在线观看| 国产精品久久久久久人妻精品电影| 国产欧美日韩精品一区二区| 久久中文看片网| 老司机午夜福利在线观看视频| 久久久久久人人人人人| 成年人黄色毛片网站| 亚洲va日本ⅴa欧美va伊人久久| 亚洲熟妇中文字幕五十中出| 一本精品99久久精品77| 色噜噜av男人的天堂激情| 无人区码免费观看不卡| 精品一区二区三区人妻视频| 久久久久国内视频| 白带黄色成豆腐渣| 18禁美女被吸乳视频| 日日夜夜操网爽| 精品国产三级普通话版| 99久国产av精品| 国产精品综合久久久久久久免费| 亚洲成av人片免费观看| 熟女电影av网| 精品久久久久久久末码| 香蕉久久夜色| 淫秽高清视频在线观看| 精品国内亚洲2022精品成人| 黄片小视频在线播放| 精品日产1卡2卡| 日韩精品青青久久久久久| 日本一二三区视频观看| 免费av不卡在线播放| 超碰av人人做人人爽久久 | 午夜免费观看网址| 欧美成人免费av一区二区三区| 亚洲 国产 在线| 一本久久中文字幕| 在线观看免费视频日本深夜| 色精品久久人妻99蜜桃| 国产毛片a区久久久久| 国产三级黄色录像| 日日夜夜操网爽| 宅男免费午夜| 亚洲天堂国产精品一区在线| 国产精品久久久人人做人人爽| 精品日产1卡2卡| 日韩人妻高清精品专区| 午夜精品久久久久久毛片777| 一个人看的www免费观看视频| 99国产综合亚洲精品| 窝窝影院91人妻| 国产精品久久久久久精品电影| 久久草成人影院| 欧美+亚洲+日韩+国产| 久久久色成人| 国产极品精品免费视频能看的| 色播亚洲综合网| 一级毛片高清免费大全| 天堂动漫精品| 亚洲欧美日韩高清在线视频| 欧美黑人欧美精品刺激| 亚洲av成人精品一区久久| 国产蜜桃级精品一区二区三区| 女人被狂操c到高潮| 日韩精品青青久久久久久| 精品欧美国产一区二区三| av福利片在线观看| 男女视频在线观看网站免费| 激情在线观看视频在线高清| 国产高清有码在线观看视频| 久久精品国产亚洲av涩爱 | 国产97色在线日韩免费| 人人妻人人澡欧美一区二区| 亚洲成a人片在线一区二区| 99久久久亚洲精品蜜臀av| 亚洲精品久久国产高清桃花| 在线观看66精品国产| а√天堂www在线а√下载| 中文资源天堂在线| 天天添夜夜摸| 韩国av一区二区三区四区| 久久久久久国产a免费观看| 亚洲欧美日韩高清在线视频| 长腿黑丝高跟| 一级毛片女人18水好多| 久久精品影院6| 国产色爽女视频免费观看| 国产高清激情床上av| 老司机午夜福利在线观看视频| 国产男靠女视频免费网站| 亚洲人与动物交配视频| 欧美+亚洲+日韩+国产| 别揉我奶头~嗯~啊~动态视频| 午夜福利在线观看免费完整高清在 | 最近在线观看免费完整版| 女同久久另类99精品国产91| 91久久精品国产一区二区成人 | 亚洲狠狠婷婷综合久久图片| 麻豆一二三区av精品| 十八禁网站免费在线| 国产在线精品亚洲第一网站| 男女床上黄色一级片免费看| 国产综合懂色| 久久久久久久久久黄片| 日本一本二区三区精品| 日本 av在线| 成人性生交大片免费视频hd| 亚洲欧美日韩东京热| 九九久久精品国产亚洲av麻豆| 俺也久久电影网| 午夜视频国产福利| 少妇的逼好多水| 国产成人av激情在线播放| 97超视频在线观看视频| 国产色婷婷99| 国产亚洲欧美在线一区二区| 波多野结衣巨乳人妻| 成年女人永久免费观看视频| 午夜免费男女啪啪视频观看 | 国产毛片a区久久久久| 亚洲欧美一区二区三区黑人| 成人高潮视频无遮挡免费网站| 欧美日韩乱码在线| 国产精品国产高清国产av| 两个人视频免费观看高清| 国产精品乱码一区二三区的特点| 丝袜美腿在线中文| 麻豆成人av在线观看| 嫩草影院入口| 国产亚洲精品久久久久久毛片| www.www免费av| 熟女电影av网| 麻豆国产av国片精品| 1000部很黄的大片| 美女 人体艺术 gogo| 波多野结衣高清无吗| 非洲黑人性xxxx精品又粗又长| 久久精品人妻少妇| 色视频www国产| 无遮挡黄片免费观看| 色视频www国产| 日韩成人在线观看一区二区三区| 成熟少妇高潮喷水视频| 国产免费av片在线观看野外av| 欧洲精品卡2卡3卡4卡5卡区| 国产91精品成人一区二区三区| 最近最新中文字幕大全电影3| 丰满人妻一区二区三区视频av | 男女做爰动态图高潮gif福利片| 国产久久久一区二区三区| 99久久精品热视频| 99热这里只有是精品50| 国产一区二区亚洲精品在线观看| netflix在线观看网站| 免费看美女性在线毛片视频| 国内精品一区二区在线观看| 中亚洲国语对白在线视频| 久久国产精品影院| 精品欧美国产一区二区三| 一区二区三区高清视频在线| 老司机午夜十八禁免费视频| 精华霜和精华液先用哪个| 亚洲男人的天堂狠狠| 国产精品久久久人人做人人爽| 亚洲天堂国产精品一区在线| 99在线人妻在线中文字幕| 欧美最黄视频在线播放免费| 90打野战视频偷拍视频| 国产伦在线观看视频一区| 亚洲欧美一区二区三区黑人| 三级男女做爰猛烈吃奶摸视频| 在线观看午夜福利视频| 老汉色∧v一级毛片| 亚洲av免费高清在线观看| 国产精品综合久久久久久久免费| 国产视频内射| 久久精品国产自在天天线| 内地一区二区视频在线| 精品乱码久久久久久99久播| 成人欧美大片| 黄色视频,在线免费观看| 日本熟妇午夜| 精品久久久久久久末码| 人妻夜夜爽99麻豆av| 51国产日韩欧美| 午夜影院日韩av| 人妻久久中文字幕网| 国产免费av片在线观看野外av| 国产色爽女视频免费观看| 99在线人妻在线中文字幕| 午夜免费男女啪啪视频观看 | 亚洲中文字幕日韩| 一进一出抽搐动态| 国产午夜精品久久久久久一区二区三区 | 国内毛片毛片毛片毛片毛片| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 久久久国产精品麻豆| 国产伦一二天堂av在线观看| 免费在线观看成人毛片| 我的老师免费观看完整版| 国产成人影院久久av| 久久久久国产精品人妻aⅴ院| 嫩草影院精品99| 啦啦啦观看免费观看视频高清| 亚洲激情在线av| 欧美另类亚洲清纯唯美| av中文乱码字幕在线| 国产欧美日韩一区二区精品| 午夜两性在线视频| 欧美成人a在线观看| 在线十欧美十亚洲十日本专区| 一个人免费在线观看的高清视频| 中文字幕人妻熟人妻熟丝袜美 | 久久精品国产99精品国产亚洲性色| 久久久久久人人人人人| 1024手机看黄色片| 精品国产超薄肉色丝袜足j| 最后的刺客免费高清国语| 黄色日韩在线| 99国产精品一区二区蜜桃av| 亚洲一区二区三区不卡视频| 国产黄a三级三级三级人| 高潮久久久久久久久久久不卡| 日韩欧美三级三区| 国产aⅴ精品一区二区三区波| 国产精品av视频在线免费观看| 亚洲av电影不卡..在线观看| 3wmmmm亚洲av在线观看| 久久草成人影院| 亚洲国产精品999在线| 狂野欧美激情性xxxx| 日本 av在线| 午夜精品一区二区三区免费看| 国产一区二区三区在线臀色熟女| 又黄又爽又免费观看的视频| 毛片女人毛片| 人人妻人人澡欧美一区二区| 在线播放国产精品三级| 九色成人免费人妻av| 中文资源天堂在线| 欧美成人一区二区免费高清观看| 日韩人妻高清精品专区| 亚洲av电影不卡..在线观看| 国产高清视频在线观看网站| 国产伦在线观看视频一区| 中亚洲国语对白在线视频| 99久久久亚洲精品蜜臀av| 欧美3d第一页| 免费av毛片视频| 成人欧美大片| 日本a在线网址| 在线观看免费视频日本深夜| 可以在线观看的亚洲视频| 亚洲美女黄片视频| 精品久久久久久久久久久久久| 亚洲精品粉嫩美女一区| 免费看光身美女| 男插女下体视频免费在线播放| 国产三级中文精品| 校园春色视频在线观看| 99精品欧美一区二区三区四区| 在线国产一区二区在线| 69av精品久久久久久| 身体一侧抽搐| 97超级碰碰碰精品色视频在线观看| 国产精品av视频在线免费观看| 日日夜夜操网爽| 国产高清有码在线观看视频| 久久精品91蜜桃| 中文字幕精品亚洲无线码一区| av欧美777| 国产色婷婷99| 国产伦人伦偷精品视频| 老司机在亚洲福利影院| 亚洲国产精品成人综合色| 国产伦在线观看视频一区| 国产精品爽爽va在线观看网站| 成人精品一区二区免费| 国产精品三级大全| 成人一区二区视频在线观看| 天堂√8在线中文| 人妻丰满熟妇av一区二区三区| 男女床上黄色一级片免费看| 日韩大尺度精品在线看网址| 变态另类丝袜制服| 午夜日韩欧美国产| 国产精品精品国产色婷婷| 国产精品亚洲美女久久久| 欧美成人性av电影在线观看| 欧美激情久久久久久爽电影| 夜夜爽天天搞| 黄色成人免费大全| 18禁裸乳无遮挡免费网站照片| 夜夜看夜夜爽夜夜摸| 成年人黄色毛片网站| 成人av一区二区三区在线看| 欧美日韩一级在线毛片| 国产乱人视频| 国产成人aa在线观看| av中文乱码字幕在线| 国产成人欧美在线观看| 美女大奶头视频| 蜜桃久久精品国产亚洲av| 亚洲激情在线av| 免费在线观看日本一区| 一夜夜www| 精品一区二区三区人妻视频| 99久久综合精品五月天人人| 哪里可以看免费的av片| 757午夜福利合集在线观看| 麻豆国产av国片精品| 欧美bdsm另类| 日日夜夜操网爽| 日韩av在线大香蕉| 中文字幕av成人在线电影| 日本三级黄在线观看| 噜噜噜噜噜久久久久久91| 久久香蕉精品热| 欧美3d第一页| 亚洲精品美女久久久久99蜜臀| 国产精品乱码一区二三区的特点| 久9热在线精品视频| 最新中文字幕久久久久| 少妇的逼水好多| 18禁裸乳无遮挡免费网站照片| 村上凉子中文字幕在线| 淫妇啪啪啪对白视频| 亚洲av熟女| 大型黄色视频在线免费观看| 99久久成人亚洲精品观看| 偷拍熟女少妇极品色| 国产极品精品免费视频能看的| 91麻豆av在线| 九色成人免费人妻av| 国产精品99久久99久久久不卡| aaaaa片日本免费| 深夜精品福利| 成人高潮视频无遮挡免费网站| 久99久视频精品免费| 日韩欧美一区二区三区在线观看| 欧美日本视频| 免费观看的影片在线观看| 国产真实伦视频高清在线观看 | 国产精品永久免费网站| 欧美一区二区亚洲| 免费在线观看影片大全网站| 欧洲精品卡2卡3卡4卡5卡区| 舔av片在线| 国内精品美女久久久久久| 人妻久久中文字幕网| 90打野战视频偷拍视频| 亚洲电影在线观看av| 成人亚洲精品av一区二区| 亚洲av电影在线进入| 在线天堂最新版资源| 精品午夜福利视频在线观看一区| 欧美一区二区国产精品久久精品| 国产老妇女一区| 国产精品久久久久久久久免 | 母亲3免费完整高清在线观看| 婷婷精品国产亚洲av在线| 夜夜躁狠狠躁天天躁| 天天躁日日操中文字幕| 国产野战对白在线观看| 成人一区二区视频在线观看| 一边摸一边抽搐一进一小说| 国产真实伦视频高清在线观看 | 久久久久久久亚洲中文字幕 | 日本在线视频免费播放| 日韩欧美免费精品| 日韩免费av在线播放| 观看免费一级毛片| 亚洲aⅴ乱码一区二区在线播放| 久久久久亚洲av毛片大全| 国内精品久久久久精免费| 久久天躁狠狠躁夜夜2o2o| 亚洲成人精品中文字幕电影| 啦啦啦韩国在线观看视频|