• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Electron emission induced by keV protons from tungsten surface at different temperatures

    2022-08-01 05:58:48LiXiaZeng曾利霞XianMingZhou周賢明RuiCheng程銳YuLiu柳鈺XiaoAnZhang張小安andZhongFengXu徐忠鋒
    Chinese Physics B 2022年7期
    關(guān)鍵詞:賢明

    Li-Xia Zeng(曾利霞), Xian-Ming Zhou(周賢明), Rui Cheng(程銳),Yu Liu(柳鈺), Xiao-An Zhang(張小安),, and Zhong-Feng Xu(徐忠鋒)2,,?

    1Ion Beam and Optical Physical Laboratory,Xianyang Normal University,Xianyang 712000,China

    2Institute of Science and Technology for Laser and Particle Beams,Xi’an Jiaotong University,Xi’an 710049,China

    3Institute of Modern Physics,Chinese Academy of Science,Lanzhou 730000,China

    Keywords: electron emission,x-ray,electronic stopping power,work function

    1. Introduction

    The interactions of charged ions and strong radiation with solid targets have been widely concerned in recent years. The underlying physical processes are very important for not only basic physics, but also technical applications, such as material surface modification, x-ray source equipment, radiation physics, plasma–wall interactions, and material surface analysis as well.[1–8]When a charged ion impacts solid target, it will deposit most of its potential energy into several atomic layers through the process of neutralization and de-excitation within femtoseconds.[3]At the same time, through inelastic collisions,the kinetic energy of the ion can be transferred into valence electrons or inner-shell electrons,resulting in the shell ionization. In this collision process,electrons and x-rays will be emitted with the ionization of incident ions and the decay of vacancies in the inner shell.[9,10]Therefore,electron emission and x-rays provide reliable information for studying particle properties and mechanism of ion–atom collision process.

    The electron emission process is usually described by the average number of electrons emitted each incident ion,that is,the electron emission yieldγ. As is well known, the electron emission yield is related to the charge state,velocity,incident energy,atomic number and incident angle of incident ions,and so on.[4–8]We have also studied the influence of state of charge of incident ion, recoil atoms, and target temperature on the electron emission yieldγ.[11–13]Electron emission caused by highly charged ions(HCIs)is usually divided into two different mechanisms, one is the potential emission (PE) process and the other is the kinetic emission (KE) process.[14,15]It is generally believed that electron emission is closely related to the deposition of electron excitation near the target surface.The kinetic electron emission (KEE) yield is believed to be related to the electronic stopping power of slow light ions.Energy deposition depends on the velocity and charge state of incident ions. The proportion of energy,which is used to generate electron emission,varies with the incident energy.

    The characteristic x-rays, which are produced by ionsolid interactions,mainly come from the de-excitation of hollow atoms in the low-energy region, and the attenuation of vacancy in the inner shell, caused by direct ionization during the bombardment of high-energy projectiles. The xrays have been extensively investigated experimentally, and many theories have been proposed to successfully describe this process. Common theories include the classical barriercrossing model for the evolution of incident ions around the surface, the binary encounter approximation (BEA), the plane-wave Born shell approximation of electron ionization(PWBA)and the energy-loss Coulomb-repulsive perturbation steady-state relativity(ECPSSR)for the ionization of the shell electrons.[16–18]A lot of researches have been done to study electron emission[1–3,11–13]and x-rays.[4,19]However, there are few studies on these two phenomena at the same time.[20]We have not found the researches about the electron emission from tungsten surface at different temperatures. Here in this work, we will explore the correlation between the two phenomena. Our recent experimental results on the kinetic electron and x-ray emission induced by keV protons from tungsten surface at different temperatures will be shown.

    In this paper, we present the experimental results about the electron emission yield from tungsten surface bombarded by protons in an energy range of 50 keV–250 keV at different target temperatures. The mechanism of electron emission is investigated and verified experimentally and theoretically.Our experimental results will be helpful in studying the electron and x-ray emission of tungsten, which has been selected and used as the first wall material of the International Thermonuclear Experimental Reactor(ITER).

    2. Experimental setup

    The experiment was carried out on the 320-kV electron cyclotron resonance ion source (ECRIS) platform of the Institute of Modern Physics, Chinese Academy of Sciences(IMP,CAS)in Lanzhou.[21]Many experiments on the study of highly charged ions incident on solid surfaces have been carried out on this platform.[11–13,20–22]Our experimental method can be seen elsewhere.[11–13]In the experiment, our experimental device was in an ultrahigh vacuum(UHV)target chamber(10-9mbar–10-10mbar,1 bar=105Pa). Figure 1 shows the experimental setup for electron emission yield measurement. It mainly consisted of four parts,namely,beam collimator,rejection aperture with a diameter of 3 mm,ultrahigh vacuum heater and cage.The beam collimator was used to prevent incident ions from hitting the rejection aperture directly and was 3 mm in diameter. A rejection electrode with a potential of-100 V was located in front of the cage. In this way,electrons were prevented from escaping and the electron collection efficiency was improved. The cage surrounded the target,and a voltage of±100 V was applied to the cage, for collecting or suppressing the electrons emitted from the target. The cage had 5 mm in aperture diameter serving as an ion beam entrance and collimated the incident ion beam before it reached the target surface.We collimated the beam by monitoring the current on the cage and the target. When the current on the cage was zero and the target current reached a maximum value, it was the best position. The sample in this experiment was solid polycrystalline tungsten with a purity of 99.99%. The sample was first mechanically polished, then washed in acetone and ethanol, and finally cleaned by heating in UHV.We used the UHV heater, which was produced by Heat Wave Labs, to control the target temperature. An insulating sheet was placed between the target and the heater. The incident protons were generated and extracted from a 14.5-GHz electron cyclotron resonance(ECR)ion source. As a result of being focused and collimated, the diameter of these incident proton beams was 3 mm. The current on the target was measured by Keithley 6485 picoammeter and integrated,with a time integration constant being about 25 s.

    Fig. 1. Schematic diagram of experimental setup used for measuring total electron yield.

    The total electron emission yieldγis given as[11–13]

    whereqis the state of charge of the incident ion,I+andI-are the target currents for±100 V of voltages applied to the cage.

    The emitted x-rays were measured by a silicon drift detector (SDD), and its effective detection area was 7 mm2. A window of 12.5-μm beryllium was placed directly in front of the detector.The distance between the SDD and the target surface was 80 mm,which was 135°with respect to the direction of incident ion beam. When the gain was set to be 100, the effective energy range of this detector was 0.5 keV–14.3 keV.The energy resolution of 5.9 keV was approximately 136 eV,when the peak time was 9.6 s. We used standard radioactive sources55Fe and241Am to calibrate and determined the efficiency through transmission measurement.

    3. Results and discussion

    It can be found from Fig. 2 that the incident ion beam current is very stable and almost constant in the experiment.The electrons escaping from the target surface are suppressed by applying a-100-V voltage to the cage, and they are collected under the opposite voltage. Our previous study shows that the total electron emission yield is independent of ion current,[13,21]so we do not repeat the measurements here.

    Fig. 2. Typical time-dependent currents recorded for electron emission induced by 200-keV protons at target temperature of about 286 °C,with Ibeam denoting current of incident beam.

    Total electron yields from tungsten surface induced by protons as a function of incident energy at different target temperatures are shown in Fig. 3. The error bars shown in the figure are statistical errors. Our experimental results of the total electron emission yield (γ) are consistent with the results ofγfor Ewing’s polycrystalline target within the error range.[20,23]The total electron yields have similar dependence on the proton energy at different target temperatures. It can be found from Fig.4 that the experimental curves have a similar change trend with the stopping power, calculated using SRIM.[24]Specifically,they start to increase from the low energy end, reach their maximum values at about 100 keV, and finally decrease with kinetic energy increasing.

    Fig.3. Electron yields from tungsten surface induced by protons as a function of incident energy at different target temperatures.

    Fig.4. Electronic stopping power Se and total stopping power St as a function of projectile energy for 50 keV–250 keV protons impacting solid tungsten target,calculated by SRIM.

    Because of their kinetic and potential energy and high ionization state, highly charged ions become effective carriers of energy. As mentioned earlier, electron emission processes caused by highly charged ions are usually divided into two types,namely the potential emission(PE)process and the kinetic emission(KE)process.[14,15]Therefore,the total electron emission yieldγcan be divided into the kinetic electron yieldγKEand the potential electron yieldγPE.For the potential emission process,the potential energy carried by the incident ion needs to be greater than twice the work functionWφof the solid target surface.

    Here,the first ionization energyEpotfor proton is 13.6 eV,more than twice the work functionWφfor the polycrystalline tungsten, which is 4.55 eV.[25]The maximum possible number of electrons caused by potential energy deposition can be given by[26]

    Here,nmaxis approximately equal to 1.51, which is nearly equal to the total yield at 50-keV incident energy,and is greater than the total yield at 250-keV incident energy when the target temperature is 491 K.However, this maximum cannot be achieved,and only a small part of the potential energy is used for potential electron emission, because part of the electrons excited by the potential energy cannot escape from the target surface.[26,27]In fact, owing to the incomplete neutralization of incident ions, the potential energy cannot be fully used to excite electrons. The classicalγPEis given by[27]

    Here,EFis the Fermi energy of the solid target. Using Eq.(3),we can estimate thatγPEis approximately equal to 0.08 in our experiment.It is only a very small part of the total yield,which is negligible compared withγKE.Therefore,the electron emission yieldγin our experiment results mainly from the KE process,that is to say,the total electron yield can be given as

    Kinetic energy electrons are caused mainly by directly ionizing the valence electrons and inner shell electrons,and the secondary ionization of outer shell electrons due to Auger transition.Direct ionization is directly related to the ionization cross sections of electrons in different shells. The factors that can affect the secondary ionization are inner shell ionization, the probability of Auger transition and the secondary ionization cross section. Obviously, this is smaller than the ionization cross section of the inner shell electrons. The studies have shown that inner shell ionization plays a negligible role in the KE process of low-energy light ion incidence.[18]This means that the contribution of the inner shell excitation and the Auger decay of the subsequence can be ignored. From this we can know that the escape of excited valence electrons is the main factor in our measured kinetic electron yield. AndγKEis often calculated from

    whereSeis the electronic stopping power,Ψis the incident angle of the incident ion,andBcan be regarded as a constant,which decreases slightly as the kinetic energy and atomic number of the incident ion increase.[28,29]In our measurement,the ion beam is incident perpendicular to the target surface,therefore,sin(Ψ)=1,so

    Figure 5 shows the ratio of total electron emission yieldγto electronic stopping powerSeas a function of the incident energy. Hereγis the experimental value we measured, andSeis calculated using SRIM as shown in Fig.4. We can find from Fig.5 that the ratio is not a fixed value, it will decrease slightly as the proton energy increases. Here,we will explain the down trend ofB. The ratio ofγ/Seis the coefficientB,which can be understood as the kinetic electron yield caused by the unit electronic stopping power. In the process of interaction between incident ions and target atoms, the kinetic energy of incident ions can be transferred to valence electrons and excite them,resulting in electron emission. Or the kinetic energy of the incident ions can be transferred to the inner-shell electrons,causing them to ionize and leave holes. The x-rays are generated along with the de-excitation of the holes. Here,there may be a competitive relationship in energy transfer between the inner shell electrons and the outer shell electrons.

    Fig.5. ratio of kinetic electron yield γ to electronic stopping power Se as a function of incident energy.

    Fig.6. Normalized tungsten x-ray spectra induced by protons impacting W target.

    In order to verify the above hypothesis about the dependence of the coefficientBon the energy of protons, we measure the x-rays emitted by protons incident on W target. Figure 6 shows the typical x-ray spectra from 125-keV–250-keV protons impacting W surface (the relative intensity at the energy of 50 keV–100 keV is too small to display). We normalize the x-ray spectra by the total number of incident ions.We observe different spectral lines with the energy of about 1.775 keV and identify them with the M shell x-rays of tungsten.

    The number of x-rays caused by each incident ion is defined as the x-ray yieldY. It can be calculated based on the x-ray counts obtained from the experiment.[4]The x-ray yieldYis expressed as

    whereNXis the x-ray count and obtained from the spectrum by using Gaussian fitting,Npis the total number of incident ions,ηis the detection efficiency of the silicon drift detector,andΩis the solid angle of the SDD,which is 1.1 msr in our work.

    Our targets can be regarded as thick targets. We can use the thick target equation to calculate the x-ray production cross section through using the measured x-ray yield and the energy loss of protons,[30]

    Here,nis the target atomic density, dE/dR(in units keV/cm)is the energy loss simulated by SRIM,[24]μis the absorption coefficient of the measured characteristic x-ray,θis the incident angle, which refers to the angle between the incident ion direction and the normal direction of the target surface,φis the observation angle with respect to the normal direction of the target surface,Y(E) is the x-ray yield per incident ion with the kinetic energy ofE, dY/dEmeans the slope of the measuredY(E)versus E, evaluated at the incident energy ofE.

    The M x-ray emission is closely related to the ionization cross sectionσMof the M shell. This ionization cross section can be obtained from the theoretical calculation of BEA and ECPSSR, and it can also be deduced from the experimental results of x-ray production cross sectionσX,[30]

    Hereωis the fluorescence yield. It can be seen from Fig. 7 that the BEA theory underestimates our experimental data at the incident energy higher than 100 keV and overestimates the experimental data at the incident energy of 50 keV. It is also found that ECPSSR, which is considered to be the best theory for simulating the inner-shell ionization of light ions,is in good agreement with the experimental results within the error range. Therefore, it is suitable to use the ECPSSR theory to describe the ionization of M shell. In our results,σMis about 101~4barn (1 barn=10-24cm2), which increases with incident proton energy increasing.

    In order to further verify the ionization competition of electrons in different shells,we also explore the distribution of energy loss of incident protons between the ionization of inner electrons and the ionization of valence electrons. As mentioned earlier, the kinetic electron emission is caused mainly by the excitation of valence electrons. This process can be described as direct collisions between the light ions and the valence electrons of the target. For tungsten target,4f,5d,and 6s are the three outermost shells,which contribute to the electron emission. We use the BEA model theory to calculate the three values of shell ionization cross sectionσias shown in Fig. 8. The results show thatσidecreases to about 109barn with incident energy increasing.

    From Figs.7 and 8,it can be found that the ratios of ionization cross section(σMandσi)to electronic stopping powerSepresent inverse trend as a function of the proton energy.This is essentially an indirect reflection of the observations of x-ray and electron emission. It directly proves the hypothesis that there is a competition of the ionization of electrons among different shells of the target, caused by the motion of the incident ions. For a given collision, if the kinetic energy of the incident ion contributes to the ionization of the inner shell electrons,it will not lead the outer shell electrons to excite, and vice versa. In addition,σMis about 4–8 orders of magnitude smaller thanσi. This also verifies that the electron emission caused by the inner-shell ionization can be ignored in our case, and the emitted electrons come mainly from the excited valence electrons.

    Fig.7. Ratio of ionization cross section of tungsten inner electrons to electron stopping energy power Se as a function of proton energy.

    Fig. 8. Ratio of ionization cross section of tungsten valence electrons to electron stopping power Se as a function of proton energy.

    4. Conclusions

    Electron emission yield from tungsten surface, induced by 50-keV–250-keV protons, has been measured at different target temperatures. We find that as the incident energy increases, the ratio of the total electron emission yield to the electronic stopping decreases. The escape of excited valence electrons is the main source of the measured kinetic electron yield. The contribution of inner shell ionization to secondary electron emission is negligible, because ionization cross section of the inn shell is about 4–8 orders of magnitude smaller than that of valence electrons. There is a competition of ionization between outer shell electrons and inner shell electrons.This leads the experimental results of electron x-ray emission to present opposite trends as a function of incident energy.Our results will provide very useful data for the study of electron emission,x-ray emission,and surface analysis of tungsten.

    Acknowledgements

    We are indebted to the staff of the 320-kV ECR platform and Plasma Physics at IMP for their technical support.

    Project supported by the National Natural Science Foundation of China (Grant Nos. 11605147, 11375138,and 11505248), the Natural Science Basic Research Plan in Shaanxi Province, China (Grant Nos. 2019JQ-493 and 2021JQ-812), the Scientific Research Program Funded by Shaanxi Provincial Education Department,Shaanxi Province,China (Grant Nos. 20JK0975 and 16JK1824), the Shaanxi University Young Outstanding Talents Support Program,the Xianyang Normal University Young and Middle-aged Top-notch Talents Project, Shaanxi Province, China (Grant No.XSYBJ202004),and the Academic Leader Project of Xianyang Normal University, Shaanxi Province, China (Grant No.XSYXSDT202109).

    猜你喜歡
    賢明
    誰的方法好
    不知道有多少水
    尚賢明:粵北山區(qū)的“海事初心”
    珠江水運(2020年24期)2021-01-19 13:09:54
    升值二手貨
    升值二手貨
    孫叔敖識寶
    升值二手貨
    特別文摘(2017年8期)2017-04-19 15:39:18
    「慢」生意
    愛你(2017年10期)2017-04-14 11:21:47
    升值二手貨
    莫愁(2017年4期)2017-02-15 07:03:31
    升值二手貨
    99国产精品99久久久久| 在线观看一区二区三区| 曰老女人黄片| 国产aⅴ精品一区二区三区波| 桃红色精品国产亚洲av| 女生性感内裤真人,穿戴方法视频| 国产又色又爽无遮挡免费看| 亚洲中文字幕一区二区三区有码在线看 | 淫秽高清视频在线观看| 波多野结衣高清作品| 搡老岳熟女国产| 波多野结衣高清无吗| 久久婷婷成人综合色麻豆| 欧美三级亚洲精品| 嫩草影视91久久| 亚洲片人在线观看| 男女视频在线观看网站免费 | 色在线成人网| 亚洲欧美一区二区三区黑人| 熟女少妇亚洲综合色aaa.| 久久久久免费精品人妻一区二区| www.自偷自拍.com| 久久99热这里只有精品18| 国产伦人伦偷精品视频| 国内精品久久久久久久电影| 精品久久久久久久人妻蜜臀av| 夜夜看夜夜爽夜夜摸| 久久精品夜夜夜夜夜久久蜜豆 | 丁香六月欧美| 成人av一区二区三区在线看| 岛国视频午夜一区免费看| 中国美女看黄片| 国产成人欧美在线观看| 国产亚洲精品av在线| 国产一级毛片七仙女欲春2| 欧美午夜高清在线| av超薄肉色丝袜交足视频| 久久久精品国产亚洲av高清涩受| 欧美高清成人免费视频www| 久久久久久九九精品二区国产 | 久久久久免费精品人妻一区二区| 亚洲乱码一区二区免费版| a级毛片a级免费在线| 成人av在线播放网站| 黑人欧美特级aaaaaa片| 99久久久亚洲精品蜜臀av| 免费在线观看完整版高清| 久久精品成人免费网站| 国产久久久一区二区三区| 欧美精品啪啪一区二区三区| 久久精品夜夜夜夜夜久久蜜豆 | 91在线观看av| 亚洲美女黄片视频| 国内毛片毛片毛片毛片毛片| 国产视频内射| 国产亚洲精品久久久久久毛片| 成人精品一区二区免费| 少妇熟女aⅴ在线视频| 成人永久免费在线观看视频| 亚洲最大成人中文| 亚洲熟女毛片儿| 欧美成人午夜精品| 国产高清视频在线播放一区| 搡老岳熟女国产| av在线播放免费不卡| 少妇被粗大的猛进出69影院| 国产高清视频在线观看网站| 免费观看人在逋| 日日干狠狠操夜夜爽| 亚洲一码二码三码区别大吗| 中国美女看黄片| 最近在线观看免费完整版| 久久久精品国产亚洲av高清涩受| 国内久久婷婷六月综合欲色啪| 50天的宝宝边吃奶边哭怎么回事| 成人国产综合亚洲| 每晚都被弄得嗷嗷叫到高潮| 最近视频中文字幕2019在线8| 国产日本99.免费观看| 日韩大尺度精品在线看网址| 亚洲av成人不卡在线观看播放网| 淫秽高清视频在线观看| 国产亚洲欧美98| 国产免费男女视频| 在线永久观看黄色视频| 十八禁人妻一区二区| 两个人看的免费小视频| 999精品在线视频| 亚洲18禁久久av| 好男人在线观看高清免费视频| 一级毛片女人18水好多| 久久久久久九九精品二区国产 | 欧美激情久久久久久爽电影| 男女做爰动态图高潮gif福利片| 色播亚洲综合网| 高清在线国产一区| 精品一区二区三区视频在线观看免费| 欧美性猛交黑人性爽| 中文字幕精品亚洲无线码一区| 99久久99久久久精品蜜桃| 精品人妻1区二区| 国产一区二区三区在线臀色熟女| 久久久久性生活片| 成人高潮视频无遮挡免费网站| 欧美av亚洲av综合av国产av| 男插女下体视频免费在线播放| 高潮久久久久久久久久久不卡| 两个人的视频大全免费| 成在线人永久免费视频| 99久久精品国产亚洲精品| 搡老熟女国产l中国老女人| 国产三级在线视频| 亚洲五月天丁香| 国产久久久一区二区三区| 日本成人三级电影网站| 久久香蕉国产精品| 老司机午夜十八禁免费视频| 亚洲一区二区三区不卡视频| 人妻夜夜爽99麻豆av| www.自偷自拍.com| 亚洲国产精品sss在线观看| 午夜视频精品福利| 无遮挡黄片免费观看| 无遮挡黄片免费观看| 丁香欧美五月| 丰满的人妻完整版| 久久久久久久久久黄片| 亚洲无线在线观看| 国产免费av片在线观看野外av| 日韩精品青青久久久久久| 国内精品一区二区在线观看| 男男h啪啪无遮挡| 欧美日韩亚洲国产一区二区在线观看| 老鸭窝网址在线观看| 99国产综合亚洲精品| 亚洲aⅴ乱码一区二区在线播放 | 精品电影一区二区在线| 在线永久观看黄色视频| or卡值多少钱| 成年人黄色毛片网站| 国产区一区二久久| 99热这里只有是精品50| 757午夜福利合集在线观看| 免费在线观看影片大全网站| 亚洲激情在线av| 极品教师在线免费播放| 午夜激情福利司机影院| 啦啦啦韩国在线观看视频| 成年版毛片免费区| 亚洲成人精品中文字幕电影| 国产亚洲欧美在线一区二区| 欧美黑人巨大hd| x7x7x7水蜜桃| 黄色毛片三级朝国网站| 精品电影一区二区在线| 国产精品 国内视频| 亚洲av成人精品一区久久| 国内少妇人妻偷人精品xxx网站 | 国产精品久久电影中文字幕| 国产高清视频在线播放一区| 亚洲国产精品成人综合色| 中文在线观看免费www的网站 | 少妇的丰满在线观看| 国产精品免费视频内射| 久久久精品欧美日韩精品| 欧美日韩亚洲国产一区二区在线观看| 一进一出抽搐gif免费好疼| 听说在线观看完整版免费高清| 成熟少妇高潮喷水视频| 老司机靠b影院| 成在线人永久免费视频| 久久热在线av| 在线视频色国产色| 久9热在线精品视频| 女人爽到高潮嗷嗷叫在线视频| 日韩精品免费视频一区二区三区| 波多野结衣高清作品| 一级作爱视频免费观看| 少妇熟女aⅴ在线视频| 宅男免费午夜| 欧美3d第一页| 不卡一级毛片| 日本免费a在线| 日本三级黄在线观看| 妹子高潮喷水视频| 日本a在线网址| 正在播放国产对白刺激| 欧美+亚洲+日韩+国产| 成人午夜高清在线视频| 怎么达到女性高潮| 在线视频色国产色| 日韩有码中文字幕| 久久久久国产精品人妻aⅴ院| 亚洲精品色激情综合| 精品一区二区三区四区五区乱码| 一级黄色大片毛片| 免费看美女性在线毛片视频| 精品国产乱子伦一区二区三区| 2021天堂中文幕一二区在线观| 免费搜索国产男女视频| 欧美日本视频| 欧美黑人欧美精品刺激| 国产亚洲欧美98| 在线a可以看的网站| 亚洲中文av在线| 亚洲av电影不卡..在线观看| 亚洲一区二区三区色噜噜| 欧美日韩亚洲综合一区二区三区_| www.熟女人妻精品国产| 亚洲美女黄片视频| 操出白浆在线播放| 夜夜看夜夜爽夜夜摸| av在线天堂中文字幕| 法律面前人人平等表现在哪些方面| 12—13女人毛片做爰片一| а√天堂www在线а√下载| 国产精品一区二区免费欧美| avwww免费| 成人av在线播放网站| 岛国在线观看网站| 日韩三级视频一区二区三区| 欧美极品一区二区三区四区| 97碰自拍视频| 午夜福利在线观看吧| 午夜日韩欧美国产| 丰满的人妻完整版| 特大巨黑吊av在线直播| 波多野结衣高清无吗| 一边摸一边抽搐一进一小说| 在线国产一区二区在线| 国产免费av片在线观看野外av| 午夜激情福利司机影院| 妹子高潮喷水视频| 亚洲av熟女| 国产激情欧美一区二区| 国产欧美日韩一区二区三| 免费在线观看亚洲国产| 国产午夜福利久久久久久| 香蕉丝袜av| 夜夜躁狠狠躁天天躁| 少妇人妻一区二区三区视频| 久9热在线精品视频| 国产免费男女视频| a级毛片a级免费在线| 午夜久久久久精精品| 亚洲美女黄片视频| 黄色片一级片一级黄色片| 国语自产精品视频在线第100页| 国产av一区二区精品久久| 亚洲黑人精品在线| 蜜桃久久精品国产亚洲av| 色老头精品视频在线观看| 搡老岳熟女国产| 日本a在线网址| 99久久综合精品五月天人人| 久久精品亚洲精品国产色婷小说| 999久久久国产精品视频| 美女午夜性视频免费| 香蕉av资源在线| 天堂√8在线中文| 老汉色av国产亚洲站长工具| www.999成人在线观看| 午夜福利欧美成人| 国产一区二区在线观看日韩 | 精品第一国产精品| 日韩精品中文字幕看吧| 黄色a级毛片大全视频| 每晚都被弄得嗷嗷叫到高潮| 精品免费久久久久久久清纯| 国产久久久一区二区三区| 日韩免费av在线播放| 人成视频在线观看免费观看| 亚洲欧洲精品一区二区精品久久久| 18禁观看日本| 国产亚洲精品久久久久5区| 国产精品 欧美亚洲| 久久久久久九九精品二区国产 | 男女那种视频在线观看| 精品一区二区三区视频在线观看免费| 国产一区二区三区在线臀色熟女| 亚洲av电影不卡..在线观看| 成人av一区二区三区在线看| 叶爱在线成人免费视频播放| 国内久久婷婷六月综合欲色啪| 亚洲专区国产一区二区| 久久这里只有精品中国| 欧美性猛交╳xxx乱大交人| 午夜福利视频1000在线观看| 欧美最黄视频在线播放免费| 国产精品综合久久久久久久免费| 黄片小视频在线播放| 久久久久国内视频| 色综合欧美亚洲国产小说| 天天一区二区日本电影三级| 亚洲国产精品sss在线观看| 制服丝袜大香蕉在线| 老司机午夜福利在线观看视频| 国产成+人综合+亚洲专区| 村上凉子中文字幕在线| 中文字幕熟女人妻在线| 日本撒尿小便嘘嘘汇集6| 国产成+人综合+亚洲专区| 无遮挡黄片免费观看| 免费搜索国产男女视频| 国产精品电影一区二区三区| 国产欧美日韩一区二区三| 欧美极品一区二区三区四区| 亚洲成人中文字幕在线播放| 99久久综合精品五月天人人| 啦啦啦免费观看视频1| 免费在线观看成人毛片| 久久久久亚洲av毛片大全| 亚洲人成电影免费在线| 久久久久久人人人人人| 午夜精品久久久久久毛片777| 一边摸一边做爽爽视频免费| 高清毛片免费观看视频网站| 亚洲人成网站在线播放欧美日韩| 久久精品成人免费网站| 欧美成人午夜精品| 最近最新免费中文字幕在线| 亚洲精品一卡2卡三卡4卡5卡| 精品免费久久久久久久清纯| 在线十欧美十亚洲十日本专区| 国产伦人伦偷精品视频| 亚洲成av人片在线播放无| 国产欧美日韩精品亚洲av| 久久午夜综合久久蜜桃| 黄色女人牲交| 国产精品永久免费网站| 国产精品av视频在线免费观看| 成人三级做爰电影| 国产又色又爽无遮挡免费看| 精品久久蜜臀av无| 18禁黄网站禁片免费观看直播| 亚洲成a人片在线一区二区| 成人国产一区最新在线观看| 久久性视频一级片| 久久婷婷成人综合色麻豆| 亚洲五月婷婷丁香| 999久久久精品免费观看国产| 嫁个100分男人电影在线观看| 在线观看66精品国产| 一级片免费观看大全| 成人国产综合亚洲| 亚洲精华国产精华精| 老司机在亚洲福利影院| 久久中文字幕人妻熟女| 亚洲自偷自拍图片 自拍| 免费看美女性在线毛片视频| 日韩国内少妇激情av| 丝袜美腿诱惑在线| 亚洲va日本ⅴa欧美va伊人久久| 99国产综合亚洲精品| 91在线观看av| 在线观看美女被高潮喷水网站 | 九色成人免费人妻av| 国产成人av激情在线播放| 日韩欧美三级三区| 一级毛片女人18水好多| 女生性感内裤真人,穿戴方法视频| 国产激情欧美一区二区| 露出奶头的视频| 波多野结衣巨乳人妻| 床上黄色一级片| 一级毛片精品| 淫秽高清视频在线观看| 国产成+人综合+亚洲专区| 日韩欧美免费精品| www日本在线高清视频| 18禁美女被吸乳视频| 天天一区二区日本电影三级| 99久久无色码亚洲精品果冻| 国产精品1区2区在线观看.| 日本 欧美在线| 午夜激情av网站| a级毛片在线看网站| 在线观看66精品国产| 国模一区二区三区四区视频 | 国产91精品成人一区二区三区| 丰满人妻熟妇乱又伦精品不卡| 国产精品久久久人人做人人爽| 亚洲欧洲精品一区二区精品久久久| 丰满的人妻完整版| 91老司机精品| 国产精品日韩av在线免费观看| 丁香六月欧美| 欧美性猛交黑人性爽| 亚洲av片天天在线观看| 制服丝袜大香蕉在线| 欧美性长视频在线观看| 日本 欧美在线| 精品不卡国产一区二区三区| 青草久久国产| 久久久久久九九精品二区国产 | av欧美777| 日本在线视频免费播放| 国产精品一及| 免费在线观看日本一区| 亚洲人成77777在线视频| 99久久99久久久精品蜜桃| 欧美日韩亚洲综合一区二区三区_| 免费在线观看视频国产中文字幕亚洲| 亚洲国产精品成人综合色| 亚洲欧美精品综合一区二区三区| 黄片大片在线免费观看| 一区二区三区高清视频在线| 久久这里只有精品19| 午夜福利18| 亚洲第一欧美日韩一区二区三区| 久久这里只有精品中国| 亚洲人成网站高清观看| 亚洲av日韩精品久久久久久密| 91九色精品人成在线观看| 日本免费a在线| 婷婷亚洲欧美| 18禁裸乳无遮挡免费网站照片| 日本黄色视频三级网站网址| 免费在线观看黄色视频的| 精品人妻1区二区| 可以免费在线观看a视频的电影网站| 日韩 欧美 亚洲 中文字幕| 美女扒开内裤让男人捅视频| 美女大奶头视频| 亚洲一码二码三码区别大吗| 亚洲欧美精品综合久久99| 免费看十八禁软件| 一本精品99久久精品77| 99久久久亚洲精品蜜臀av| 亚洲黑人精品在线| 天堂av国产一区二区熟女人妻 | 俄罗斯特黄特色一大片| 人妻丰满熟妇av一区二区三区| 国产又色又爽无遮挡免费看| 18禁黄网站禁片午夜丰满| 又紧又爽又黄一区二区| 日韩欧美免费精品| 人人妻人人看人人澡| 俄罗斯特黄特色一大片| 国产黄片美女视频| 制服诱惑二区| av中文乱码字幕在线| 精品欧美一区二区三区在线| 国产私拍福利视频在线观看| 亚洲av中文字字幕乱码综合| 一夜夜www| 在线观看66精品国产| 亚洲欧美日韩高清专用| 免费看a级黄色片| 成熟少妇高潮喷水视频| 亚洲男人天堂网一区| 天堂av国产一区二区熟女人妻 | 波多野结衣巨乳人妻| 免费观看人在逋| 一二三四在线观看免费中文在| 给我免费播放毛片高清在线观看| 此物有八面人人有两片| 亚洲avbb在线观看| 中文字幕人妻丝袜一区二区| 亚洲国产欧美网| 国产高清有码在线观看视频 | 亚洲av熟女| 亚洲人成网站在线播放欧美日韩| 黄色片一级片一级黄色片| 亚洲国产精品999在线| 午夜福利成人在线免费观看| 丰满人妻一区二区三区视频av | 夜夜夜夜夜久久久久| 男女下面进入的视频免费午夜| 午夜久久久久精精品| 亚洲中文av在线| 欧美性长视频在线观看| 青草久久国产| 国产野战对白在线观看| 天堂影院成人在线观看| 色综合站精品国产| 成人高潮视频无遮挡免费网站| 18禁裸乳无遮挡免费网站照片| 18禁观看日本| 熟女少妇亚洲综合色aaa.| 深夜精品福利| 国产午夜精品论理片| av超薄肉色丝袜交足视频| 两个人的视频大全免费| 欧美黄色淫秽网站| 国产91精品成人一区二区三区| 99国产精品99久久久久| 免费人成视频x8x8入口观看| 两个人的视频大全免费| 亚洲第一欧美日韩一区二区三区| 亚洲男人天堂网一区| 久久精品国产综合久久久| 久久久久久久精品吃奶| 不卡一级毛片| 免费看日本二区| 国产精品一及| 韩国av一区二区三区四区| 99久久无色码亚洲精品果冻| 久久久久久九九精品二区国产 | 亚洲av美国av| 女人爽到高潮嗷嗷叫在线视频| 18美女黄网站色大片免费观看| 每晚都被弄得嗷嗷叫到高潮| 99久久综合精品五月天人人| 亚洲熟妇中文字幕五十中出| 不卡av一区二区三区| 91国产中文字幕| 人人妻人人澡欧美一区二区| 日韩欧美国产在线观看| 精品久久久久久久毛片微露脸| 国产精品99久久99久久久不卡| 一级作爱视频免费观看| 日韩 欧美 亚洲 中文字幕| 人妻丰满熟妇av一区二区三区| 首页视频小说图片口味搜索| 国产av一区二区精品久久| 日日摸夜夜添夜夜添小说| 亚洲精品中文字幕一二三四区| 亚洲 欧美 日韩 在线 免费| 免费在线观看亚洲国产| 香蕉av资源在线| 亚洲av成人一区二区三| 欧美成人一区二区免费高清观看 | 国产精品自产拍在线观看55亚洲| 麻豆成人av在线观看| 亚洲人成伊人成综合网2020| 一进一出好大好爽视频| 韩国av一区二区三区四区| 在线观看午夜福利视频| 国产精品影院久久| 天堂影院成人在线观看| 亚洲av电影在线进入| 国产精品国产高清国产av| 久久久国产成人免费| 亚洲国产看品久久| 窝窝影院91人妻| 亚洲aⅴ乱码一区二区在线播放 | 欧美另类亚洲清纯唯美| 亚洲中文av在线| 国产精品98久久久久久宅男小说| 午夜激情福利司机影院| 国产一区二区在线观看日韩 | 三级毛片av免费| 亚洲片人在线观看| 色综合婷婷激情| 久久久久国内视频| 色在线成人网| 高潮久久久久久久久久久不卡| 亚洲精品中文字幕一二三四区| 黄色 视频免费看| 成人三级做爰电影| 琪琪午夜伦伦电影理论片6080| 曰老女人黄片| 精品无人区乱码1区二区| 久久天堂一区二区三区四区| 香蕉久久夜色| 1024手机看黄色片| 中文字幕人成人乱码亚洲影| 免费在线观看日本一区| 久久亚洲真实| 国产av在哪里看| 九色国产91popny在线| 一个人免费在线观看电影 | 老汉色av国产亚洲站长工具| 亚洲国产精品合色在线| 亚洲人与动物交配视频| 欧美性猛交黑人性爽| 精品不卡国产一区二区三区| 亚洲一区高清亚洲精品| 老汉色av国产亚洲站长工具| 亚洲色图av天堂| 亚洲人成伊人成综合网2020| 美女黄网站色视频| 99国产精品一区二区三区| 国产真实乱freesex| 婷婷六月久久综合丁香| 国产熟女xx| 真人一进一出gif抽搐免费| 国产一区二区在线观看日韩 | av片东京热男人的天堂| 深夜精品福利| 老熟妇乱子伦视频在线观看| 黄色片一级片一级黄色片| 1024香蕉在线观看| 日韩国内少妇激情av| 可以在线观看的亚洲视频| 国产欧美日韩一区二区三| 熟妇人妻久久中文字幕3abv| 久久久国产成人免费| 久久99热这里只有精品18| 国产伦一二天堂av在线观看| 一级作爱视频免费观看| 国产精品久久久久久精品电影| 国产精品亚洲美女久久久| 一级作爱视频免费观看| 在线永久观看黄色视频| 欧美绝顶高潮抽搐喷水| 日本一区二区免费在线视频| 国产精品,欧美在线| 757午夜福利合集在线观看| 午夜老司机福利片| 99热只有精品国产| 欧美激情久久久久久爽电影| 精品一区二区三区四区五区乱码| 99精品欧美一区二区三区四区| 老司机在亚洲福利影院| 国产真实乱freesex| 国产成人系列免费观看| 国产又黄又爽又无遮挡在线| 中文字幕熟女人妻在线| 亚洲色图 男人天堂 中文字幕| 午夜福利在线在线| cao死你这个sao货| 精品电影一区二区在线| 国产精品永久免费网站|