• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Design and FPGA implementation of a memristor-based multi-scroll hyperchaotic system

    2022-08-01 06:01:08ShengHaoJia賈生浩YuXiaLi李玉霞QingYuShi石擎宇andXiaHuang黃霞
    Chinese Physics B 2022年7期

    Sheng-Hao Jia(賈生浩), Yu-Xia Li(李玉霞), Qing-Yu Shi(石擎宇), and Xia Huang(黃霞)

    College of Electrical Engineering and Automation,Shandong University of Science and Technology,Qingdao 266590,China

    Keywords: multi-scroll hyperchaotic attractor,memristor,F(xiàn)PGA

    1. Introduction

    Since the first chaotic system was found by Lorenz,great interest in chaos phenomena has been shown.[1]At present,the generation of chaotic systems with rich dynamic behaviors has been widely studied.[2–9]As we all know, chaotic systems are extremely sensitive to slight changing of initial conditions. Therefore, chaotic systems have been applied to many engineering fields, such as image encryption,[10–12]secure communication[13,14]and weak signal detection.[15]

    In general,the number of scrolls is closely related to the topological complexity of chaotic systems.The phase trajectories of a multi-scroll chaotic system can randomly jump in all scrolls. Thus,comparison with single-scroll and double-scroll chaotic systems,multi-scroll chaotic systems have even more complex dynamic behaviors and topological structures.[16]In recent decades, design and implementation of multi-scroll chaotic systems have been emerging. The multi-scroll chaotic systems can be obtained by introducing a certain kind of nonlinear functions into some existing dynamic systems to expand the saddle-focus equilibrium points(EPs). For example,based on the improved Chua’s system,Liet al. proposed an infinitescroll chaotic system by employing the sine function,and the number of scrolls increases with the increase of the calculating period of the implemented chaotic system.[17]Based on the Jerk system, Wanget al. designed a multi-scroll chaotic system by employing a nested sine-PWL function.[18]On the basis of the Jerk system,Dinget al. presented a grid multi-scroll chaotic system by employing sign function series and a modifying sine nonlinear function, which can generate (m×n)-scroll chaotic attractors.[19]Based on the Chua’s system,Jiaet al. designed a three-dimensional multi-scroll chaotic system by employing logarithmic function series.[20]On the basis of the Sprott-A system,Huet al.realized two simple chaotic systems by employing two different nonlinear functions, which can generate multi-scroll hidden attractors.[21]

    In 1971, Chua predicted the memristor as the fourth circuit element, whose constitutive relation is defined on the charge-flux plane.[22]In the last few years, a large number of chaotic systems and hyperchaotic systems are presented by introducing memristors into some existing dynamic systems. Owing to the natural nonlinearity and memory characteristics of memristors, the memristor-based chaotic and hyperchaotic systems possess rich and complex dynamic behaviors such as coexisting attractors[23]and coexisting infinitely many attractors.[24]By means of a smooth flux-controlled memristor, a memristor-based hyperchaotic system is constructed,which has single-scroll,double-scroll and four-scroll hyperchaotic attractors.[25]On the basis of the Jerk system,Liet al. designed a four-dimensional chaotic system by employing a memristor, which can exhibit extremely rich dynamic behaviors.[26]Yanget al. presented a memristor-based four-dimensional hyperchaotic system by introducing a memristor into the Chua’s circuit to replace the resistance.[27]Xuet al. realized an asymmetric memristive diode-bridge(MDB)-based Jerk circuit,which reveals rich and striking dynamic behaviors including periodic limit cycles and chaotic attractors.[28]

    In comparison with the multi-scroll chaotic systems and the hyperchaotic systems, the multi-scroll hyperchaotic systems have even more complex and richer dynamic behaviors and better unpredictability. Thus, the multi-scroll hyperchaotic systems are of great research significance. On the basis of the multi-scroll Jerk system, a memristor-based fourdimensional multi-scroll hyperchaotic system is constructed by employing a flux-controlled memristor.[29]Xiaet al. presented two kinds of novel memristor-based multi-scroll hyperchaotic system by adding two new voltage-controlled memristors and a nonlinear function to the Jerk system, which can generate(2N+2)-scroll and(2M+1)-scroll hyperchaotic attractors.[30]By means of the Jerk system, Zhanget al. realized a multi-scroll hyperchaotic system,which can generate(N+M+2)-scroll hyperchaotic hidden attractors.[31]

    In addition,the research on the implementation of chaotic systems has also been intensively investigated. At present,there are several methods to implement chaotic systems,which include field programmable gate array (FPGA),[32–34]analog circuits[35–37]and digital signal processing (DSP).[38,39]The analog circuits have some practical difficulties such as sensitivity of components to the temperature, and the aging of the equipments. As the digital signal processors with highprecision operation, the use of FPGA and DSP digital implementations can effectively avoid these problems. Nowadays,F(xiàn)PGA-based digital implementation of chaotic system is one of the most popular way due to its lower cost and shorter design periods with comparison to the other hardware platforms.

    In this paper,a modulating sine nonlinear function and a voltage-controlled memristor are jointly introduced to generate a memristor-based multi-scroll hyperchaotic system. By comparison with many of the existing results, the main innovations of this paper are as follows:

    (i) A modulating sine nonlinear function is designed to expand the number of saddle-focus line EPs with index 2. It is convenient to control the number of scrolls by adjusting the parameters of the modulating sine nonlinear function.

    (ii)A voltage-controlled memristor is introduced,and by using this memristor, the proposed system can display some complex dynamic behaviors including hyperchaotic attractors and coexisting attractors.

    (iii) In contrast with many existing published literature,this paper combines a nonlinear function and a memristor to design a multi-scroll hyperchaotic system.It provides a convenient method to generate multi-scroll hyperchaotic attractors with adjustable scroll numbers.

    The rest of the paper is organized as follows.In Section 2,a three-dimensional multi-scroll chaotic system is designed by introducing a modulating sine nonlinear function into a known chaotic system. Then, by introducing a voltage-controlled memristor into the above-designed three-dimensional multiscroll chaotic system, a novel four-dimensional memristorbased multi-scroll hyperchaotic system is proposed and its phase portraits are described. In Section 3, the dynamical characteristics of this system are analyzed by using the stability analysis of EPs, Lyapunov exponents, bifurcation diagrams and basins of attraction. In Section 4, FPGA implementation of the proposed memristor-based multi-scroll hyperchaotic system is designed,and the experimental results of the FPGA-based digital circuit are shown on the oscilloscope.

    2. A memristor-based multi-scroll hyperchaotic system

    2.1. The design of a modulating sine nonlinear function

    In this subsection,a modulating sine nonlinear function is designed to expand the number of saddle-focus EPs with index 2. Thus, the number of scrolls can be expanded conveniently by adjusting the designed modulating sine nonlinear function.

    Consider a known chaotic system,[40]the mathematical model of which is

    wherex,y,andzare the state variables,anda0,b0,andc0are system parameters.

    Based on system (1), a novel three-dimensional multiscroll chaotic system is proposed as follows:

    It should be noticed thatf(y) is a modulating sine nonlinear function, which decides the number of scrolls in system(2). To be specific,since the number of saddle-focus EPs with index 2 is determined by the number of negative slopes of the sine function, we transform the positive slope of the sine function into the negative slope for this purpose. It makes the number of saddle-focus EPs with index 2 doubled. Therefore,the number of scrolls in the proposed system(2)has doubled by employing the modulating sine nonlinear function. When the parametersMandNare set as different values,system(2)can generate multi-scroll chaotic attractors with different number of scrolls. The waveform of the modulating sine nonlinear functionf(y)withM=N=4 is depicted in Fig.1.

    Fig. 1. The waveform of the modulating sine nonlinear function f(y)with M=N=4.

    Based on system (1), the novel multi-scroll chaotic system (2) can be got by expanding the number of saddle-focus EPs with index 2 in theydirection. Taking four groups of parametersM=1,N=2,M=2,N=3,M=N=3 andM=N=4 as examples,the chaotic attractors of the proposed system (2) are displayed in Fig. 2. It can be observed from Fig. 2 that system (2) can generateM+N+1-scroll chaotic attractors,and the number of scrolls is decided byMandN.

    Fig. 2. The chaotic attractors of the system (2) with respect to different parameters M and N: (a) M =1, N =2, (b) M =2, N =3, (c)M=N=3,(d)M=N=4.

    2.2. The design of a voltage-controlled memristor

    In this subsection, a voltage-controlled memristor is introduced to enrich the dynamic behaviors of system(2). The nonlinear relationship between the voltagevand the currentiof the voltage-controlled memristor can be expressed as

    whereW(φ) is the memductance function. In this paper, a quadric nonlinearity function is selected, which is defined asW(φ)=-0.5+φ2.

    To get a memristor-based multi-scroll hyperchaotic system,the voltage-controlled memristor defined in Eq.(5)is introduced into system(2). Then,a new memristor-based multiscroll hyperchaotic system is proposed as follows:

    whereW(w)=-0.5+w2andf(y)is the modulating sine nonlinear function defined in Eq.(3).

    Next,it will be shown that system(6)can generate hyperchaotic attractors with controllable number of scrolls in theydirection. When the parameters are selected asa=3,b=g=1 andc=d=e=0.5, system (6) can generate multi-scroll hyperchaotic attractors. Meanwhile, the number of scrolls is decided by the parametersMandNof the modulating sine nonlinear functionf(y). It means that system(6)can generateM+N+1-scroll hyperchaotic attractors for different values ofMandN. Taking four groups of parametersM=1,N=2,M=2,N=3,M=N=3 andM=N=4 as examples,and the initial conditions are taken as(0, 0, 0, 0)T,system(6)can generate 4-scroll, 6-scroll, 7-scroll and 9-scroll hyperchaotic attractors, respectively. Correspondingly, the phase portraits of the 4-scroll,6-scroll,7-scroll and 9-scroll hyperchaotic attractors in they-zplane are described in Fig.3.It can be clearly concluded from Figs.2 and 3 that,owing to the introduction of the memristor(5),the system(6)can generate multi-scroll hyperchaotic attractors with different sizes, in contrast with the multi-scroll chaotic attractors in system(2).

    Fig. 3. The hyperchaotic attractors of the system (6) with respect to different parameters M and N: (a)M=1,N=2,(b)M=2,N=3,(c)M=N=3,(d)M=N=4.

    3. Dynamic analysis

    In this section,the dynamical characteristics of system(6)are further analyzed, such as the EPs and their stability, Lyapunov exponents, bifurcation diagrams and basins of attraction.

    3.1. EPs and their stability analysis

    By comparison with system(2),the number and the properties of the EPs of system(6)have changed greatly,because of the introduction of the memristor (5). At a result, the EPs of system(2)have been extended to line EPs. To get the line EPs of system(6),let ˙x= ˙y=˙z= ˙w=0,then

    It can be clearly seen from the above analysis that the number of critical EPs and saddle-focus line EPs with index 2 changes for varying values of the parametersMandN. Therefore,when the parametersMandNare set as different values,the corresponding number of critical EPs and saddle-focus line EPs can be expended. Note that,the saddle-focus line EPs are very important to generate chaotic attractors, and the number of saddle-focus line EPs with index 2 has a one-to-one correspondence with the number of scrolls. Therefore, we can control the number of scrolls of attractors by selecting appropriate parametersMandN,and then theM+N+1-scroll hyperchaotic attractor can be obtained.

    3.2. Lyapunov exponents and bifurcation diagrams

    To explore the influence of the nonlinear function(3)and the memristor (5) to the nonlinear dynamical characteristics of system (6), the Lyapunov exponents and bifurcation diagrams with respect to parametersaandbare investigated in this subsection. For simplicity, only system(6)with parametersM=N=4 is used as an example to explore the dynamical characteristics. The MATLAB simulation results are shown in Figs.4 and 5 with initial conditions(0, 0, 0, 0)T.

    Fig.4. Lyapunov exponents and bifurcation diagram of the system(6)with respect to a: (a)Lyapunov exponents;(b)bifurcation diagram.

    Whenb=g= 1 andc=d=e= 0.5, the Lyapunov exponents and bifurcation diagram are shown in Fig. 4 with respect to the parameteravarying in the range 0<a <5.It can be clearly seen from Fig. 4 that system (6) in turn goes through period, chaos and hyperchaos with the increase of parametera. When 0<a <0.91, the sign of the Lyapunov exponents are (0, 0,-,-), so the attractors is periodic. When 0.91<a <1.58,the sign of the Lyapunov exponents are (+, 0,-,-), so the system is in a chaotic state.When 1.58<a <5, the sign of the Lyapunov exponents are(+, +, 0,-), it implies that the system is in a hyperchaotic state. It can be concluded that the hyperchaotic system(6)has even more complex dynamical characteristics than the chaotic system(2).

    On the other hand,when the parameterbvaries from 0 to 9,the Lyapunov exponents and bifurcation diagram are shown in Fig. 5 witha=3,g=1 andc=d=e=0.5. It can be concluded from Fig.5 that system(6)possesses sustained hyperchaotic state with the increase of parameterb, and the bifurcation diagram match well with the Lyapunov exponents.

    Fig.5. Lyapunov exponents and bifurcation diagram of the system(6)with respect to b: (a)Lyapunov exponents;(b)bifurcation diagram.

    3.3. Coexisting multi-scroll hyperchaotic attractors

    To further explore the influence of the memristor(5)upon the dynamic behaviors of system (6), the coexisting multiscroll hyperchaotic attractors are investigated in this subsection. For simplicity, the system parameters are set asa=3,b=g=1,c=d=e=0.5 andM=N=4 to explore the coexisting hyperchaotic attractors by analyzing the Lyapunov exponents,bifurcation diagrams and basins of attraction.

    When the initial conditions of system (6) are set to be(0,y(0), 0, 0)T, the Lyapunov exponents and bifurcation diagram are described in Fig.6 with respect to the initial conditiony(0) varying in the range-9<y(0)<9. It can be seen from Fig.6(a)that system(6)remains sustained hyperchaotic state and the Lyapunov exponents vary for different initial conditionsy(0). It is observed from Fig.6(b)that the bifurcation diagram has a symmetric relationship about the origin. To better show this interesting phenomenon, some phase portraits are given with different initial conditions. The hyperchaotic attractors of system(6)are displayed in Fig.7 with the initial conditions(0,y(0), 0, 0)T,wherey(0)is set to be±2.3,±4.4 and±6.2. It is observed from Fig.7 that system(6)can produce 9-scroll hyperchaotic attractors. In addition, when two initial conditions are opposite to each other, the hyperchaotic attractors have a symmetrical positional relationship about the origin.

    Fig.6. Lyapunov exponent and bifurcation diagrams of the system(6)with respect to the initial conditions (0, y(0), 0, 0)T: (a) Lyapunov exponents;(b)bifurcation diagram.

    When the initial conditions of system (6) are set to(0, 0, 0,w(0))T,the Lyapunov exponents and bifurcation diagram are described in Fig.8 with respect to the initial conditionw(0) varying in the range-9<w(0)<9. From Fig. 8,it can be concluded that the Lyapunov exponents and bifurcation diagram are approximately symmetric aboutw(0)=0,and system (6) stays on sustained hyperchaotic state with respect to the initial conditionw(0)in the range-9<w(0)<9.For instance,whenw(0)is set to be 1,3.5,5 and 8,the system can generate 9-scroll,4-scroll,double-scroll and single-scroll hyperchaotic attractors, respectively. From Fig. 9, it can be seen that the number of scrolls of system (6) varies with the change of the initial conditionw(0).

    Fig.7. The hyperchaotic attractors of the system(6)with respect to different initial conditions: (a)(0, 2.3, 0, 0)T;(b)(0, -2.3, 0, 0)T;(c)(0, 4.4, 0, 0)T;(d)(0, -4.4, 0, 0)T;(e)(0, 6.2, 0, 0)T;(f)(0, -6.2, 0, 0)T.

    Fig. 8. Lyapunov exponents and bifurcation diagram of system (6) with respect to the initial conditions (0, 0, 0, w(0))T: (a) Lyapunov exponents;(b)bifurcation diagram.

    Fig. 9. The hyperchaotic attractors of system (6) with respect to different initial conditions: (a) (0, 0, 0, 1)T; (b) (0, 0, 0, 3.5)T; (c) (0, 0, 0, 5)T;(d)(0, 0, 0, 8)T.

    To further confirm that system (6) has coexisting hyperchaotic attractors,the basins of attraction of the system(6)iny(0)–w(0)plane are displayed in Fig.10 with the initial conditionsx(0)=z(0)=0. Different colors in Fig.10 represent different types of hyperchaotic attractors,in which white represents system divergence,yellow represents the single-scroll hyperchaotic attractor,brown represents the double-scroll hyperchaotic attractor,green represents the 4-scroll hyperchaotic attractor and gray represents the 9-scroll hyperchaotic attractor. It is worth noting that, for simplicity and intuition, only five color regions are labelled in the basins of attraction. In fact,for different initial conditions,the various types of attractors can be found in system(6),such as 9-scroll hyperchaotic attractors with different topological structures.

    Fig.10. The basins of attraction of the system(6)in y(0)–w(0)plane.

    It can be concluded from the above analysis that there exist various coexisting hyperchaotic attractors in system(6),owing to the introduction of the memristor (5). This phenomenon means that,in contrast with system(2),the state trajectories of system (6) are even more sensitive to the initial conditions, and it implies that system (6) has even richer dynamic behaviors than many existing memristor-based chaotic systems.

    4. FPGA implementation

    In this part,the FPGA-based digital implementation is designed for the proposed multi-scroll hyperchaotic system(6).Meanwhile, the hyperchaotic attractors with different initial conditions are implemented by FPGA. Firstiy, the hyperchaotic system is described by the improved Euler algorithm.The discrete state equation of the memristor-based multi-scroll hyperchaotic system(6)is described as follows:

    with

    In Eqs. (9) and (10),his the iteration step and set to beh=1/128. Then,the iteration operation of Eqs. (9)and(10)can be described by employing a three-stage state machine.Finally, the output digital signals in the FPGA development board are converted into the analog voltage signals, and the phase portraits of the multi-scroll hyperchaotic attractors of system(6)are displayed on the oscilloscope.

    Firstly, for the high operation accuracy requirement, the state variables are described by employing 32-bit fixed-point numbers. In this 32-bit fixed-point numbers, we use 1 bit to represent the sign bit, 7 bits to represent the integer part and 24 bits to represent the decimal part. Then,the digital implementation of system(6)is designed.The iteration operation of Eqs.(9)and(10)can be easily realized by using the three-stage stage machine.The design of the three-stage state machine for the hyperchaotic system(6)is displayed in Fig.11.

    Fig.11. State machine description of the system(6).

    Thereafter,Eqs.(9)and(10)are directly described in the Quartus II design software by using the Verilog HDL language.Then,the Verilog HDL code of the FPGA-based digital implementation is downloaded to the FPGA chip after compilation. The FPGA chip is Altera Cyclone IV EP4CE10F17C8 and the DAC module is AN9767. The digital signals can be converted into analog voltage signals to display on the oscilloscope, by employing the DAC module. To prove the feasibility of the design method,the experimental equipment based on FPGA is tested and shown in Fig.12.

    Fig. 12. Experimental testing of the memristor-based multi-scroll hyperchaotic system.

    Setting all the system parameters asa=3,b=g=1,c=d=e= 0.5 andM=N= 4, we can obtain the hyperchaotic attractors of system (6) corresponding to different initial conditions as shown in Fig.13, respectively. Form Fig.13, it can be clearly seen that the hyperchaotic attractors of system (6) displayed on the oscilloscope are all in accordance with the numerical simulation results of MATLAB in the Figs.3,7 and 9. The existence of the hyperchaotic attractors is confirmed in Fig.13.

    Fig.13. The experimental results with respect to initial conditions: (a)(0, 0, 0, 0)T; (b)(0, 0, 0, 3.5)T; (c)(0, 0, 0, 5)T; (d)(0, 0, 0, 8)T;(e) (0, 2.3, 0, 0)T; (f) (0, -2.3, 0, 0)T; (g) (0, 4.4, 0, 0)T; (h)(0, -4.4, 0, 0)T.

    5. Conclusion

    The paper proposes a novel method to generate multiscroll hyperchaotic attractors by employing a modulating sine nonlinear function and a voltage-controlled memristor. A novel memristor-based multi-scroll hyperchaotic system is constructed which can produce coexisting hyperchaotic attractors with different topological structures, and meanwhile the multi-scroll hyperchaotic system (6) is realized by FPGA. In contrast with most of the existing results, the main innovations of this paper are as follows: To increase the number of scrolls, the modulating sine nonlinear function (3) is designed to change the number of saddle-focus line EPs with index 2. Thus,the number of scrolls can be controlled by selecting appropriate parametersMandNin the modulating sine nonlinear function(3). On the other side,owing to the introduction of the voltage-controlled memristor(5),the proposed system (6) can generate various complex dynamic behaviors,such as hyperchaotic attractors and coexisting attractors(e.g.,M+N+1-scroll,4-scroll,double-scroll and single-scroll hyperchaotic attractors),in comparison with the multi-scroll system(2). Hence,it is more convenient to generate multi-scroll hyperchaotic attractors with controllable scroll numbers than many of the existing published literature. In summary,in contrast with many chaotic systems,the presented multi-scroll hyperchaotic system has larger key space and more complex dynamic behaviors,and therefore is especially suitable for engineering applications.

    Acknowledgements

    Project supported by the National Natural Sciene Foundation of China(Grant Nos.61973199 and 61973200)and the Taishan Scholar Project of Shandong Province of China.

    2021天堂中文幕一二区在线观| 成人亚洲精品av一区二区| 久久热在线av| 国产亚洲av高清不卡| 在线视频色国产色| 91成年电影在线观看| 又大又爽又粗| 国产精品美女特级片免费视频播放器 | 夜夜看夜夜爽夜夜摸| 成年版毛片免费区| 精品久久久久久,| 琪琪午夜伦伦电影理论片6080| 禁无遮挡网站| 中文在线观看免费www的网站 | 日韩大码丰满熟妇| 欧美一级毛片孕妇| 欧美日韩瑟瑟在线播放| 2021天堂中文幕一二区在线观| 色综合站精品国产| 日本免费a在线| 国产精品 国内视频| e午夜精品久久久久久久| 日韩欧美国产在线观看| 搞女人的毛片| 色在线成人网| 亚洲精品粉嫩美女一区| 国产成人影院久久av| 色av中文字幕| 曰老女人黄片| 婷婷六月久久综合丁香| 国模一区二区三区四区视频 | 特级一级黄色大片| 男人舔奶头视频| 琪琪午夜伦伦电影理论片6080| 好男人在线观看高清免费视频| 午夜久久久久精精品| av福利片在线观看| 国产av一区二区精品久久| 性色av乱码一区二区三区2| 黄色片一级片一级黄色片| 淫妇啪啪啪对白视频| 国产精品免费视频内射| 亚洲av美国av| 18禁裸乳无遮挡免费网站照片| 精品久久久久久成人av| 黄色成人免费大全| 丰满的人妻完整版| 黄片大片在线免费观看| 夜夜躁狠狠躁天天躁| 国产视频一区二区在线看| 久久精品夜夜夜夜夜久久蜜豆 | 久久 成人 亚洲| 久久久久久免费高清国产稀缺| 亚洲激情在线av| 亚洲欧美一区二区三区黑人| 久久精品国产99精品国产亚洲性色| 搡老熟女国产l中国老女人| 精品电影一区二区在线| or卡值多少钱| 国产成人一区二区三区免费视频网站| 亚洲午夜理论影院| 欧美av亚洲av综合av国产av| 成人午夜高清在线视频| 丰满人妻熟妇乱又伦精品不卡| 欧美性长视频在线观看| 国产精品久久久人人做人人爽| 日韩av在线大香蕉| 国内久久婷婷六月综合欲色啪| 欧美精品亚洲一区二区| 国产精品免费一区二区三区在线| 1024手机看黄色片| 久久 成人 亚洲| 大型黄色视频在线免费观看| 成在线人永久免费视频| 国产亚洲欧美98| 在线观看舔阴道视频| 人人妻人人澡欧美一区二区| 日日干狠狠操夜夜爽| 久久久精品国产亚洲av高清涩受| 国产成+人综合+亚洲专区| 久久精品人妻少妇| a级毛片a级免费在线| 国产成人av教育| 日日爽夜夜爽网站| 久久欧美精品欧美久久欧美| 亚洲av第一区精品v没综合| 又爽又黄无遮挡网站| 久久精品亚洲精品国产色婷小说| 亚洲欧美日韩无卡精品| 母亲3免费完整高清在线观看| 美女扒开内裤让男人捅视频| 国产精品1区2区在线观看.| 精品国产美女av久久久久小说| 久久人妻福利社区极品人妻图片| 久久精品国产99精品国产亚洲性色| 亚洲欧美日韩东京热| 国产精品香港三级国产av潘金莲| 成年人黄色毛片网站| 午夜精品一区二区三区免费看| 亚洲一区二区三区色噜噜| 亚洲国产欧洲综合997久久,| 国产区一区二久久| 搞女人的毛片| 精品乱码久久久久久99久播| 国内精品久久久久久久电影| 一本综合久久免费| 一a级毛片在线观看| 亚洲国产精品成人综合色| 国产精品久久电影中文字幕| 国产一级毛片七仙女欲春2| 亚洲熟妇熟女久久| 国产97色在线日韩免费| av免费在线观看网站| 国产精品久久久久久精品电影| www.www免费av| 久久久精品大字幕| 18禁观看日本| av在线天堂中文字幕| 精品一区二区三区四区五区乱码| 国内精品一区二区在线观看| 精品乱码久久久久久99久播| 非洲黑人性xxxx精品又粗又长| 亚洲午夜理论影院| 亚洲国产看品久久| 亚洲一卡2卡3卡4卡5卡精品中文| 一本综合久久免费| 丰满人妻一区二区三区视频av | 国产欧美日韩一区二区三| 十八禁人妻一区二区| 黑人欧美特级aaaaaa片| 国产精品影院久久| 日本 欧美在线| 国产人伦9x9x在线观看| 好男人电影高清在线观看| 久久久久久久午夜电影| 99久久综合精品五月天人人| 又紧又爽又黄一区二区| 19禁男女啪啪无遮挡网站| 无人区码免费观看不卡| 少妇熟女aⅴ在线视频| 免费av毛片视频| 久久性视频一级片| 中文字幕久久专区| 美女大奶头视频| 麻豆av在线久日| 91老司机精品| 色在线成人网| 国产av又大| 9191精品国产免费久久| 久久婷婷人人爽人人干人人爱| 在线观看免费日韩欧美大片| 一本大道久久a久久精品| 久久精品人妻少妇| 俄罗斯特黄特色一大片| 法律面前人人平等表现在哪些方面| 日本黄色视频三级网站网址| 国产精品av久久久久免费| 一卡2卡三卡四卡精品乱码亚洲| av福利片在线观看| 国产精品自产拍在线观看55亚洲| 高清在线国产一区| 又粗又爽又猛毛片免费看| 香蕉丝袜av| 国产97色在线日韩免费| 久久久久久免费高清国产稀缺| 国产精品爽爽va在线观看网站| 国产69精品久久久久777片 | 婷婷亚洲欧美| 国产精品香港三级国产av潘金莲| 日韩欧美免费精品| 97超级碰碰碰精品色视频在线观看| 亚洲av五月六月丁香网| 露出奶头的视频| 亚洲男人的天堂狠狠| 亚洲熟女毛片儿| 午夜福利免费观看在线| 法律面前人人平等表现在哪些方面| 国产99白浆流出| 91成年电影在线观看| 成人亚洲精品av一区二区| 亚洲精品在线美女| 亚洲av第一区精品v没综合| 亚洲天堂国产精品一区在线| 999精品在线视频| 久久久水蜜桃国产精品网| 国产成人一区二区三区免费视频网站| 女同久久另类99精品国产91| 99精品欧美一区二区三区四区| bbb黄色大片| 国产成+人综合+亚洲专区| 色综合亚洲欧美另类图片| 午夜精品在线福利| 99久久99久久久精品蜜桃| 亚洲精品在线观看二区| 一本久久中文字幕| 欧美高清成人免费视频www| 一区福利在线观看| 桃色一区二区三区在线观看| 午夜激情av网站| 国产蜜桃级精品一区二区三区| 国产成人aa在线观看| 中文字幕久久专区| 在线永久观看黄色视频| 亚洲人与动物交配视频| 欧美精品亚洲一区二区| 日韩欧美免费精品| 可以在线观看毛片的网站| 欧美日本亚洲视频在线播放| 亚洲国产欧美一区二区综合| 欧美最黄视频在线播放免费| 少妇人妻一区二区三区视频| 久久久久九九精品影院| 一本大道久久a久久精品| 久久中文看片网| 精品一区二区三区四区五区乱码| 精品国产超薄肉色丝袜足j| 丝袜美腿诱惑在线| 日日摸夜夜添夜夜添小说| 少妇人妻一区二区三区视频| 黄色片一级片一级黄色片| 国语自产精品视频在线第100页| 一二三四社区在线视频社区8| e午夜精品久久久久久久| 熟女电影av网| а√天堂www在线а√下载| 最近最新中文字幕大全电影3| 97碰自拍视频| 男插女下体视频免费在线播放| 国产午夜精品论理片| 岛国视频午夜一区免费看| 国产精品美女特级片免费视频播放器 | 免费无遮挡裸体视频| 亚洲精品美女久久av网站| 精品日产1卡2卡| 三级国产精品欧美在线观看 | 亚洲欧美激情综合另类| 国产午夜福利久久久久久| 香蕉丝袜av| 夜夜躁狠狠躁天天躁| www日本黄色视频网| tocl精华| 亚洲专区国产一区二区| а√天堂www在线а√下载| 亚洲 欧美一区二区三区| 美女免费视频网站| 一进一出抽搐动态| 777久久人妻少妇嫩草av网站| АⅤ资源中文在线天堂| 老司机午夜福利在线观看视频| 亚洲 欧美 日韩 在线 免费| 人成视频在线观看免费观看| 搞女人的毛片| 中文字幕熟女人妻在线| 成人18禁在线播放| 美女免费视频网站| 久久久久久亚洲精品国产蜜桃av| 日韩欧美 国产精品| 久久久久久久精品吃奶| 熟妇人妻久久中文字幕3abv| 琪琪午夜伦伦电影理论片6080| 国产av一区在线观看免费| 国产av在哪里看| 青草久久国产| 亚洲色图av天堂| 欧美性猛交黑人性爽| 色尼玛亚洲综合影院| 欧美又色又爽又黄视频| 两性夫妻黄色片| 亚洲va日本ⅴa欧美va伊人久久| www.999成人在线观看| 中出人妻视频一区二区| www.自偷自拍.com| 午夜精品在线福利| 亚洲中文字幕日韩| 18美女黄网站色大片免费观看| 亚洲午夜理论影院| 欧美黄色片欧美黄色片| 日韩欧美在线二视频| 亚洲精品一区av在线观看| 禁无遮挡网站| 久热爱精品视频在线9| 国产亚洲精品久久久久5区| 制服人妻中文乱码| 少妇被粗大的猛进出69影院| 精品欧美一区二区三区在线| 亚洲成人久久性| 日本a在线网址| 人人妻人人看人人澡| 五月玫瑰六月丁香| 久久伊人香网站| 国产男靠女视频免费网站| 久久性视频一级片| 夜夜看夜夜爽夜夜摸| 国产成人精品久久二区二区91| 国产亚洲精品综合一区在线观看 | 中文字幕av在线有码专区| 欧美黄色片欧美黄色片| 91大片在线观看| av在线播放免费不卡| 非洲黑人性xxxx精品又粗又长| 国产午夜福利久久久久久| 国产精品 国内视频| 老司机深夜福利视频在线观看| 变态另类丝袜制服| 一级毛片女人18水好多| 国产蜜桃级精品一区二区三区| 久久草成人影院| 久久久久亚洲av毛片大全| 欧美色视频一区免费| 国产精品99久久99久久久不卡| 一个人免费在线观看电影 | 久久久久久九九精品二区国产 | 午夜视频精品福利| 久久九九热精品免费| 免费无遮挡裸体视频| 亚洲狠狠婷婷综合久久图片| 欧美大码av| 成人三级黄色视频| 国产区一区二久久| 村上凉子中文字幕在线| 亚洲欧美激情综合另类| av中文乱码字幕在线| 精品欧美国产一区二区三| 精品少妇一区二区三区视频日本电影| 久久亚洲真实| 成人国产综合亚洲| 久久精品国产亚洲av高清一级| 色综合婷婷激情| 19禁男女啪啪无遮挡网站| 黑人欧美特级aaaaaa片| 国产成年人精品一区二区| 国产高清videossex| 天天躁狠狠躁夜夜躁狠狠躁| 欧美色欧美亚洲另类二区| 国内少妇人妻偷人精品xxx网站 | 日日夜夜操网爽| av欧美777| 婷婷丁香在线五月| 丁香欧美五月| 久久精品国产99精品国产亚洲性色| 人人妻,人人澡人人爽秒播| 国产熟女午夜一区二区三区| 不卡一级毛片| 成年人黄色毛片网站| 久久香蕉精品热| 久久天躁狠狠躁夜夜2o2o| 老司机深夜福利视频在线观看| 欧美性猛交╳xxx乱大交人| 日日摸夜夜添夜夜添小说| 亚洲精品美女久久久久99蜜臀| 正在播放国产对白刺激| 宅男免费午夜| 黄色丝袜av网址大全| 久久精品aⅴ一区二区三区四区| 成年女人毛片免费观看观看9| 国产野战对白在线观看| 又爽又黄无遮挡网站| 午夜影院日韩av| 日本撒尿小便嘘嘘汇集6| 久久久久久九九精品二区国产 | 亚洲自拍偷在线| 久久这里只有精品19| 伊人久久大香线蕉亚洲五| 国产精品美女特级片免费视频播放器 | 久久久久久九九精品二区国产 | 成人三级黄色视频| 人妻久久中文字幕网| 亚洲精品一区av在线观看| x7x7x7水蜜桃| 久久久国产欧美日韩av| 91麻豆av在线| 国产一区在线观看成人免费| 精品午夜福利视频在线观看一区| 一区福利在线观看| 亚洲欧洲精品一区二区精品久久久| 99久久精品热视频| 国内久久婷婷六月综合欲色啪| 国产主播在线观看一区二区| 天堂影院成人在线观看| 国产成年人精品一区二区| 久久久精品大字幕| 女生性感内裤真人,穿戴方法视频| 成人一区二区视频在线观看| 91成年电影在线观看| 亚洲中文日韩欧美视频| 叶爱在线成人免费视频播放| 久久精品国产综合久久久| 久久久久久大精品| 亚洲国产欧美网| 国产午夜精品久久久久久| 日韩大尺度精品在线看网址| 天堂动漫精品| 一区二区三区国产精品乱码| 嫩草影院精品99| 国产成人精品久久二区二区免费| 国产一区二区在线av高清观看| 怎么达到女性高潮| 国产精品九九99| 日日爽夜夜爽网站| 最近视频中文字幕2019在线8| 中文资源天堂在线| 久久精品国产亚洲av高清一级| 国内精品一区二区在线观看| 午夜福利在线观看吧| 国产亚洲av高清不卡| 亚洲五月婷婷丁香| 老熟妇仑乱视频hdxx| 国产真实乱freesex| 日韩欧美 国产精品| 一进一出抽搐动态| 色在线成人网| 国产精品久久电影中文字幕| 国产精品一及| 成人一区二区视频在线观看| 天天添夜夜摸| 欧美日韩瑟瑟在线播放| 99久久无色码亚洲精品果冻| 在线a可以看的网站| 午夜福利视频1000在线观看| 欧美日韩黄片免| 亚洲欧美日韩高清专用| 老熟妇仑乱视频hdxx| 99热6这里只有精品| 久久久久亚洲av毛片大全| 欧美黄色淫秽网站| 国产高清激情床上av| 日本在线视频免费播放| 亚洲18禁久久av| 亚洲精品av麻豆狂野| 亚洲av电影在线进入| 成人永久免费在线观看视频| 99久久无色码亚洲精品果冻| 欧美三级亚洲精品| 国产成人一区二区三区免费视频网站| 亚洲国产精品999在线| 又爽又黄无遮挡网站| 男女下面进入的视频免费午夜| 伦理电影免费视频| 变态另类丝袜制服| 一本综合久久免费| 免费搜索国产男女视频| 黑人巨大精品欧美一区二区mp4| 欧美乱妇无乱码| 12—13女人毛片做爰片一| 精品无人区乱码1区二区| 亚洲欧美日韩无卡精品| 久久久久久久精品吃奶| 亚洲专区字幕在线| 免费搜索国产男女视频| 老司机在亚洲福利影院| 1024视频免费在线观看| 日本黄大片高清| 亚洲人成电影免费在线| 亚洲真实伦在线观看| 精品日产1卡2卡| 精品国产美女av久久久久小说| 欧美一级a爱片免费观看看 | 老熟妇乱子伦视频在线观看| 又大又爽又粗| 亚洲精品中文字幕在线视频| 97超级碰碰碰精品色视频在线观看| 亚洲成人中文字幕在线播放| 最新美女视频免费是黄的| 国产精品一区二区三区四区久久| 国产亚洲精品av在线| 性色av乱码一区二区三区2| 亚洲成av人片在线播放无| 成人午夜高清在线视频| 动漫黄色视频在线观看| 亚洲一卡2卡3卡4卡5卡精品中文| 无遮挡黄片免费观看| 亚洲av电影不卡..在线观看| 亚洲av美国av| 中文字幕高清在线视频| 成在线人永久免费视频| 国产精品98久久久久久宅男小说| 青草久久国产| 久久久久亚洲av毛片大全| 成熟少妇高潮喷水视频| 亚洲18禁久久av| 亚洲午夜理论影院| 国产精品 国内视频| 老汉色∧v一级毛片| 三级毛片av免费| 久久久国产欧美日韩av| 国产人伦9x9x在线观看| 亚洲av日韩精品久久久久久密| 免费在线观看视频国产中文字幕亚洲| 一级片免费观看大全| 老汉色∧v一级毛片| 亚洲熟女毛片儿| 99久久国产精品久久久| 午夜a级毛片| 午夜精品一区二区三区免费看| 成在线人永久免费视频| 亚洲专区国产一区二区| 亚洲人与动物交配视频| 男人舔女人下体高潮全视频| 看免费av毛片| 少妇裸体淫交视频免费看高清 | 久久久国产精品麻豆| 亚洲最大成人中文| 99riav亚洲国产免费| 黑人巨大精品欧美一区二区mp4| 最近在线观看免费完整版| 色在线成人网| 午夜久久久久精精品| 久久久国产精品麻豆| 曰老女人黄片| 国产熟女午夜一区二区三区| 成人三级黄色视频| 成人三级做爰电影| 男女午夜视频在线观看| 国产激情久久老熟女| 99精品欧美一区二区三区四区| 精品一区二区三区av网在线观看| 色噜噜av男人的天堂激情| 亚洲欧美精品综合久久99| 88av欧美| 久久精品亚洲精品国产色婷小说| 男人的好看免费观看在线视频 | 午夜成年电影在线免费观看| 亚洲熟妇中文字幕五十中出| 两性午夜刺激爽爽歪歪视频在线观看 | 欧美日本视频| 免费人成视频x8x8入口观看| 久久婷婷成人综合色麻豆| 又爽又黄无遮挡网站| 精品乱码久久久久久99久播| 搡老熟女国产l中国老女人| 一边摸一边抽搐一进一小说| 人人妻,人人澡人人爽秒播| 高清在线国产一区| 亚洲人成77777在线视频| 一二三四在线观看免费中文在| 真人一进一出gif抽搐免费| 男女午夜视频在线观看| 观看免费一级毛片| 精品国产乱码久久久久久男人| 亚洲成人免费电影在线观看| 最新在线观看一区二区三区| 在线免费观看的www视频| 亚洲av成人一区二区三| 日韩大码丰满熟妇| 欧美日本亚洲视频在线播放| 久久人妻av系列| 丝袜美腿诱惑在线| 精品国产超薄肉色丝袜足j| 久久久国产成人精品二区| 1024香蕉在线观看| 亚洲一区二区三区不卡视频| 中亚洲国语对白在线视频| 不卡一级毛片| 色综合欧美亚洲国产小说| 久久久水蜜桃国产精品网| 亚洲一区中文字幕在线| 欧美人与性动交α欧美精品济南到| av天堂在线播放| 久久午夜综合久久蜜桃| 国产精品精品国产色婷婷| 国语自产精品视频在线第100页| 国产麻豆成人av免费视频| 久久精品国产亚洲av香蕉五月| 看黄色毛片网站| 亚洲精品久久国产高清桃花| 午夜免费成人在线视频| 久久热在线av| 日本a在线网址| 日韩欧美 国产精品| 欧美中文综合在线视频| 十八禁网站免费在线| 国产免费男女视频| 久久香蕉激情| 婷婷六月久久综合丁香| 国产亚洲精品av在线| 国产精华一区二区三区| 五月伊人婷婷丁香| 国产激情偷乱视频一区二区| 啪啪无遮挡十八禁网站| 国产精品影院久久| 久久热在线av| 国产高清有码在线观看视频 | 日韩大码丰满熟妇| 久久国产乱子伦精品免费另类| xxx96com| 18禁美女被吸乳视频| 久久久久久九九精品二区国产 | 国产精品九九99| 亚洲专区国产一区二区| 久久久久久亚洲精品国产蜜桃av| 亚洲精品美女久久久久99蜜臀| 老熟妇乱子伦视频在线观看| 国内精品久久久久久久电影| 岛国视频午夜一区免费看| 岛国在线观看网站| 中文字幕精品亚洲无线码一区| 日韩欧美一区二区三区在线观看| 欧美日韩国产亚洲二区| 最近在线观看免费完整版| 亚洲美女视频黄频| 久久久久免费精品人妻一区二区| 国产av又大| 婷婷六月久久综合丁香| 国产午夜精品论理片| 欧美人与性动交α欧美精品济南到| 草草在线视频免费看| 国产伦在线观看视频一区| 麻豆成人午夜福利视频| 国内揄拍国产精品人妻在线| 亚洲国产日韩欧美精品在线观看 | 亚洲av熟女| 男人舔女人的私密视频| svipshipincom国产片| 精品国产乱码久久久久久男人| 少妇粗大呻吟视频|