• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Research and application of stochastic resonance in quad-stable potential system

    2022-08-01 05:58:40LiFangHe賀利芳QiuLingLiu劉秋玲andTianQiZhang張?zhí)祢U
    Chinese Physics B 2022年7期

    Li-Fang He(賀利芳), Qiu-Ling Liu(劉秋玲), and Tian-Qi Zhang(張?zhí)祢U)

    School of Communication and Information Engineering,Chongqing University of Posts and Telecommunications(CQUPT),Chongqing 400065,China

    Keywords: bearing fault detection,QSR,weak signal detection,SAF,W

    1. Introduction

    In recent decades,Stochastic Resonance(SR)[1]has been widely studied in physics,[2–4]biology,[5–7]and many other scientific fields.[8–12]SR is a phenomenon showing the fluctuation force acts on the system non-linearly.[13–15]The SR theory was first introduced by Benziet al.[13]in the 1990s while exploring the glacial period. Subsequently, more novel SR theories have emerged. McNamaraet al.[16,17]proposed adiabatic approximation theory based on transition probability. Due to the limitations of small parameters in the adiabatic approximation theory, Dykmanet al.[18]proposed the linear response theory to characterize SR more comprehensively. Then, Junget al.[19–21]analyzed the SNR through the Fokker–Planck equation(FPE).

    Currently,some of the famous potential function models have emerged from researchers worldwide, including: classical bistable SR,[22–25]exponential bistable SR,[26]coupled bistable SR,[27–29]and other tri-stable and multi-stable potential function models. Tan Chunlinet al.[30]presented the application of standard tri-stable SR system in early bearing fault diagnosis. Yang Yuleiet al.[31]proposed the research on a self-adaptive, cascaded tri-stable SR system under Levy noise. Zhang Buet al.[32]proposed the tri-stable state system powered by additive and multiplicative noise,and studied its mean first passage time(MFPT)and steady-state probability density(SPD).Liet al.[33]proposed an adjustable steadystate system and concluded that there were various nonlinear potential functions in the tri-stable system. Subsequently, researchers have successively studied the compound tri-stable potential function,[34]etc. In addition, there are also lots of novel SR,such as fractional SR,[35,36]stable-matching SR[37]and even SR-based signal decomposition.[38]There have been extensive researchers performed on the application of SR in bearing fault diagnosis. For example, Liuet al.[39]converted large frequency signals into small frequency signals through the frequency domain information exchange method.

    Although researchers have studied the bistable and tristable systems from various aspects, there are still few studies on quad-stable or even multi-stable systems, which need further research. In this paper, a new Quad-stable potential stochastic resonance(QSR)is submitted. The structure in this paper is as follows: In Section 2,a system model is proposed and compared with CTSR. Additionally, the expressions of SPD, MFPT,W, and SAF are derived. In Section 3, QSR is compared with CTSR through numerical simulation under low-frequency, high-frequency, and multi-frequency signal conditions. And the variation of SNR and MSNRI is investigated with noise intensityDfor two systems. In Section 4, 6205-2RS JEM SKF and HRB 6205-2Z models are chosen for bearing fault detection. Finally,the conclusions of this paper are presented in Section 5.

    2. QSR analysis

    2.1. Introductions on QSR

    Under the over-damping condition, the dynamic Langevin equation of SR can be obtained:

    where,ζ(t) is the Gaussian white noise with〈ζ(t)〉= 0,〈ζ(t)ζ(t-t′)〉=2Dδ(t′), andU(x,t)is the quad-stable generalized potential function andU0(x) is the system potential function as follows:

    ε(t)=Asin(2π ft+φi)is the input periodic signal where the phase is usually ignored which can be simplified asε(t) =Asin(2π ft).U0(x)can be expressed by parametermas shown in Eq.(3):

    where

    U0(x)has four steady-state points:

    Figures 1(a) and 1(b) are the potential function ofU0(x)andU1(x),respectively. By adjustingm,it can be found that it is a quad-stable state when 0<m ≤2,a tri-stable state when 2<m ≤4 and a bistable state when 4<m ≤6.

    Fig.1. Potential functions of U0(x,m)and U1(x): (a)U0(x,m)of QSR(m=1.5),(b)U1(x)of CTSR(a=1.5,b=3,and c=1).

    Figure 2 is the potential function of QSR withm. It can be seen that the potential well ofU0(x,m)on both sides shifts to the right and the well depth changes asmincreases, while the middle potential well changes insignificantly.

    Figure 3(a)shows the variation of the potential well force,which is symmetric about the origin and fluctuates between(-0.5, 0.5). It can be concluded that the nonlinear forces play an essential role on the shape of potential force. Figure 3(b)shows the height of the potential barriers. Whenmis less thanmc,all barriers’height is increasing,and the middle one is higher than the others, which indicates that the particles need more energy to transit from the middle wells to the outer wells. In contrast whenmis higher or equal thanmc,the particle needs less energy. The height of the middle barrier is Δu0=m4(m2-8m+12)2/2048,and Δu1=Δu2=m4/128 for the other barriers.

    Fig.2.U0(x,m)varies with m and x: (a)U0(x,m)varies with m and x,(b)U0(x,m)varies with m and x.

    Fig.3. Potential well force and potential barrier: (a)potential well force,(b)potential barrier.

    2.2. SPD of QSR

    From Eq.(1),the corresponding FPE is:

    SettingA=0,figure 4 shows the impacts ofmandDon SPD.Studying the relationship betweenρstand each parameter facilitates the analysis of the particle motion state. Therefore,by keepingmfixed and increasingD,the overall trend in the potential wells on both sides and the middle potential well remains unchanged. But the peak value is smaller, indicating that the particle transition requires less energy.WhenDis constant,the depth of the outer potential wells getting deeper and that of the inner well is shallower asmincreases, indicating that the particles are easier to transit from the inner potential wells to the outer wells.

    Fig.4. ρst varies with D,m,and x: (a)ρst varies with D and x(m=0.95),(b)ρst varies with D and x(m=0.95),(c)ρst varies with m and x(D=0.2),(d)ρst varies with m and x(D=0.2).

    2.3. MFPT of QSR

    Figures 5–7 show changes of MFPT withmandD. FixingDand increasingm, whenm <1,T12increases with increasingD,whenm ≥1,T12decreases with increasingD. The smallerT12, the greater the probability of particle transition,which indicates easier particle transition and stronger SR characteristics.T43shows the same characteristics asT12. In the same way,T34andT23both decrease monotonously with the increase ofDand the escape rate of particles increases. FixingDand increasingm,T34andT23decrease.T21has the same characteristics asT34,T32has the same characteristics asT23.The above results show that the escape rate of the particle is greater asmandDincrease,which indicates stronger SR characteristics.

    Fig.5. T12 or T43 varies with D and m: (a)T12 or T43 varies with D and m,(b)T12 or T43 varies with D and m.

    Fig.6. T34 or T21 varies with D and m: (a)T34 or T21 varies with D and m,(b)T34 or T21 varies with D and m.

    Fig.7. T23 or T32 varies with D and m: (a)T23 or T32 varies with D and m,(b)T23 or T32 varies with D and m.

    2.4. WWW of QSR

    Eq.(10),it can be shown as[41]

    Then,P=(P1,P2,P3,P4)can be obtained as:

    When there is an external force,the expression of its potential function isU(x,t)=U0(x)-xε(t),then differentiation obtains the expression:

    Figure 8 shows the relationship between〈x(t)〉andD.WhenA=0.0025,f=0.001,N=300,〈x(t)〉varies periodically withD,indicating that the particles vibrate with largerDand the transition time.

    Figure 9 shows the change ofWwithDandm,Wfirst increases and then decreases asDincreases. By fixingDand increasingm,Wshows a single peak. By adjustingm, the single peak can be converted to the double peak,but the peak value is reduced. This is because the QSR have the double quad-stable’s characteristics when 0<m ≤2,which is consistent with the theory.

    Fig.8. 〈x(t)〉varies with D and t: (a)〈x(t)〉varies with D and t (m=0.6),(b)〈x(t)〉varies with D and t (m=0.6).

    Fig.9.W varies with D and m: (a)W varies with m,(b)single peak,(c)W varies with D,(d)double peak.

    2.5. SAF of QSR

    By simplifying the conditional probability and Eq.(13)

    Under the limitation of a long time,the output power of〈x(t)〉2is

    Fig.10. Variation of SAF with A,m, f: (a)SAF varies with D and A(m=1.5),(b)SAF varies with D and A(m=1.5),(c)SAF varies with D and m,(d)SAF varies with D and m,(e)SAF varies with D and f (m=1.2),(f)SAF varies with D and f (m=1.2).

    Figure 10 shows the effects ofA,m, andfon SAF, it can be seen that SAF increases first and then decreases. In Fig.10(a)and Fig.10(b),when other parameters remain fixed,SAF is proportional toAandmand the peak increases with the increase ofAandm,respectively. In Fig.10(c),SAF is steeper than that in Fig. 10(a), indicating thatmis more sensitive to SAF thanA. In Fig.10(e)and Fig.10(f),fhas little effect on the peak of SAF,which is inversely proportional tof,and the peak shifts to right whereDis bigger asfincrease.

    3. Numerical simulation and engineering application

    To verify the rules of the above theoretical analysis, GA and the fourth-order Runge–Kutta algorithm are combined to perform numerical simulations to obtain the optimal parameters:m=0.956,a=1.5125,b=3.0301,c=1.0185. In Fig.11,the noise signal is processed by QSR with a stronger periodicity and a higher amplitude, which is about 40 times than CTSR at low frequency conditions(f=0.1Hz). The frequency band of the noise is also shifted by QSR.

    In Fig.12,the original signal’s spectral amplitude is 75.49 before any processing. Then it is processed by QSR to obtain more periodicity and greater amplitude which is 539.7 and is 4 times that of CTSR and 7 times that of the original signal at high frequency conditions(f=25 Hz). The results show that the amplification performance of QSR is higher than CTSR in low frequency and high frequency conditions.

    Figures 11 and 12 show the time domain and frequency domain figures of the low and the high-frequency signal, setting the frequency of the periodic signal to 0.01 Hz and 25 Hz respectively. To verify that QSR has superior amplitude amplification and periodicity than CTSR not only at low frequencies and at high frequencies, but also at multi-frequencies.Then the periodic signal is added:ε(t)=0.1sin(2π×0.05t)+0.3sin(2π×0.03t)+0.5sin(2π×0.01t). Obviously, from Fig.13 the amplitude are 2.6 times, 1.1 times and 1.83 times that of the original multi-frequency signal amplitude, respectively, at 0.01 Hz, 0.03 Hz, and 0.05 Hz after CTSR processing. The amplitude are 6.9 times, 2.08 times, and 3.27 times that of the original multi-frequency signal amplitude after QSR processing. It can be seen that the amplification capability is stronger and the periodicity is better after QSR under high frequency and multi-frequency.

    Fig.11. Compare the time and frequency domains of two systems at low frequencies(0.01 Hz): (a)time domain diagram of input noise,(b)frequency domain diagram of input signal, (c) time-domain diagram with noise of CTSR, (d) frequency domain diagram with noise of CTSR, (e) time-domain diagram with noise of QSR,(f)frequency domain diagram with noise of QSR.

    Fig. 12. Comparison of the time and frequency domains of two systems at high frequencies (25 Hz): (a) time domain diagram of input noise, (b)frequency domain diagram of input signal, (c) time-domain diagram with noise of CTSR, (d) frequency domain diagram with noise of CTSR, (e)time-domain diagram with noise of QSR,(f)frequency domain diagram with noise of QSR.

    Fig. 13. Comparison of the time and frequency domains of two systems at multi-frequency: (a) time domain diagram of input noise, (b) frequency domain diagram of input signal, (c) time-domain diagram with noise of CTSR, (d) frequency domain diagram with noise of CTSR, (e) time-domain diagram with noise of QSR,(f)frequency domain diagram with noise of QSR.

    Fig.14. Comparison of SNR and MSNRI:(a)comparison of SNR(m=0.2,a=1.8,b=3,c=1),(b)comparison of MSNRI(m=1.5,a=1.8,b=3,c=1).

    In Fig. 14, SNR of QSR is about 2 times and MSNRI is about 12 times than CTSR, where the peak of SNR in QSR and CTSR is-18.47 dB and-37.89 dB, respectively. The peak of MSNRI in QSR and CTSR is 13.93 dB and 1.144 dB,respectively, which shows that SNR of QSR is improved by 19.42 dB relative to CTSR.This indicates QSR is superior in noise immunity.

    4. Bearing fault detection and application

    4.1. 6205-2RS JEM SKF bearing fault detection

    To verify the feasibility of QSR in practical engineering applications under different scenarios,the performance of QSR and CTSR for detecting faults is compared in this section.Due to the small public data set of actual bearing faults, the data from Case Western Reserve University (CWRU), model 6205-2RS JEM SKF[41]is widely used by domestic and international scholars. The experimental rig is shown in Fig.15.

    Fig.15. 6205-2RS JEM SKF deep groove ball bearing test device.

    (i) Inner ring fault detection

    Figures 16(a) and 16(b) show the time–frequency diagrams of the bearing inner ring fault signal, and the characteristic frequency of the fault signal cannot be identified. Figures 16(c)–16(f) are the time–frequency diagram of the output signals of CTSR and QSR.Due to the limitation of small parameters, secondary sampling is used for pre-processing,and the sampling frequency isfsr= 5 Hz. Then, the optimal parameters of the two systems can be obtained by GA,the optimal parameters of CTSR and QSR are:a=1.2154,b=2.5492,c=1.01596, andm=1.38641. From Fig.16(c),F(xiàn)ig. 16(d), Fig. 16(e), and Fig. 16(f), it can be seen that the frequency domain diagrams of the two systems show peaks atf=162 Hz(relative error is 0.123%).At this time,the SNR of QSR and CTSR are-3.7363 dB and-2.8159 dB respectively,which is an improvement of 0.9204 dB.QSR has a larger peak and less noise interference than CTSR,which makes easier to detect the inner ring fault and indicates the superiority of QSR.

    Fig. 16. Inner ring fault detection of CTSR and QSR: (a) Time domain of inner ring fault signal, (b) frequency domain of inner ring fault signal, (c)inner ring fault detection time domain of CTSR,(d)inner ring fault detection frequency domain of CTSR,(e)inner ring fault detection time domain of QSR,(f)inner ring fault detection frequency domain of QSR.

    (ii) Outer ring fault detection

    Figures 17(a) and 17(b) show the time–frequency diagrams of the bearing outer ring fault signal. It can be seen that the fault signal is completely submerged in noise and the characteristic frequency of the fault signal cannot be identified. QSR and CTSR are used to detect the fault signal. Then,the optimal parameters of the two systems can be obtained by GA. The optimal parameters of CTSR are:a= 1.0028,b=2.16974,c=1.0095, and the optimal parameter of QSR is:m=1.09348. Comparing Fig.17(c),F(xiàn)ig.17(d),F(xiàn)ig.17(e),and Fig. 17(f), it can be seen that the frequency domain diagrams of both systems show peaks atf=108 Hz (the relative error is 0.65%), which indicates that the characteristic frequency of the fault signal is detected. Figures 17(e) and 17(f) are the output signal of QSR, it can be seen that the time domain signal exhibits periodicity and the peak of the spectrum atf=108 Hz is nearly 2 times higher than CTSR.At this time, the SNR of QSR and CTSR is-38.4624 dB and-36.6194 dB, respectively, which is an improvement of 1.842 dB compared with CTSR.The results indicate that QSR has a better detection performance than CTSR.

    Fig. 17. Outer ring fault detection of CTSR and QSR: (a) time domain of outer ring fault signal, (b) frequency domain of outer ring fault signal, (c)outer ring fault detection time domain of CTSR,(d)outer ring fault detection frequency domain of CTSR,(e)outer ring fault detection time domain of QSR,(f)outer ring fault detection frequency domain of QSR.

    4.2. HRB 6205-2Z bearing fault detection

    To demonstrate the availability of QSR in different scenarios,another fault data model HRB 6205-2Z is selected for fault detection. The main parameters[43]are shown in Table 1, the experimental station of HRB 6205-2Z in Fig. 18.The sampling frequency is 20 kHz, according to Eq. (21),the inner raceway frequency and outer raceway frequency of the bearing can be obtained theoretically as 117.14 Hz and 78.13 Hz respectively. The proportional compression rate and the secondary sampling frequency areR= 4000 andfsr=fs/R=5 Hz,the calculation step ish=1/fsr=0.2.

    wherenis the number of rolling elements,flis rotation frequency,dis diameter of rolling element,Dlis pitch diameter andβis bearing contact angle.

    Table 1. The main structure parameters of the tested bearing HRB 6205-2Z.

    Fig.18. The experimental station of HRB 6205-2Z.

    (i) Inner ring fault detection

    The optimal parameters of the two systems can be obtained by GA.The optimal parameters of CTSR and QSR are:a=1.3235,b=2.9574,c=1.0028,m=1.4459.Figures 19(a)and 19(b)show the time–frequency diagrams of the fault signal. It can be seen that the signal is submerged in noise and the characteristic frequency of the fault signal cannot be identified. Figures 19(c)–19(f)are the time–frequency diagrams of the output signals of CTSR and QSR, respectively, in which shows that fault is highlighted atf= 116 Hz (the relative error is 0.973%). At this time, the SNR of QSR and CTSR is-29.9642 dB and-31.9351 dB, respectively, which is an improvement of 1.9709 dB.Furthermore,the output signal of QSR has higher spectral peaks and less noise, indicating that QSR has better anti-noise and detection performance.

    Fig. 19. Inner ring fault detection CTSR and QSR: (a) time domain of inner ring fault signal, (c) inner ring fault detection time domain of CTSR, (b)frequency domain of inner ring fault signal,(d)inner ring fault detection frequency domain of CTSR,(e)inner ring fault detection time domain of QSR,(f)inner ring fault detection frequency domain of QSR.

    Fig.20. The outer ring fault detection of CTSR and QSR:(a)time domain of outer ring fault signal,(b)frequency domain of outer ring fault signal,(c)outer ring fault detection time domain of CTSR,(d)outer ring fault detection frequency domain of CTSR,(e)outer ring fault detection time domain of QSR,(f)outer ring fault detection frequency domain of QSR.

    (ii) Outer ring fault detection

    Similarly,the optimal parameters of the two systems can be obtained by GA.The optimal parameters of CTSR and QSR are:a=1.5021,b=3.0121,c=1.1129,m=1.5137. Figures 20(a) and 20(b) illustrate the time–frequency diagrams of the outer ring fault signal. It can be seen that the signal is submerged in noise and the characteristic frequency of the fault signal cannot be identified. Figures 20(c)–20(f) are the time–frequency diagrams of the output signals of CTSR and QSR.It can be seen that CTSR detected the fault atf=76 Hz(the relative error of 2.731%) and QSR detected the fault atf=78 Hz (the relative error of 0.166%). Apparently, QSR has a lower relative error in fault detection. At this time, the SNR of QSR and CTSR is-23.377 dB and-32.6485 dB,respectively which is an improvement of 9.2715 dB compared with CTSR.The output signal has a higher spectral peak and less noise,indicating that QSR has better noise immunity and detection performance than CTSR.

    5. Conclusion and outlook

    This paper overcomes the problem of low performance of weak signal enhancement in multi-stable systems and proposes a better QSR. Firstly, the characteristics of MFPT,W,SAF,SNR,and MSNRI are studied and used as the measurement indexes. Then, GA and fourth-order Runge–Kutta algorithm are used to compare the SNR and MSNRI of CTSR and QSR.Finally,CTSR and QSR are applied in bearing fault diagnosis. The conclusions are as follows:

    (i) MFPT first increases and then decreases asmandDincrease,i.e.,the SR phenomenon occurs,andmis more sensitive to MFPT.

    (ii)Walso first increases and then decreases asDincreases.Because the system has the double quad-stable’s characteristics when 0<m ≤2,the double peak ofWoccurs.

    (iii) SAF is proportional toAandm,but is inversely proportional tof. Moreover,mis more sensitive to SAF andfhas little effect on SAF.

    (iv) According to simulation results,the amplification capability of QSR is superior than CTSR at low frequency(f=0.01 Hz), high frequency (f= 25 Hz) and multi-frequency signals.

    (v) According to simulation results,the SNR and MSNRI of QSR are about 2 times and 12 times higher than CTSR respectively,indicating better performance.

    (vi) Under the 6205-2RS JEM SKF bearing fault detection, the amplitude of the inner and outer ring output signals of QSR is 3 times and 2 times higher than CTSR,respectively.For HRB 6205-2Z bearing fault detection,the amplitude of the inner and outer ring output signals of QSR is 13 times and 3 times higher than CTSR,respectively.And the SNR of QSR is larger than CTSR in both types of bearing fault. It shows that QSR is superior and has better noise immunity.

    Future research will be focused on the theoretical analysis of the SNR and bearing fault detection under variable operating conditions.

    Acknowledgements

    Project supported by the National Natural Science Foundation of China (Grant No. 61771085) and the Research Project of Chongqing Educational Commission(Grant Nos.KJ1600407 and KJQN201900601).

    久久中文看片网| 国产 一区 欧美 日韩| av视频在线观看入口| avwww免费| 亚洲第一区二区三区不卡| 乱码一卡2卡4卡精品| 禁无遮挡网站| 亚洲精品国产成人久久av| 国产午夜精品久久久久久一区二区三区| 国产精品.久久久| 国产精品电影一区二区三区| 校园春色视频在线观看| 97热精品久久久久久| 成人特级av手机在线观看| 亚洲内射少妇av| 亚洲美女视频黄频| av在线观看视频网站免费| 夫妻性生交免费视频一级片| 在线播放无遮挡| 国产综合懂色| 国产黄色视频一区二区在线观看 | 大香蕉久久网| 国产在线精品亚洲第一网站| a级毛色黄片| 午夜亚洲福利在线播放| 精品一区二区免费观看| 亚洲一区二区三区色噜噜| 成人永久免费在线观看视频| 丝袜喷水一区| 99热这里只有是精品在线观看| 1024手机看黄色片| 国产一区二区三区在线臀色熟女| 高清日韩中文字幕在线| 国产极品天堂在线| 亚洲第一区二区三区不卡| 成人高潮视频无遮挡免费网站| 乱码一卡2卡4卡精品| 日本三级黄在线观看| 青春草国产在线视频 | 国产成人aa在线观看| 一本久久精品| 国产成人影院久久av| 国产高清有码在线观看视频| 亚洲七黄色美女视频| 欧美性感艳星| 中文字幕熟女人妻在线| 久久久国产成人免费| av卡一久久| 国产精品爽爽va在线观看网站| 国产成人精品婷婷| 99久久中文字幕三级久久日本| 精品久久久久久久久亚洲| 久久精品人妻少妇| 身体一侧抽搐| 国产午夜福利久久久久久| 国内精品一区二区在线观看| 中文字幕久久专区| 国产av一区在线观看免费| 久久人人爽人人片av| 搡老妇女老女人老熟妇| 精品午夜福利在线看| 中文欧美无线码| 亚洲精品亚洲一区二区| 色哟哟哟哟哟哟| 人人妻人人澡人人爽人人夜夜 | 12—13女人毛片做爰片一| 亚洲人成网站在线播放欧美日韩| 国产精品1区2区在线观看.| 国产黄片美女视频| 欧美区成人在线视频| 成人特级黄色片久久久久久久| 日本熟妇午夜| 看十八女毛片水多多多| 伊人久久精品亚洲午夜| 国产午夜精品论理片| 中文字幕av在线有码专区| 久久久久久久亚洲中文字幕| 国产精品久久久久久久久免| 人妻系列 视频| a级毛色黄片| 一级黄片播放器| 成人二区视频| 老司机福利观看| 久久精品国产亚洲av天美| 欧美成人精品欧美一级黄| 国产v大片淫在线免费观看| 少妇人妻精品综合一区二区 | 国产亚洲欧美98| 日韩av在线大香蕉| 亚洲av一区综合| 九九热线精品视视频播放| 成年女人永久免费观看视频| 少妇的逼好多水| 国产成人精品婷婷| av免费在线看不卡| 九九久久精品国产亚洲av麻豆| 97人妻精品一区二区三区麻豆| 中文字幕av成人在线电影| 欧美一区二区精品小视频在线| 亚洲欧美精品专区久久| 日日啪夜夜撸| 91午夜精品亚洲一区二区三区| 天天一区二区日本电影三级| 国产精品永久免费网站| 午夜老司机福利剧场| 国产成年人精品一区二区| 大型黄色视频在线免费观看| 国内久久婷婷六月综合欲色啪| 国产精品女同一区二区软件| 日本黄大片高清| 国产91av在线免费观看| 舔av片在线| 三级国产精品欧美在线观看| 午夜精品国产一区二区电影 | 欧美性猛交黑人性爽| 日韩中字成人| 国产午夜精品一二区理论片| 国产黄色视频一区二区在线观看 | 天堂中文最新版在线下载 | 日韩欧美在线乱码| 国产午夜精品论理片| 搞女人的毛片| 看免费成人av毛片| 亚洲色图av天堂| 欧美最新免费一区二区三区| 国产av麻豆久久久久久久| 青春草视频在线免费观看| 久久久a久久爽久久v久久| 国产探花在线观看一区二区| a级一级毛片免费在线观看| 人人妻人人看人人澡| 久久精品国产亚洲av涩爱 | av免费观看日本| 成人三级黄色视频| 搡女人真爽免费视频火全软件| 日韩三级伦理在线观看| 五月伊人婷婷丁香| 亚洲激情五月婷婷啪啪| 欧美日韩一区二区视频在线观看视频在线 | 国语自产精品视频在线第100页| 波野结衣二区三区在线| 日本-黄色视频高清免费观看| 你懂的网址亚洲精品在线观看 | 亚洲,欧美,日韩| 中文字幕久久专区| 成人美女网站在线观看视频| 日本在线视频免费播放| 国产爱豆传媒在线观看| 国产一区二区三区av在线 | 91av网一区二区| 在线观看av片永久免费下载| 免费av不卡在线播放| 国产免费男女视频| 亚洲欧美成人精品一区二区| 亚洲丝袜综合中文字幕| 欧美一级a爱片免费观看看| 国产日韩欧美在线精品| 精品久久久久久久久久免费视频| 亚洲人成网站高清观看| 久久久精品大字幕| 国产伦一二天堂av在线观看| 国产免费男女视频| av福利片在线观看| ponron亚洲| 精品人妻视频免费看| 色综合亚洲欧美另类图片| 麻豆国产97在线/欧美| 女人十人毛片免费观看3o分钟| 国产老妇伦熟女老妇高清| 日本撒尿小便嘘嘘汇集6| 熟女人妻精品中文字幕| 麻豆成人午夜福利视频| 99热全是精品| 天堂影院成人在线观看| 亚洲人成网站在线观看播放| 国产精品.久久久| 成人毛片60女人毛片免费| 最好的美女福利视频网| 亚洲乱码一区二区免费版| 热99在线观看视频| 美女国产视频在线观看| 99在线人妻在线中文字幕| 久久久久久久午夜电影| 深爱激情五月婷婷| 在线观看美女被高潮喷水网站| 观看美女的网站| 能在线免费看毛片的网站| 午夜激情福利司机影院| 观看免费一级毛片| 亚洲人成网站高清观看| 免费一级毛片在线播放高清视频| 亚洲精华国产精华液的使用体验 | 亚洲精品日韩av片在线观看| 久久亚洲精品不卡| 97超视频在线观看视频| 亚州av有码| 久久久久久国产a免费观看| 我要看日韩黄色一级片| 美女xxoo啪啪120秒动态图| 春色校园在线视频观看| 99热全是精品| 中出人妻视频一区二区| 精品久久久久久久久久久久久| 国产免费男女视频| 波野结衣二区三区在线| 看免费成人av毛片| 久久国内精品自在自线图片| 美女cb高潮喷水在线观看| 欧美色欧美亚洲另类二区| 国产日本99.免费观看| 久久精品久久久久久久性| 国产一级毛片在线| 亚洲第一电影网av| 男人和女人高潮做爰伦理| 91久久精品国产一区二区三区| 亚洲精品色激情综合| 日日啪夜夜撸| 不卡一级毛片| 国产毛片a区久久久久| 97超碰精品成人国产| 精品久久久久久久久久免费视频| 国产成人aa在线观看| 毛片一级片免费看久久久久| 长腿黑丝高跟| 成人三级黄色视频| 免费观看在线日韩| 18+在线观看网站| av黄色大香蕉| 晚上一个人看的免费电影| 国产亚洲av嫩草精品影院| 舔av片在线| 欧美日韩乱码在线| 国产亚洲av嫩草精品影院| 免费看av在线观看网站| av黄色大香蕉| 亚洲欧美成人精品一区二区| 色哟哟哟哟哟哟| 99久久中文字幕三级久久日本| 日本免费a在线| 国产老妇伦熟女老妇高清| 免费黄网站久久成人精品| 在线播放无遮挡| 夜夜看夜夜爽夜夜摸| 欧美日韩精品成人综合77777| 亚洲国产欧洲综合997久久,| 少妇猛男粗大的猛烈进出视频 | 国产精品久久视频播放| 成人av在线播放网站| 99久久人妻综合| 久久久久久久久中文| 你懂的网址亚洲精品在线观看 | 一进一出抽搐gif免费好疼| 国产精品久久久久久精品电影| 国产成人福利小说| 亚洲欧美清纯卡通| 亚洲人成网站在线播| 小蜜桃在线观看免费完整版高清| 国产一级毛片七仙女欲春2| 成人三级黄色视频| 天堂√8在线中文| 欧美成人a在线观看| 韩国av在线不卡| 中文字幕免费在线视频6| 国产成人一区二区在线| 亚洲成人久久性| 国产真实伦视频高清在线观看| 亚洲国产欧美人成| 丝袜美腿在线中文| 成年免费大片在线观看| 亚洲精华国产精华液的使用体验 | 一本久久中文字幕| 一级毛片aaaaaa免费看小| 欧美日本视频| 日韩欧美在线乱码| 国产成人a区在线观看| 别揉我奶头 嗯啊视频| 国产69精品久久久久777片| av女优亚洲男人天堂| 久久午夜福利片| 97热精品久久久久久| 天美传媒精品一区二区| 国产精品精品国产色婷婷| 黑人高潮一二区| 91av网一区二区| 亚洲成人精品中文字幕电影| 精华霜和精华液先用哪个| 少妇人妻一区二区三区视频| 久久欧美精品欧美久久欧美| 久久欧美精品欧美久久欧美| 国产精品综合久久久久久久免费| 内射极品少妇av片p| 亚洲欧美成人精品一区二区| 欧美潮喷喷水| 国产精品野战在线观看| 99热这里只有是精品50| 国产在线精品亚洲第一网站| 一级毛片aaaaaa免费看小| 啦啦啦观看免费观看视频高清| 国语自产精品视频在线第100页| 亚洲自拍偷在线| 美女xxoo啪啪120秒动态图| 99久国产av精品国产电影| 亚洲第一电影网av| 日本熟妇午夜| 国产精品无大码| 舔av片在线| 少妇人妻精品综合一区二区 | 亚洲精华国产精华液的使用体验 | 超碰av人人做人人爽久久| 麻豆国产av国片精品| 日本在线视频免费播放| 日韩国内少妇激情av| 国产三级中文精品| 日韩三级伦理在线观看| 精品久久久久久久末码| 人妻系列 视频| 中文字幕久久专区| 美女脱内裤让男人舔精品视频 | 黑人高潮一二区| 国产精品久久视频播放| 精品人妻一区二区三区麻豆| 少妇高潮的动态图| 亚洲美女视频黄频| 亚洲国产精品成人综合色| 极品教师在线视频| 伦理电影大哥的女人| 国产精品福利在线免费观看| 偷拍熟女少妇极品色| 日本撒尿小便嘘嘘汇集6| 午夜视频国产福利| 国产高潮美女av| 成人特级av手机在线观看| 免费在线观看成人毛片| 欧美变态另类bdsm刘玥| 精品人妻偷拍中文字幕| 有码 亚洲区| 亚洲国产色片| 国产av麻豆久久久久久久| 国产乱人视频| 丰满乱子伦码专区| 一进一出抽搐动态| 亚洲欧美成人精品一区二区| 久久99精品国语久久久| 国产黄a三级三级三级人| 国产精品美女特级片免费视频播放器| 免费人成在线观看视频色| 两个人的视频大全免费| 国产精品免费一区二区三区在线| 亚洲五月天丁香| 久久久国产成人精品二区| 人妻制服诱惑在线中文字幕| 日本五十路高清| 日韩成人av中文字幕在线观看| 精品久久久久久成人av| 成人高潮视频无遮挡免费网站| 五月伊人婷婷丁香| 久久久久九九精品影院| 国产精品野战在线观看| 亚洲精品日韩在线中文字幕 | 狂野欧美白嫩少妇大欣赏| 欧美一级a爱片免费观看看| 欧美三级亚洲精品| 国产私拍福利视频在线观看| 天天躁日日操中文字幕| 日本在线视频免费播放| 欧美日韩综合久久久久久| 91av网一区二区| 一区二区三区四区激情视频 | 亚洲成人久久性| 成人漫画全彩无遮挡| 三级毛片av免费| 亚洲最大成人中文| 99在线人妻在线中文字幕| 久久久国产成人精品二区| 国产伦一二天堂av在线观看| 久久精品夜夜夜夜夜久久蜜豆| 日韩欧美精品免费久久| 久久久国产成人精品二区| 日韩欧美国产在线观看| 美女脱内裤让男人舔精品视频 | 欧美zozozo另类| 欧美高清性xxxxhd video| 网址你懂的国产日韩在线| 亚洲自偷自拍三级| 极品教师在线视频| 日韩,欧美,国产一区二区三区 | 小说图片视频综合网站| 国产成人91sexporn| 美女内射精品一级片tv| 尤物成人国产欧美一区二区三区| 亚洲人成网站在线播放欧美日韩| 亚洲av男天堂| 国产成人影院久久av| 波多野结衣巨乳人妻| av天堂在线播放| 天美传媒精品一区二区| 亚洲欧美精品综合久久99| 看十八女毛片水多多多| 国产私拍福利视频在线观看| 午夜精品在线福利| 天堂av国产一区二区熟女人妻| 男的添女的下面高潮视频| 成年女人永久免费观看视频| 欧美xxxx性猛交bbbb| 久久亚洲国产成人精品v| 国产午夜精品久久久久久一区二区三区| 69av精品久久久久久| av黄色大香蕉| 国产高潮美女av| av在线天堂中文字幕| 晚上一个人看的免费电影| 在线观看66精品国产| 久久久久久久久久黄片| 国产精品美女特级片免费视频播放器| 尾随美女入室| www日本黄色视频网| 在线观看午夜福利视频| 亚洲三级黄色毛片| 自拍偷自拍亚洲精品老妇| 欧美成人a在线观看| 国产精品麻豆人妻色哟哟久久 | 一区二区三区免费毛片| 精品久久久久久久久久免费视频| 日本免费一区二区三区高清不卡| 一个人免费在线观看电影| 日本三级黄在线观看| 成年女人看的毛片在线观看| 久久久久久久午夜电影| 免费看日本二区| 人体艺术视频欧美日本| 床上黄色一级片| 男人狂女人下面高潮的视频| 欧美区成人在线视频| 男女边吃奶边做爰视频| 欧美日韩精品成人综合77777| 国产成人a∨麻豆精品| 成人美女网站在线观看视频| 国产极品天堂在线| 91久久精品国产一区二区成人| 国产亚洲av片在线观看秒播厂 | 国产一区亚洲一区在线观看| 99热全是精品| 国语自产精品视频在线第100页| 九色成人免费人妻av| 美女高潮的动态| 精品不卡国产一区二区三区| 色哟哟·www| 特大巨黑吊av在线直播| 国产免费一级a男人的天堂| 欧美日韩乱码在线| av在线老鸭窝| 国产真实伦视频高清在线观看| 美女内射精品一级片tv| 国产激情偷乱视频一区二区| av免费观看日本| 可以在线观看的亚洲视频| 天天一区二区日本电影三级| 久久久精品94久久精品| 午夜亚洲福利在线播放| 中文字幕人妻熟人妻熟丝袜美| 亚洲精品乱码久久久久久按摩| 天美传媒精品一区二区| 又黄又爽又刺激的免费视频.| 日韩精品青青久久久久久| 卡戴珊不雅视频在线播放| 99精品在免费线老司机午夜| 成人三级黄色视频| 亚洲四区av| 久久精品国产亚洲av涩爱 | 久久精品国产99精品国产亚洲性色| av福利片在线观看| 狂野欧美激情性xxxx在线观看| 亚洲不卡免费看| 亚洲精品日韩在线中文字幕 | 不卡视频在线观看欧美| 国产一区二区亚洲精品在线观看| 校园春色视频在线观看| 日韩欧美精品v在线| 日本一二三区视频观看| 网址你懂的国产日韩在线| 深爱激情五月婷婷| 黄色欧美视频在线观看| www.色视频.com| 国产精品伦人一区二区| 国产午夜精品久久久久久一区二区三区| 热99re8久久精品国产| 国产极品精品免费视频能看的| 日日摸夜夜添夜夜爱| 亚洲欧美成人精品一区二区| 亚洲av男天堂| 欧美成人免费av一区二区三区| ponron亚洲| videossex国产| 在线国产一区二区在线| 91麻豆精品激情在线观看国产| 中出人妻视频一区二区| 亚洲av中文av极速乱| 亚洲五月天丁香| 欧美日本视频| 亚洲综合色惰| 日本黄色片子视频| 日韩av不卡免费在线播放| 亚洲四区av| 国产白丝娇喘喷水9色精品| 日日摸夜夜添夜夜爱| 婷婷亚洲欧美| 少妇猛男粗大的猛烈进出视频 | 国语自产精品视频在线第100页| 国产精品爽爽va在线观看网站| 国产精品电影一区二区三区| 婷婷六月久久综合丁香| 99热这里只有是精品在线观看| 你懂的网址亚洲精品在线观看 | 99热网站在线观看| 久久久久性生活片| 午夜福利高清视频| 亚洲精品国产av成人精品| .国产精品久久| 欧美zozozo另类| 欧美日韩国产亚洲二区| 97超视频在线观看视频| 中出人妻视频一区二区| 欧美+亚洲+日韩+国产| 最近手机中文字幕大全| 国产黄片美女视频| 亚洲七黄色美女视频| 成人永久免费在线观看视频| 久久久久久国产a免费观看| 久久久精品大字幕| 亚洲国产欧美在线一区| 老女人水多毛片| 亚洲美女视频黄频| 麻豆精品久久久久久蜜桃| 国产爱豆传媒在线观看| 成人性生交大片免费视频hd| av.在线天堂| 男人的好看免费观看在线视频| 亚洲色图av天堂| 偷拍熟女少妇极品色| 亚洲人成网站在线观看播放| a级毛片a级免费在线| 99热精品在线国产| 91麻豆精品激情在线观看国产| 又爽又黄a免费视频| 日韩欧美三级三区| 国产色爽女视频免费观看| 丰满的人妻完整版| 内地一区二区视频在线| 久久国产乱子免费精品| 国产黄色视频一区二区在线观看 | 黄色一级大片看看| 搡老妇女老女人老熟妇| 亚洲性久久影院| 亚洲av一区综合| 国产精品99久久久久久久久| 免费大片18禁| 尾随美女入室| 成人漫画全彩无遮挡| 久久久欧美国产精品| 成人特级av手机在线观看| 欧美潮喷喷水| 久久久久久国产a免费观看| 99久久精品一区二区三区| 97在线视频观看| 波多野结衣巨乳人妻| 乱人视频在线观看| 狠狠狠狠99中文字幕| 午夜视频国产福利| 99久久中文字幕三级久久日本| 欧美高清性xxxxhd video| 国产精品av视频在线免费观看| 亚洲欧美精品综合久久99| 精华霜和精华液先用哪个| 欧美极品一区二区三区四区| 18禁黄网站禁片免费观看直播| 亚洲成a人片在线一区二区| 自拍偷自拍亚洲精品老妇| 夜夜夜夜夜久久久久| 黄片无遮挡物在线观看| 又爽又黄无遮挡网站| 国产 一区精品| 国产精品一二三区在线看| 此物有八面人人有两片| 精品无人区乱码1区二区| 国产三级中文精品| 美女高潮的动态| 看非洲黑人一级黄片| 99久久成人亚洲精品观看| 久久久久久久久久黄片| 国产 一区 欧美 日韩| 国产精品人妻久久久影院| 免费人成在线观看视频色| 变态另类丝袜制服| 精品久久久久久久人妻蜜臀av| 国产精品日韩av在线免费观看| 日韩视频在线欧美| 又粗又硬又长又爽又黄的视频 | 国产成人freesex在线| 综合色丁香网| 国产精品乱码一区二三区的特点| 青青草视频在线视频观看| 精品少妇黑人巨大在线播放 | 一夜夜www| 国产探花极品一区二区| 日本av手机在线免费观看| 婷婷亚洲欧美| 天天躁日日操中文字幕| 欧美日韩一区二区视频在线观看视频在线 | 午夜久久久久精精品| 免费不卡的大黄色大毛片视频在线观看 | 夫妻性生交免费视频一级片| 亚洲精品影视一区二区三区av| 欧美日韩一区二区视频在线观看视频在线 | 亚洲av二区三区四区| 最后的刺客免费高清国语|