• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Universal order-parameter and quantum phase transition for two-dimensional q-state quantum Potts model

    2022-08-01 06:00:58YanWeiDai代艷偉ShengHaoLi李生好andXiHaoChen陳西浩
    Chinese Physics B 2022年7期
    關(guān)鍵詞:李生

    Yan-Wei Dai(代艷偉), Sheng-Hao Li(李生好), and Xi-Hao Chen(陳西浩)

    1Centre for Modern Physics and Department of Physics,Chongqing University,Chongqing 400044,China

    2Chongqing Vocational Institute of Engineering,Chongqing 402260,China

    3Research Institute for New Materials and Technology,Chongqing University of Arts and Sciences,Chongqing 400000,China

    Keywords: quantum phase transitions,universal order parameter,fidelity

    1. Introduction

    Quantum phase transitions (QPTs)[1]occur at absolute zero temperature due to the Heisenberg uncertainty relation and are driven by quantum fluctuations. The core of the QPT consists of the Hamiltonian and its energy spectrum, which have been well studied through the development of various numerical methods. In particular,tensor network algorithm[2–12]is a very powerful tool to study the strongly correlated quantum lattice systems. To date, most QPTs can be described based on the spontaneous-symmetry-breaking order of the Landau–Ginzburg–Wilson paradigm. However, this local order parameter is model dependent and hard to be defined. In addition,not all phases can be described by symmetry-broken order, such phases correspond to QPTs beyond the Landau–Ginzburg–Wilson paradigm.[13–16]

    Recently, for one-dimensional systems of infinite size,Liuet al.[17]presented a universal order-parameter concept based on the fidelity between a ground state and its symmetrytransformed counterpart. The advantage of the universal order parameter over local order parameters is the former’s universality in characterizing QPTs in quantum lattice many-body systems, in the sense that the universal order parameter is not model dependent,in contrast with model-dependent order parameters. Reference [18] extends the universal order parameter from one-dimensional systems of infinite size to onedimensional finite-size systems. Herein we further extend the use of the universal order parameter to two-dimensional quantum systems. To test the pertinence of the universal order parameter to describe two-dimension lattice symmetry, we also calculate the ground-state fidelity per lattice site and quantum coherence.

    Quantum fidelity is a basic notion in quantum information science and is an approach to study QPTs in strongly correlated many-body systems.[19–28]As a measure of distance between two quantum states,quantum fidelity provides a measure of the similarity between two quantum states. When a system undergoes a QPT, the ground-state fidelity dramatically changes upon passing through the critical point in phase space, with the “pinch point” being the signature of the phase transition. In addition, the quantification of quantum coherence[29]has also revealed intriguing connections between correlation and quantum coherence.[30–32]A variety of quantum coherence measures have been introduced to detect QPTs, such as the quantum Jensen–Shannon divergence,[33]the relative entropy of coherence,[29]and thel1norm of coherence.[29]

    The present work investigates 2-, 3-, and 4-state quantum Potts models on a square lattice and the quantum Ising model on a honeycomb lattice by using the infinite projected entangled-pair state algorithm[3,4,7]in two dimensions. Here,we employ a simplified scheme to update the ground-state wave function. The infinite time-evolving block decimation(iTEBD) method[2]will be used to calculate iPEPS groundstate wave function withχbeing the bond dimension. In order to calculate the observable physical quantity, the corner transfer matrix renormalization method[34]is implemented to contracted vironmental tensor withMbeing the environment dimension. The remainder of this paper is organized as follows. In Section 2,the two-dimensionalq-state quantum Potts mode is introduced. Section 3 discusses the universal order parameter for 2-, 3-, and 4-state quantum Potts models on a square lattice and the quantum Ising model on a honeycomb lattice, and explains how the universal order parameter provides a model-independent way to characterize QPTs in manybody systems.Section 4 discusses the ground-state fidelity per lattice site,and Section 5 shows how quantum coherence measures can serve to detect QPTs. Finally,a summary is given in Section 6.

    2. The q-state quantum Potts model in two dimensions

    We now consider theq-state quantum Potts model[27,35]in a transverse magnetic field in two dimensions. Theqstate is described by the Hamiltonian

    3. Universal order parameter

    Reference [17] explains the concept of a universal order parameter. For any translation-invariant quantum lattice system of the symmetry groupG, if the system undergoes a QPT with symmetry order, the universal order parameter can be used to characterize the QPT. The ground-state fidelityF(ψ,gψ)between a ground state|ψ〉and its symmetrytransformed counterpartg|ψ〉, whereg ∈Gis any symmetry operation, can be written asF(ψ,gψ)=|〈ψ|g|ψ〉|. The ground-state fidelity asymptotically scales as [fg(λ)]L,[20–26]withLbeing the system size. As detailed in Refs.[17,18,28],the universal order is

    Given a control parameterλin the symmetry phase, thenIg(λ)=0. For a control parameterλin the symmetry-broken phase,the universal order parameterIg(λ)ranges from zero to unity. Note thatIg(λ)satisfies features of the order parameter.In fact, to characterize a quantum lattice many-body system with global symmetry groupGspontaneously broken,the universal order parameter is model independent.

    Fig. 1. The universal order parameter I(λ) for (a) the quantum Ising model, (b) the quantum three-state Potts model, and (c) the quantum four-state Potts model in a transverse magnetic field λ on the square lattice for different bond dimension χ.

    Figures 1(a)–1(c) show the universal order parameterI(λ)as a function of transverse magnetic fieldλfor the quantum Ising model,the three-state quantum Potts model,and the four-state quantum Potts model,respectively,with a transverse magnetic field imposed on a square lattice and for various bond dimensionsχ. The results show that the universal order parameterI(λ) is nonzero in theZqsymmetry-broken phase but zero in the symmetry phase. The variations in the universal order parameterI(λ) indicate that the many-body system undergoes a QPT when the control parameterλcrosses the phase-transition point. The pseudo critical points are as follows:

    (a)λc=3.273,3.222,3.213 and 3.212 with the bond dimensionχ= 2,4,6,8 and the environment dimensionM=12,16,20,22 for the quantum Ising model, respectively. Indeed, the pseudo critical points obtained by using the simplified updating scheme for the quantum transverse Ising model on the square lattice compares rather poorly with the resultλc= 3.044330(6) from the most accurate quantum Monte Carlo;[43]

    (b)λc=2.62,2.616 and 2.616 with the bond dimensionχ= 3,6,9 and the environment dimensionM= 16,20,22 for the three-state quantum Potts model, respectively. The estimateλc= 2.616 is consistent with the known estimateλc~2.58;[44]

    (c)λc=2.43,2.428 and 2.428 with the bond dimensionχ=4,6,8 and the environment dimensionM=16,20,22 for the four-state quantum Potts model,respectively.

    These results are consistent with those of Ref.[27].

    Figure 2 plots the universal order parameterI(λ) as a function ofλfor the quantum Ising model on a honeycomb lattice. The pseudo critical pointλcoccurs atλc=2.216,2.206 and 2.20 for the bond dimensionsχ=4,6,9 and the environment dimensionM=16, 20, 22, respectively. The quantum Ising model on a honeycomb lattice has been much less studied. A high-precision Monte Carlo estimate gives a critical point ofλc=2.13250(4).[45]

    These results indicate that pseudo critical points in twodimensional systems can be located by using the universal order parameterI(λ). In addition,the universal order parameterI(λ)is continuous for the Ising model,while the universal order parameterI(λ)is abrupt forq=3 andq=4. The continuous(discontinuous)behavior of the universal order parameterI(λ)indicates that Ising model on the square(honeycomb)lattice undergoes a continuous phase transition andq=3 andq=4 state Potts undergo a discontinuous phase transition on the square lattice.

    Fig.2. The universal order parameter I(λ)as a function of λ for quantum Ising model on the honeycomb lattice.

    4. Ground-state fidelity per lattice site

    Fidelity is a measure of the“similarity” of two quantum states. The ground-state fidelityF(λ1,λ2)=|〈ψ(λ2)|ψ(λ1)〉|asymptotically scales asF(λ1,λ2)~d(λ1,λ2)Lwithλ1andλ2being two values of the control parameterλ,whereL=Lx×Lyis the size of the two-dimensional lattice for the two given ground states|ψ(λ1)〉and|ψ(λ2)〉. Here,d(λ1,λ2) is the ground-state fidelity per lattice site, characterizing how fast the fidelity tends to zero in the thermodynamic limit,[20–26]defined as

    The ground-state fidelity per lattice site,d(λ1,λ2), satisfies the inherited properties of (i) range [0≤d(λ1,λ2)≤1], (ii)normalization[d(λ,λ)=1], and(iii)symmetry[d(λ1,λ2)=d(λ2,λ1)]. With the tensor network representation, the ground-state fidelity per lattice site,d(λ1,λ2), is the largest eigenvalue of the transfer matrix.[26]

    Fig.3. The ground state fidelity surface defined by the ground state fidelity per site, d(λ1,λ2), as a function of the transverse magnetic field λ1 and λ2 for(a)the quantum Ising model,(b)the quantum three-state Potts model,and(c)the quantum four-state Potts model on the square lattice. The pseudo critical point λc occurs as a pinch point on the ground state fidelity surface.

    Figures 3(a)–3(c)plot the ground-state fidelity per lattice site,d(λ1,λ2),as a function of the control parametersλ1andλ2for the quantum Ising model,the three-state quantum Potts model, and the four-state quantum Potts model, respectively,with a transverse magnetic field applied to the square lattice.A pinch point corresponding to the QPT point appears on the ground-state fidelity surface. The pinch point is located atλc=3.273 for the quantum Ising model with the bond dimensionχ=2 and the environment dimensionM=12[Fig.3(a)],λc=2.616 for the three-state quantum Potts model with the bond dimensionχ=6 and the environment dimensionM=16[Fig. 3(b)], andλc= 2.43 for the four-state quantum Potts model with the bond dimensionχ=4 and the environment dimensionM=16[Fig.3(c)].

    Figure 4 plots the ground-state fidelity per lattice site,d(λ1,λ2), as a function of the control parametersλ1andλ2for the quantum Ising model on a honeycomb lattice. With the square lattice, a pinch point appears on the ground-state fidelity surface. Note that the pinch point is at the intersection of two singular lines that characterize the phase-transition points. The pseudo critical point is located atλc=2.216 for the quantum Ising model with the bond dimensionχ=4 and the environment dimensionM=16 on the honeycomb lattice.Thus,the phase-transition pointsλcobtained from the fidelity per lattice site are consistent with the results from the universal order parameter. In addition,the results constitute another example of the connection between(i)pseudo critical points for a quantum many-body system undergoing a QPT[19–21]and(ii) pinch points on a fidelity surface. The fidelity per lattice site can distinguish continuous(discontinuous)quantum phase transition according to the continuous(discontinuous)behavior of fidelity near the critical point. From the surface of the fidelity per lattice site,we can also see thatq ≥3 Potts model undergoes a discontinuous phase transition on the square lattice. Ising model undergoes a continuous phase transition on the square lattice and honeycomb lattice,respectively.

    Fig.4. The ground state fidelity surface defined by the ground state fidelity per site,d(λ1,λ2),as a function of the transverse magnetic field λ1 and λ2 for the quantum Ising model on the honeycomb lattice.

    5. Quantum coherence measures

    This section discusses the connection between various quantum coherence measures and a quantum many-body system undergoing a QPT. We consider three coherence measures: the quantum Jensen–Shannon divergence, the relative entropy of coherence,and thel1norm of coherence.The quantum Jensen–Shannon divergence[33]is

    whereρis the density matrix,andρdiagcontains the diagonal elements of the density matrixρ.

    The relative entropy of coherence[29]is

    Fig. 5. Quantum coherence measures C as a function of the transverse magnetic field λ for (a) the quantum Ising model with χ = 6 and M =20, (b) the quantum three-state Potts model with χ =9 and M =22, and (c) the quantum four-state Potts model with χ =8 and M=22 on the square lattice.

    Thel1norm of coherence[29]is

    whereρnmdenotes the off-diagonal elements of the density matrixρ. Finally,Sis the entanglement entropy and is defined asS=-Trρlog2ρ.

    Figures 5(a)–5(c) plot the three coherence measures as a function ofλfor the quantum Ising model, the three-state quantum Potts model,and the four-state quantum Potts model,respectively, on a square lattice. The pseudo critical point is located atλc=3.213 withχ=6 andM=20 [Fig. 5(a)],λc=2.616 withχ=9 andM=22[Fig.5(b)],andλc=2.428 withχ=8 andM=22 [Fig. 5(c)]. The result is consistent with the results for the universal order parameter and for the ground-state fidelity per lattice site. Figure 6 also plots the three coherence measures as a function ofλfor the quantum Ising model on a honeycomb lattice. The pseudo critical point is atλc=2.20 with the bond dimensionχ=9 and the environment dimensionM=22, which is consistent with the results from the universal order parameter and the ground-state fidelity per lattice site. These results show that quantum coherence measure detects the QPT in a two-dimensional lattice system. In addition, quantum coherence can also distinguish continuous and discontinuous phase transitions.

    Fig.6. Three quantum coherence measures C as a function of the transverse magnetic field λ for the quantum Ising model on the honeycomb lattice,with χ =9 and M=22.

    6. Summary

    We investigate herein the QPTs for 2-, 3-, and 4-state quantum Potts models on a square lattice and for the Ising model on a honeycomb lattice by using the infinite projected entangled-pair state algorithm with the simplified updating scheme. We extend the universal order parameter to a twodimensional system. The universal order parameter, groundstate fidelity per lattice site, and a variety of quantum coherence measures are used to characterize QPTs. The universal order parameter can be used to explore QPTs with symmetrybroken order for any translation-invariant quantum lattice system of the symmetry groupG. Although the universal order parameter is zero in a symmetric phase, it ranges from zero to unity in symmetry-broken phase. When the control parameter crosses the critical point, the universal order parameter changes, which implies that the system undergoes a QPT at the phase-transition point.We also discuss the groundstate fidelity per lattice site and identify the pinch point near the critical point on the fidelity surface, which corresponds to the QPT point. Finally, we discuss three quantum coherence measures: the quantum Jensen–Shannon divergence,the relative entropy of coherence, and thel1norm of coherence.These measures have singularities at the critical point, which identifies the QPTs. By using the universal order parameter,the ground-state fidelity per lattice site and the quantum coherence measures provide consistent positions for the phasetransition point. From the universal order parameter, the surface of the fidelity per lattice site and the quantum coherence measures,Our results show that Ising model undergoes a continuous phase transition on the square lattice and honeycomb lattice,respectively. And 3,4-state Potts model undergo a discontinuous phase transition on the square lattice. We expect the universal order parameter,ground-state fidelity per lattice site, and quantum coherence measures to provide further insights into critical phenomena in strongly correlated manybody quantum lattice systems of any dimensionality.

    Acknowledgements

    Project supported by the National Natural Science Foundation of China (Grant No. 11805285), Natural Science Foundation of Chongqing of China (Grant No. cstc2020jcyjmsxmX0034),and the Science and Technology Research Program of Chongqing Municipal Education Commission(Grant No.KJQN 201900703).

    猜你喜歡
    李生
    失蹤記
    滇池(2022年12期)2022-11-28 02:26:07
    李生其人
    蠟筆小新
    寶藏(2022年11期)2022-03-07 08:57:54
    神鳥
    寶藏(2022年11期)2022-03-07 08:57:54
    鳳舞九天
    寶藏(2022年11期)2022-03-07 08:57:54
    險(xiǎn)峰奇雄
    寶藏(2022年11期)2022-03-07 08:57:54
    阿拉伯人
    寶藏(2022年11期)2022-03-07 08:57:54
    小數(shù)的初步認(rèn)識(shí)
    天涯
    等周問題中的直觀感知與理性思考
    九九久久精品国产亚洲av麻豆 | 三级国产精品欧美在线观看 | 久久香蕉精品热| 亚洲国产精品久久男人天堂| 黄片大片在线免费观看| 国产精品一区二区三区四区久久| 日本成人三级电影网站| 色综合婷婷激情| 一个人观看的视频www高清免费观看 | av片东京热男人的天堂| 亚洲av电影在线进入| 国产真人三级小视频在线观看| 亚洲欧美日韩东京热| 99久久成人亚洲精品观看| 最近在线观看免费完整版| 变态另类丝袜制服| 免费av不卡在线播放| 日日夜夜操网爽| 国产单亲对白刺激| 麻豆成人午夜福利视频| 国产一区二区激情短视频| 巨乳人妻的诱惑在线观看| 网址你懂的国产日韩在线| 最近最新中文字幕大全电影3| 嫩草影院入口| 岛国视频午夜一区免费看| 国产99白浆流出| 在线国产一区二区在线| 蜜桃久久精品国产亚洲av| 久久午夜亚洲精品久久| 久久久国产精品麻豆| 午夜影院日韩av| 黄色日韩在线| 美女被艹到高潮喷水动态| 99热这里只有精品一区 | 国内毛片毛片毛片毛片毛片| 亚洲片人在线观看| 一区二区三区激情视频| 国产成人精品久久二区二区免费| 人妻久久中文字幕网| 欧美日韩福利视频一区二区| 大型黄色视频在线免费观看| 国产高清videossex| 狂野欧美白嫩少妇大欣赏| 综合色av麻豆| 免费av毛片视频| 女人高潮潮喷娇喘18禁视频| 亚洲欧美精品综合一区二区三区| 日韩欧美在线二视频| 免费在线观看亚洲国产| 中国美女看黄片| 久久久久久大精品| 国产蜜桃级精品一区二区三区| 男人舔奶头视频| 麻豆一二三区av精品| 日本三级黄在线观看| 国产美女午夜福利| 99国产综合亚洲精品| 久久天堂一区二区三区四区| 久久精品人妻少妇| 欧美激情久久久久久爽电影| 日日夜夜操网爽| 老司机福利观看| 精品欧美国产一区二区三| 极品教师在线免费播放| 亚洲国产欧洲综合997久久,| 国产又色又爽无遮挡免费看| 小说图片视频综合网站| 人人妻人人看人人澡| 制服人妻中文乱码| 色视频www国产| 亚洲人成电影免费在线| 亚洲av熟女| 国产精品久久视频播放| 国产av不卡久久| 一a级毛片在线观看| av在线蜜桃| www日本在线高清视频| 99国产精品99久久久久| 国产精品 欧美亚洲| 国内精品久久久久久久电影| 国产成人影院久久av| 日日干狠狠操夜夜爽| 国产亚洲欧美在线一区二区| 国产午夜精品久久久久久| 亚洲精品一区av在线观看| av在线蜜桃| 国产视频一区二区在线看| 丁香六月欧美| 欧美国产日韩亚洲一区| 老司机午夜十八禁免费视频| 亚洲精华国产精华精| 夜夜爽天天搞| 亚洲欧美日韩卡通动漫| 天天添夜夜摸| 亚洲性夜色夜夜综合| 热99在线观看视频| 免费看a级黄色片| 精品电影一区二区在线| 国产午夜福利久久久久久| 国产精品99久久久久久久久| 精品国内亚洲2022精品成人| 亚洲欧美日韩高清在线视频| 成熟少妇高潮喷水视频| 日本撒尿小便嘘嘘汇集6| 日韩有码中文字幕| 无人区码免费观看不卡| 99久久无色码亚洲精品果冻| 国产黄a三级三级三级人| 美女黄网站色视频| 最好的美女福利视频网| 一区二区三区激情视频| 老熟妇乱子伦视频在线观看| 日韩欧美在线乱码| 久久久久久久久中文| 国产1区2区3区精品| 黑人欧美特级aaaaaa片| 天堂网av新在线| 成人鲁丝片一二三区免费| 狂野欧美白嫩少妇大欣赏| 国产真实乱freesex| 午夜精品久久久久久毛片777| 极品教师在线免费播放| 露出奶头的视频| 综合色av麻豆| 成年女人永久免费观看视频| 男女床上黄色一级片免费看| 在线永久观看黄色视频| 精品国产三级普通话版| 精品乱码久久久久久99久播| 国内揄拍国产精品人妻在线| 美女免费视频网站| 亚洲欧美日韩无卡精品| 中文字幕人妻丝袜一区二区| 精品电影一区二区在线| 国产一区二区三区视频了| 亚洲国产高清在线一区二区三| 一本综合久久免费| 亚洲无线观看免费| 全区人妻精品视频| 搡老岳熟女国产| 听说在线观看完整版免费高清| av视频在线观看入口| 69av精品久久久久久| 久久久久久久精品吃奶| 久99久视频精品免费| 国产精品 国内视频| 最近最新免费中文字幕在线| 老鸭窝网址在线观看| 日本 欧美在线| 国产精品av久久久久免费| 听说在线观看完整版免费高清| 久久精品影院6| 国产成人福利小说| 亚洲精品国产精品久久久不卡| 九九久久精品国产亚洲av麻豆 | 国产精品一及| 国产三级在线视频| 人人妻,人人澡人人爽秒播| 国产野战对白在线观看| 久久人人精品亚洲av| 亚洲真实伦在线观看| 久久久久亚洲av毛片大全| 午夜福利在线在线| 日本五十路高清| 成人三级黄色视频| 在线观看一区二区三区| 日韩欧美一区二区三区在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 五月伊人婷婷丁香| 99久久久亚洲精品蜜臀av| 身体一侧抽搐| 免费在线观看影片大全网站| 日韩免费av在线播放| 国产乱人视频| 午夜免费成人在线视频| 欧美av亚洲av综合av国产av| 九九热线精品视视频播放| 国产亚洲av嫩草精品影院| 久久国产精品人妻蜜桃| 三级男女做爰猛烈吃奶摸视频| av中文乱码字幕在线| 精品久久久久久,| 深夜精品福利| 久久久水蜜桃国产精品网| 19禁男女啪啪无遮挡网站| 国产一区二区在线av高清观看| 90打野战视频偷拍视频| 午夜福利视频1000在线观看| 国产麻豆成人av免费视频| 亚洲人成网站高清观看| 小说图片视频综合网站| 久久亚洲精品不卡| 免费人成视频x8x8入口观看| www.www免费av| 麻豆国产av国片精品| bbb黄色大片| 国产日本99.免费观看| 日本黄色片子视频| 亚洲人成伊人成综合网2020| 国产精品亚洲av一区麻豆| 亚洲精品456在线播放app | 淫秽高清视频在线观看| 噜噜噜噜噜久久久久久91| 免费大片18禁| 成在线人永久免费视频| 综合色av麻豆| 国产黄色小视频在线观看| 最近最新中文字幕大全免费视频| tocl精华| 亚洲欧美日韩高清在线视频| 伊人久久大香线蕉亚洲五| 97碰自拍视频| 国产男靠女视频免费网站| 美女免费视频网站| 黄色女人牲交| 亚洲精品色激情综合| 久久久久久久午夜电影| 久久久久久久午夜电影| 香蕉丝袜av| 久久中文字幕人妻熟女| 免费观看人在逋| 国产成人精品久久二区二区91| 日韩欧美免费精品| 免费人成视频x8x8入口观看| a在线观看视频网站| 成人无遮挡网站| 久久性视频一级片| 给我免费播放毛片高清在线观看| 美女cb高潮喷水在线观看 | 久久精品国产综合久久久| 国产亚洲精品一区二区www| 又黄又爽又免费观看的视频| 亚洲av日韩精品久久久久久密| 91麻豆精品激情在线观看国产| 国产蜜桃级精品一区二区三区| 亚洲激情在线av| 久久久久久国产a免费观看| 免费大片18禁| 免费看十八禁软件| www.www免费av| 操出白浆在线播放| 美女高潮的动态| 一卡2卡三卡四卡精品乱码亚洲| 精品久久蜜臀av无| 欧美国产日韩亚洲一区| 啦啦啦观看免费观看视频高清| 亚洲午夜理论影院| 悠悠久久av| 久久香蕉国产精品| 免费看日本二区| 久久久久久久久中文| 日韩 欧美 亚洲 中文字幕| 18禁美女被吸乳视频| 欧美另类亚洲清纯唯美| 熟妇人妻久久中文字幕3abv| 色综合亚洲欧美另类图片| 一本久久中文字幕| 午夜久久久久精精品| 麻豆久久精品国产亚洲av| 国产黄a三级三级三级人| 久99久视频精品免费| 精品国内亚洲2022精品成人| 成人特级黄色片久久久久久久| 一二三四在线观看免费中文在| 久久久久久人人人人人| 亚洲国产欧洲综合997久久,| 51午夜福利影视在线观看| 18禁裸乳无遮挡免费网站照片| 欧美乱妇无乱码| bbb黄色大片| 亚洲男人的天堂狠狠| 啦啦啦韩国在线观看视频| 日本熟妇午夜| 久久久久久人人人人人| 日韩欧美精品v在线| 亚洲av免费在线观看| 露出奶头的视频| 丝袜人妻中文字幕| 桃色一区二区三区在线观看| 99热这里只有精品一区 | 精品久久久久久久久久免费视频| 久久久精品大字幕| 国产精品亚洲美女久久久| 成年女人看的毛片在线观看| 亚洲 国产 在线| 国产真人三级小视频在线观看| 国产精品免费一区二区三区在线| 欧美黑人欧美精品刺激| 91av网站免费观看| 国产亚洲av嫩草精品影院| 又爽又黄无遮挡网站| 久久人妻av系列| 99久久99久久久精品蜜桃| 国内精品一区二区在线观看| 国产高潮美女av| avwww免费| 亚洲精品国产精品久久久不卡| 嫩草影院精品99| 高清毛片免费观看视频网站| 夜夜夜夜夜久久久久| 国产在线精品亚洲第一网站| 一个人看视频在线观看www免费 | 中文字幕av在线有码专区| 国产乱人伦免费视频| 此物有八面人人有两片| 久久中文看片网| 综合色av麻豆| 日本一二三区视频观看| 婷婷丁香在线五月| 窝窝影院91人妻| 女同久久另类99精品国产91| 午夜福利18| 麻豆国产97在线/欧美| 欧美成人一区二区免费高清观看 | 老熟妇乱子伦视频在线观看| 又粗又爽又猛毛片免费看| 国产免费av片在线观看野外av| 国产欧美日韩精品亚洲av| 国产成人精品无人区| 中文字幕精品亚洲无线码一区| 色av中文字幕| 国产午夜精品论理片| 99久久久亚洲精品蜜臀av| av国产免费在线观看| 综合色av麻豆| 成年人黄色毛片网站| 国产又黄又爽又无遮挡在线| 精品国产超薄肉色丝袜足j| 国产精品九九99| 在线观看免费午夜福利视频| 国产av麻豆久久久久久久| 婷婷亚洲欧美| 又粗又爽又猛毛片免费看| 一进一出好大好爽视频| 亚洲七黄色美女视频| 国内精品久久久久久久电影| 夜夜躁狠狠躁天天躁| 国产黄片美女视频| 亚洲乱码一区二区免费版| 女生性感内裤真人,穿戴方法视频| 免费大片18禁| bbb黄色大片| 国产成人av激情在线播放| 成人国产综合亚洲| 久久国产乱子伦精品免费另类| 亚洲av免费在线观看| 色在线成人网| 免费高清视频大片| 99riav亚洲国产免费| 法律面前人人平等表现在哪些方面| 国产av麻豆久久久久久久| 国产一区二区三区视频了| 色综合亚洲欧美另类图片| 国产精品久久久久久人妻精品电影| 久9热在线精品视频| 一本精品99久久精品77| 欧美不卡视频在线免费观看| 亚洲真实伦在线观看| 亚洲国产欧美人成| 久久九九热精品免费| 国内久久婷婷六月综合欲色啪| 欧美日韩国产亚洲二区| 嫩草影视91久久| cao死你这个sao货| 人人妻人人看人人澡| 中文字幕人成人乱码亚洲影| 真人一进一出gif抽搐免费| 观看免费一级毛片| 三级男女做爰猛烈吃奶摸视频| 最好的美女福利视频网| 亚洲精品国产精品久久久不卡| 这个男人来自地球电影免费观看| 97超级碰碰碰精品色视频在线观看| 精品一区二区三区av网在线观看| 欧美不卡视频在线免费观看| 国产真人三级小视频在线观看| 国产亚洲欧美在线一区二区| 99在线视频只有这里精品首页| 国产av一区在线观看免费| 国产精品一区二区精品视频观看| 亚洲美女黄片视频| 久久中文字幕一级| 精品一区二区三区四区五区乱码| 亚洲在线自拍视频| 国产一级毛片七仙女欲春2| 亚洲av免费在线观看| 嫁个100分男人电影在线观看| 成人三级做爰电影| 欧美绝顶高潮抽搐喷水| 久久久国产欧美日韩av| 天天添夜夜摸| 两人在一起打扑克的视频| 欧美乱码精品一区二区三区| 好男人电影高清在线观看| 午夜福利免费观看在线| 非洲黑人性xxxx精品又粗又长| 男女那种视频在线观看| 国产一区二区三区视频了| 中文字幕人妻丝袜一区二区| 国产亚洲精品久久久com| 欧美一级a爱片免费观看看| 三级国产精品欧美在线观看 | 最近最新中文字幕大全电影3| 日韩中文字幕欧美一区二区| 国产成人福利小说| 91麻豆av在线| 999精品在线视频| 香蕉丝袜av| 亚洲 欧美一区二区三区| 午夜a级毛片| 美女cb高潮喷水在线观看 | 国产高清视频在线播放一区| 亚洲av免费在线观看| 精品无人区乱码1区二区| 亚洲自偷自拍图片 自拍| 亚洲成人中文字幕在线播放| 青草久久国产| 在线观看舔阴道视频| 草草在线视频免费看| 国产亚洲av嫩草精品影院| 欧美日本视频| 少妇丰满av| 男人的好看免费观看在线视频| 午夜成年电影在线免费观看| 国产毛片a区久久久久| 久久精品国产亚洲av香蕉五月| 搡老妇女老女人老熟妇| 最近最新中文字幕大全电影3| 国内精品美女久久久久久| 亚洲性夜色夜夜综合| 亚洲欧美精品综合久久99| 久久国产精品影院| 午夜福利免费观看在线| 亚洲第一电影网av| 久久久久久九九精品二区国产| 哪里可以看免费的av片| 两性夫妻黄色片| 国产探花在线观看一区二区| 亚洲美女黄片视频| 色播亚洲综合网| 国产人伦9x9x在线观看| 国产精品久久久久久亚洲av鲁大| 欧美黑人欧美精品刺激| 99在线视频只有这里精品首页| 99热精品在线国产| 久久久久亚洲av毛片大全| 亚洲五月天丁香| 国产精品野战在线观看| 久久这里只有精品中国| 欧美3d第一页| 999精品在线视频| 国产精品久久久久久人妻精品电影| 日日夜夜操网爽| 久久精品aⅴ一区二区三区四区| 黄片大片在线免费观看| 变态另类成人亚洲欧美熟女| 国产成人精品无人区| 又黄又粗又硬又大视频| x7x7x7水蜜桃| 男插女下体视频免费在线播放| svipshipincom国产片| 午夜福利在线观看免费完整高清在 | 亚洲av成人一区二区三| 久久中文看片网| 亚洲男人的天堂狠狠| 一级a爱片免费观看的视频| 欧美3d第一页| 大型黄色视频在线免费观看| 欧美日韩一级在线毛片| 亚洲专区国产一区二区| 精品国产乱码久久久久久男人| www.熟女人妻精品国产| 伊人久久大香线蕉亚洲五| 日本一二三区视频观看| 色老头精品视频在线观看| 一个人免费在线观看的高清视频| 色av中文字幕| 精品电影一区二区在线| 最近在线观看免费完整版| 一个人看的www免费观看视频| 国产精品一区二区三区四区久久| 亚洲成人久久爱视频| 白带黄色成豆腐渣| 色综合站精品国产| 国产 一区 欧美 日韩| 国产男靠女视频免费网站| 99久久国产精品久久久| 亚洲专区中文字幕在线| 后天国语完整版免费观看| 国产精品亚洲一级av第二区| 亚洲国产欧美一区二区综合| 老司机深夜福利视频在线观看| 久久久久久国产a免费观看| 国产精品野战在线观看| 亚洲国产欧美人成| 亚洲在线观看片| 欧美黄色片欧美黄色片| 国产单亲对白刺激| 精品电影一区二区在线| 午夜福利在线观看吧| 人人妻人人看人人澡| 欧美黑人欧美精品刺激| 男人的好看免费观看在线视频| 国产综合懂色| 久久精品国产亚洲av香蕉五月| 国产亚洲精品久久久com| 国产在线精品亚洲第一网站| 巨乳人妻的诱惑在线观看| 久久久国产成人精品二区| 男人舔奶头视频| 操出白浆在线播放| 我的老师免费观看完整版| 久久久国产成人免费| 女同久久另类99精品国产91| 母亲3免费完整高清在线观看| 亚洲av成人一区二区三| 成在线人永久免费视频| 91老司机精品| 最新中文字幕久久久久 | 成人性生交大片免费视频hd| 精品一区二区三区视频在线观看免费| 成人午夜高清在线视频| 国产精品99久久久久久久久| 听说在线观看完整版免费高清| 国产又黄又爽又无遮挡在线| 久久精品国产亚洲av香蕉五月| 性色avwww在线观看| 老熟妇乱子伦视频在线观看| 国产精品av久久久久免费| 欧美一级a爱片免费观看看| 国产免费av片在线观看野外av| 亚洲一区高清亚洲精品| 国产一区二区三区视频了| 亚洲精品久久国产高清桃花| 色老头精品视频在线观看| 少妇裸体淫交视频免费看高清| 国产精品一区二区免费欧美| 久久亚洲精品不卡| 两人在一起打扑克的视频| 99久久久亚洲精品蜜臀av| 最近最新免费中文字幕在线| 亚洲av五月六月丁香网| or卡值多少钱| 丁香六月欧美| 国产午夜精品久久久久久| 一本精品99久久精品77| 少妇丰满av| 精品久久蜜臀av无| 人人妻,人人澡人人爽秒播| 久9热在线精品视频| 亚洲国产高清在线一区二区三| 欧美日韩乱码在线| 亚洲va日本ⅴa欧美va伊人久久| 亚洲精品国产精品久久久不卡| 色尼玛亚洲综合影院| 国产又色又爽无遮挡免费看| 狂野欧美激情性xxxx| 精品人妻1区二区| 亚洲成人久久爱视频| 国产高潮美女av| 十八禁人妻一区二区| 国产精品1区2区在线观看.| 99久久无色码亚洲精品果冻| 国产亚洲精品一区二区www| 亚洲无线在线观看| 免费在线观看日本一区| 美女黄网站色视频| 国产高清videossex| 男人舔女人下体高潮全视频| 久久久久国产一级毛片高清牌| 色哟哟哟哟哟哟| 1024手机看黄色片| 亚洲电影在线观看av| 亚洲欧美日韩卡通动漫| 两性午夜刺激爽爽歪歪视频在线观看| 国产精品一区二区三区四区久久| 首页视频小说图片口味搜索| 日韩欧美国产一区二区入口| 久99久视频精品免费| 欧美三级亚洲精品| 69av精品久久久久久| 国产毛片a区久久久久| а√天堂www在线а√下载| 中文资源天堂在线| 精品久久久久久久毛片微露脸| 国产在线精品亚洲第一网站| 免费电影在线观看免费观看| 午夜久久久久精精品| 色吧在线观看| 国产综合懂色| 精品国产美女av久久久久小说| 99久久精品国产亚洲精品| 国产乱人视频| 精品熟女少妇八av免费久了| 色哟哟哟哟哟哟| 成人性生交大片免费视频hd| 国产精品综合久久久久久久免费| a在线观看视频网站| 国产精品久久久久久久电影 | 免费av毛片视频| 99久久成人亚洲精品观看| 免费电影在线观看免费观看| 真实男女啪啪啪动态图| 亚洲精品色激情综合| 中文字幕久久专区| 国产一区二区激情短视频| 91老司机精品| 亚洲av成人av| 波多野结衣巨乳人妻| 最近视频中文字幕2019在线8| 国产精品野战在线观看| 国产精品九九99| 亚洲av中文字字幕乱码综合| 欧美一区二区国产精品久久精品|