• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Propagation and modulational instability of Rossby waves in stratified fluids

    2022-08-01 05:58:26XiaoQianYang楊曉倩EnGuiFan范恩貴andNingZhang張寧
    Chinese Physics B 2022年7期
    關(guān)鍵詞:張寧

    Xiao-Qian Yang(楊曉倩), En-Gui Fan(范恩貴), and Ning Zhang(張寧),2,?

    1College of Mathematics and Systems Science,Shandong University of Science and Technology,Qingdao 266590,China

    2Department of Fundamental Course,Shandong University of Science and Technology,Tai’an 271019,China

    3School of Mathematical Sciences,F(xiàn)udan University,Shanghai 200433,China

    Keywords: Rossby waves,Hirota bilinear method,modulational instability,stratified fluids

    1. Introduction

    On the earth where people rely on,the area of ocean has exceeded the area of land. The exploration to the vast ocean has never been stopped. There are many phenomena in the ocean that are worth exploring and studying,such as nonlinear waves. Partial differential equations can be used to describe many nonlinear phenomena in atmosphere and ocean motion.These equations not only reveal the essence of the phenomena but also provide important theoretical basis and research value for nonlinear atmospheric and marine dynamics. Solitary waves are one kind of nonlinear waves, which were first discovered by Russell,a British scientist,and researchers draw a conclusion that the solitary waves can move forward continuously regardless of friction and dissipation. Rossby waves are one type of solitary waves, and they have stable isolated wave characteristics with large amplitudes. They are waves produced by horizontal disturbances of the atmosphere and ocean under the action of Rossby parameterβ. It is the existence of Rossby waves that causes energy to propagate in the ocean and atmosphere. The origin of Rossby waves is atmospheric long waves. In 1939, Rossby first studied and analyzed the properties of atmospheric long waves in theory,and established the theory of atmospheric long waves. In order to commemorate him,researchers also call the atmospheric long waves the Rossby waves.

    Rossby waves widely exist in space and earth fluid systems.[1]Their existence is related to many natural phenomena, from the great red spot in Jupiter’s atmosphere to the swirling currents in the Gulf of Mexico. In addition to earth fluid systems, Rossby waves are also of great importance in marine atmospheric science. Researchers suggested that Rossby waves play an important role in the transfer of the energy, mass and momentum in the atmosphere and oceans,and to some extent determine the response of the oceans to atmospheric and other climate changes. Rossby waves spread the energy from east to west, it affects ocean surface water color and biological interactions, thus regulates the interannual characteristic behavior of the ocean,such as EI Ni?no.[2]In the research of Battisti,[3]non-equatorial Rossby waves were considered to be products of the ENSO(EI Ni?no/Southern Oscillation) rather than trigger mechanisms. In the study of the steady oscillation characteristics of sea surface temperatures(SST)variation,[4]the results show that the west boundary reflection of the Rossby waves excited by the wind stress caused by the interannual SST anomaly generates the eastward Kelvin waves,which eventually leads to the coupled instability of the eastern Pacific Ocean. Recently,Yanget al.studied the influence of the average airflow and topography in the barotropic atmosphere on the propagation of Rossby waves in the case of considering the vertical and zonal.[5]The discovery of Rossby waves in blood vessels has aroused extensive interest of researchers. Many researchers have put forward valuable theoretical basis for the problems in blood vessels by studying Rossby waves in blood vessels.[6]

    As mentioned earlier, nonlinear waves can be described by many partial differential equations, so there are also many partial differential equations to describe Rossby waves,such as the KdV equation,[7]mKdV equation,[8]Boussinesq equation,[9]BO equation, ZK equation,[10]and the nonlinear Schr¨odinger (NLS) equation.[11]In recent decades, the NLS equation has been widely used in many fields of applied sciences, especially in deep water wave mechanics[12]and optical communication.[13]The form of the NLS equation has also been extended gradually, such as higher-order term and coupled equations, the NLS equation with higher-order term is also called the HNLS equation,coupled NLS equations are called the CNLS equation. Luoet al.used the HNLS equation to describe nonlinear modulated Rossby waves in geophysical fluids and discussed the effects of latitude and uniform basic background flow on the unstable growth rate and unstable area of uniform Rossby waves train.[14]They also used the CNLS equations to describe the propagation and interactions of two nonlinear Rossby waves in barotropic modes,then used these equations to study the collision interactions of two enveloping Rossby solitons.[15]Choyet al.regarded blood in blood vessels as incompressible fluids and obtained its governing equation using the perturbation method,the governing equation was variable-coefficient NLS equations.[16]Songet al.derived the NLS equation of weakly nonlinear deep-sea internal waves based on the basic equation of twolayered fluids, and numerically simulated the wave propagation in the deep-sea area of the South China Sea.[17]With further research, the equations can be used as a powerful tool to study in different fields. As for the methods of solving the equation, the Hirota bilinear method is used in this paper to solve the CNLS equations. In fact,there are many other methods to solve all kinds of equations,such as F-expansion,[18,19]method,[20,21]Backlund transformation,[22,23]and Darboux transformation.[24,25]There are many different forms of the solutions,such as exact solution,[26,27]breather solution,[28,29]mixed-soliton solution,[30]and rogue wave solution.[31,32]Liuet al.derived the general periodic solution by the bilinear method and obtained rogue waves after further research.[33]Because the propagation of waves is not stable and fixed,there will be unstable areas in the process of propagation and the existence of these areas will cause uncertain impact on waves propagation, so the study of the modulational instability of waves is an important part.[34–37]

    In real atmospheric and oceanic motion,the stratification of fluid density (the stratification effect) makes the problem more complicated. Due to stratified fluids being closer to real fluids, it is of great practical significance to study the evolution and development of nonlinear Rossby waves in it,which can better explain the fluctuation mechanism of some largescale nonlinear waves in atmospheric and oceanic motions.In this paper,the stratified fluids are regarded as background,then the propagation and interactions between the two Rossby waves are investigated. This paper is organized as follows:In Section 2, based on the quasi-geostrophic vorticity equation of stratified fluids we derive the equations by taking theβeffect into account and using scale analysis and perturbation expansion. In Section 3,the Hirota bilinear method is used to solve the equations and the properties of the solutions in the interaction process are analyzed. In Section 4,we analyze the modulational instability of CNLS equations. Finally,we draw conclusions in Section 5.

    2. Derivation of the model

    Start from the quasi-geostrophic vorticity equation of stratified fluids

    In this form,εis a small perturbation, ˉUis the background flow. Substituting Eqs.(3)and(4)into Eq.(2), the equations satisfyingφ(1),φ(2)andφ(3)can be obtained as follows:

    Next assume

    wherec.c.represents the conjugate of all the preceding terms.Anis the amplitude as a function of the slow space-time variable,knandlnare wave numbers inxandy,respectively,and theωnrepresents frequency. The differential operator is defined in the following form:

    then putting Eq.(8)into Eq.(9),the condition satisfyingφn(y)can be obtained as follows:

    The 0 andπare boundary conditions of fluids. Because the discussion is about two-wave situation, assume the form ofφ(1)as

    substituting Eq.(11)into Eq.(6),we can writeL(φ(2))as

    where

    The second,third,and fourth inhomogeneous terms in Eq.(12)can yield particular solutions in the following forms:The first inhomogeneous term in Eq.(12)yields the following special solution:

    Multiplying the left-hand side of Eq. (17) byφn, integrating overyfrom 0 toπand using the boundary conditions show that the integration is equal to zero. Thus,the same operations are made to the right-hand side of Eq.(17)and we can obtain the consistent results. These lead to the solvable condition

    where

    It is not difficult to find from Eq. (18) that the amplitudeAnspreads at the speed ofCgn,which means

    further we can suppose

    Substituting Eq.(21)into Eq.(17)and considering the condition Eq.(18),we can obtain the following equation:

    Up to now,the solution to Eq.(12)can be written as

    whereξ(y,T1,X1,Y)is the homogeneous solution to Eq.(12),which represents the regional flow correction caused by the existence of finite-amplitude wave and can be expressed later.Substitutingφ(1)andφ(2)into the right-hand side of Eq.(7),we can obtain all the inhomogeneous terms. There are terms that are independent ofx,zandt. Thus,considering the form of the linear operation on the left-hand side,it is obvious that these terms must disappear equally,resulting in the condition related to the correction to the average flow to the wave amplitude,implying

    After a series of treatments,the solutions ofA1andA2are obtained.Equation(25)includes coupled equations ofA1andA2,which describe the interactions between the two waves. The two equations can be further simplified after introducing the transforms by Jeffry and Kawahara,

    Using Eq.(28),Eq.(24)changes to

    The above equations have a solution in the form

    whereHn(y)satisfies

    The above equations are the CNLS equations. The usual standard NLS equation is in the form

    Compared to the normal NLS equation,Eq.(36)is different in that it is coupled and (2+1)-dimensional. Eqution (36)is called the CNLS equations. The standard NLS is able to be used to describe the spread of Rossby waves, and it can only describe the propagation of a single wave in thexdirection of space and in timet. However, with the addition ofyin the space direction,the CNLS equations can describe wave propagation more specifically than the standard NLS equation.Moreover,the CNLS equations are not limited to describe the propagation of a single wave, instead they can also describe more phenomena,such as wave–wave interactions.

    3. Mixed soliton solution of coupled nonlinear Schro¨dinger equation

    In the above section, a dynamical model describing the interaction of two waves was obtained. Now, we discuss the problem what forms and properties appear in the soliton solutions in the process of wave–wave interactions. In this section,the Hirota bilinear method is used to solve the mixed soliton solutions to Eq.(36)and to obtain the figures of solutions.According to Eq. (36), it is obvious that in the two components A and B,one component contains bright soliton and the other contains dark soliton. Above all, Hirota’s bilinear operatorsDzandDtare defined as

    wheregandhare arbitrary complex functions ofx,y, andt,whilefis a real function. The bilinear form for Eq.(38)is

    Expandingg,handfformally as power series expansions in terms of a small arbitrary real parameterχ,

    3.1. Mixed(bright-dark)one-soliton solution

    Restricting the power series expansion Eq.(41)as

    Herea1,k1,k2,c1are arbitrary complex parameters, whilel1andl2are real parameters. In the above equations and in the following sections,subscribers R and I denote the real and imaginary parts,respectively. Figure 1 shows the mixed onesoliton solution.

    Fig.1. The mixed one-soliton solution with k1=a1=c1=1+i,k2=1-i,α1=η1=σ1=τ12=l1=l2=1,λ =-2,y=5. (a)The soliton solution A. (b)The planform of solution A. (c)The soliton solution B. (d)The planform of solution B.

    3.2. Mixed(bright-dark)two-soliton solution

    The mixed two-soliton solution can be obtained by terminating the power series expansion(41)as

    After solving the resulting bilinear equations recursively, the mixed two-soliton solution is obtained as follows:

    where

    and

    The mixed-two soliton solution are given in Fig.2.

    The above figures are the 3D mixed one-soliton solution and the mixed two-soliton solution when the parameterxandyare fixed.It is not difficult to find from these figures that bright soliton exists in the componentAand dark soliton exists in the componentB. Meanwhile,we can clearly see the collision interactions of Rossby solitons from Fig.2. When the two solitons collide, obvious peak oscillation is caused, and then the solitons change the original trajectory. It is worth noting that the trajectories of the two solitons after the collision do not cross. Next, the problem about the influence of dark soliton parameters on the intensity of bright and dark solitons is discussed. Taking the mixed one-soliton solution as an example,when fixing other parameters,the relationship of|A|2and|B|2totcan be obtained. The diagrams are shown in Figs.3 and 4.

    Fig.2. The mixed two-soliton solution with k1=2-i,k2=-1+i,k3=-2-2i,k4=1+2i,c1=a1=1+i,a2=3-i,α1=η1=σ1=τ12=l1=1,l2=2,y=5. (a)The soliton solution A. (b)The planform of solution A. (c)The soliton solution B. (d)The planform of solution B.

    It can be clearly seen from Figs.3 and 4 that the larger the|c1|2is,the smaller the intensity of the bright soliton is. As the intensity of the bright soliton decreases,the intensity of the dark soliton gradually increases. Therefore,the energy is determined in the propagation process of two Rossby waves with different wave numbers.

    Fig. 3. The relation between the intensity of soliton and time t with k1=2+i,a1=k2=1-i,α1=η1=σ1=τ12=l1=l2=1=x=y.(a)Mixed one-soliton solution with c1 =1+i. (b)Mixed one-soliton solution with c1=1.2+i. (c)Mixed one-soliton solution with c1=1+i.(d)Mixed one-soliton solution with c1=1.2+i.

    Fig. 4. The relation between the intensity of soliton and time t with k1=2-i,k2=-1+i,k3=-2-2i,k4=1+2i,a1=1+i,a2=3-i,l1 = 1, l2 = 2, α1 = η1 = σ1 = τ12 = 1 = x = y. (a) Mixed twosoliton solution with c1 =1+i. (b) Mixed two-soliton solution with c1=1.2+i. (c)Mixed two-soliton solution with c1=1+i. (d)Mixed two-soliton solution with c1=1.2+i.

    4. Modulational instability of the CNLS equation

    Modulational instability is the famous phenomenon in the nonlinear propagation. It leads to the instability of Rossby waves. The study of modulational instability began in the 1960s. It was the scientist Benjamin Feir who discovered this phenomenon in the study of deep water waves, so the later researchers also called modulational instability Benjamin Feir instability. The study of modulational instability is of great significance in many aspects. In this section, the question about the modulational instability of uniform Rossby waves will be discussed. For the obtained CNLS Eq.(36),the plane wave solution is considered as follows:

    whereφ1andφ2are small perturbations and they can be expressed as

    In the aboveUj=μjcos(mX+nY+ΩT),Pj=ρjsin(mX+nY+ΩT),j=1,2. Heremandnrepresent wave numbers,Ωrepresents frequency. SubstitutingAandBinto Eq. (36) and linearizing,we can obtain the following equations:

    Using Eq.(51),the above formulas can be further arranged as

    Separating the real and imaginary parts of the above expressions we obtain

    SubstitutingUjandPjinto Eq.(54)yields

    It can be obtained from the existence condition of homogeneous linear equations

    Fig.5.Modulational instability gain of Eq.(36)with a=10,α1=η1=τ12 =σ1 =2. (a)Modulational instability shown in three dimensions.(b)Top view of modulational instability.

    Equation (56) shows that when (α1m2+η1n2)2-2τ12B20(α1m2+η1n2)-2σ1A20(α1m2+η1n2)>0, the frequencyΩis always real and belongs to the stable region.When (α1m2+η1n2)2-2τ12B20(α1m2+η1n2)-2σ1A20(α1m2+η1n2)<0, the frequencyΩis complex when the wave numbersmandnare set to the value of a particular item,that is the modulational instability region. For modulational instability, when(α1m2+η1n2)2-2τ12B20(α1m2+η1n2)-2σ1A20(α1m2+η1n2)<0, it can be known from the definition of gain spectrum that

    We can know from Eq.(57)thatAandBplay the same role in the change of gain spectrum.AssumingA0=B0=a,theg(m)changes to

    Figure 5 shows the modulational instability in three dimensions.

    Fig.6. Comparison chart of modulational instability with different parameters a = 10, α1 = η1 = τ12 = σ1 = 2. (a) The values of these parameters are n=0.5 and a=0.5,1,2. (b)The values of these parameters are a=1 and n=0,0.1,0.5,1.

    In Fig. 5, the area of figures can be split into two parts,one part is a circle with a radius of 19.1 at the origin and this part is the modulational instability region, the Rossby waves are unstable on this part. The other one is the dark blue part,this part and the central point are both in the modulational stability region,so the Rossby waves are stable on this area.Next,the influence of different factors on modulational instability is discussed.

    Fig.7. Modulational instability comparison diagrams of different types of equations with a=1,α1=η1=τ12=σ1=2. (a)The modulational instability of standard NLS and CNLS with n=1.(b)The modulational instability of standard NLS.

    Because these figures are symmetric, we analyze only half of them. There are two points seen in Fig. 6. The first one is that as the value of amplitude increases,the gain and the width of the unstable region of Rossby waves increases.When the parametera=2, the width of the unstable region of the uniform Rossby waves can reach 4 and the gain of the Rossby waves can reach 16. However,whena=0.5,the former only reaches 1 and the latter reaches 1. These data suggest that the amplitude determines the gain and width of the unstable region of the Rossby waves. The width of the unstable region and the gain shrinks with the contraction of the amplitude. They are larger when the amplitude is greater. The second one is that dimension does not affect the gain because the gain atn=0 is the same as the gain at other values ofn. What the dimension really affects is the stability at the central point and the width of the modulational instability region. Whenn= 0, which means that the wave number in theydirection is zero and there is noyterm, the uniform Rossby waves are stable at the central point. However, when the wave numberntakes different values,the central point is no longer stable,and the gain at the central point is larger as the value ofnincreases. The width of the unstable region of Rossby waves decreases with the increase ofn,it can be seen from Fig.6(b)that whenn=1,the width of the unstable region of Rossby waves is minimal. On the contrary,whenn=0.1,it is maximal.However,the gain of the uniform Rossby waves are fixed no matter whatnis,so the dimension has no effect on the gain. In Fig.7,comparing the modulational instability image of the standard NLS equation with that of the CNLS equations, we can find something that when the dimension of space is changed from one to two and the equations are changed from single to couple,the gain and the width of the modulational instability region change simultaneously. At the same time,the gain of two waves interacting with each other is greater than that of a single wave.

    5. Conclusions

    In summary,we have obtained a dynamic model describing the propagation and interaction of Rossby waves in stratified fluids using perturbation analysis and scale expansion.When two Rossby waves with slightly different wavenumbers propagate in stratified fluids,their solitons will collide,which will change the trajectory of solitons. The intensity of bright soliton is also related to the dark soliton coefficient. The intensity of bright soliton decreases with the increase of dark soliton coefficient. In addition, in the propagation process of two waves, there is an unstable area. The size of this area is related to the amplitude and wave number in theydirection.When the amplitude is constant, the smaller the wave number is, the larger the width of the unstable area is. However,when the wave number is constant, the larger the amplitude is,the larger the width of the modulational instability area is,meanwhile its gain is also larger. According to the figures,the modulational instability area of a single wave in propagation is smaller than that of two waves.

    Appendix A:Parameters

    When the basic flow ˉU(y) is constant, the important coefficients can be obtained through analysis. Now some important coefficients are given below. The solution to Eq.(10)is

    according to Eq.(10),

    Making eR1=μ11, eδ0=μ13, eδ*0 =μ31, eR2=μ33and the values of some coefficients about soliton solution are given as follows:

    Acknowledgements

    Project supported by the National Natural Science Foundation of China (Grant No. 11805114) and the Shandong University of Science and Technology Research Fund (Grant No.2018TDJH101).

    猜你喜歡
    張寧
    一杯茶
    Fishing釣魚
    Go to School 上學(xué)
    樂普 《欣忭》
    The Rainbow Bridge/by Cynthia L00mis Gurin彩虹橋
    Umbrella Day傘日
    There
    Cross the River 過河
    張寧作品選登
    我愛我的母親——中國
    午夜亚洲福利在线播放| 亚洲真实伦在线观看| 国产精品麻豆人妻色哟哟久久 | 女人被狂操c到高潮| 一个人免费在线观看电影| 国产午夜精品久久久久久一区二区三区| 日韩成人伦理影院| 特级一级黄色大片| 春色校园在线视频观看| 亚洲国产欧美在线一区| 日本黄色视频三级网站网址| 尤物成人国产欧美一区二区三区| 亚洲精品久久国产高清桃花| 我的女老师完整版在线观看| 成人特级黄色片久久久久久久| 成人一区二区视频在线观看| 国产日本99.免费观看| 亚洲国产精品成人综合色| 成人亚洲欧美一区二区av| 国产 一区 欧美 日韩| 一卡2卡三卡四卡精品乱码亚洲| av女优亚洲男人天堂| 国产精品久久久久久精品电影| 日韩人妻高清精品专区| 欧美+日韩+精品| 亚洲国产精品合色在线| 国产黄片美女视频| 成年女人看的毛片在线观看| 日韩欧美 国产精品| 欧美日本亚洲视频在线播放| 成人特级黄色片久久久久久久| 精品一区二区三区人妻视频| 人体艺术视频欧美日本| 国产极品精品免费视频能看的| 在线观看av片永久免费下载| 久久99蜜桃精品久久| 国产精品久久久久久精品电影| 黄色视频,在线免费观看| 99riav亚洲国产免费| 桃色一区二区三区在线观看| 一卡2卡三卡四卡精品乱码亚洲| 国产在视频线在精品| 亚洲欧美日韩高清在线视频| 免费人成在线观看视频色| 91精品一卡2卡3卡4卡| 日韩国内少妇激情av| 可以在线观看毛片的网站| 18禁在线无遮挡免费观看视频| 亚洲成人精品中文字幕电影| 亚洲三级黄色毛片| 午夜老司机福利剧场| 日韩中字成人| 美女脱内裤让男人舔精品视频 | 只有这里有精品99| 日产精品乱码卡一卡2卡三| 三级国产精品欧美在线观看| 1000部很黄的大片| 日韩,欧美,国产一区二区三区 | 边亲边吃奶的免费视频| 欧美日本视频| 国产精品乱码一区二三区的特点| 三级男女做爰猛烈吃奶摸视频| 我的老师免费观看完整版| 国产极品天堂在线| 午夜福利高清视频| 国产黄片美女视频| 小说图片视频综合网站| 伦理电影大哥的女人| 黄色日韩在线| 身体一侧抽搐| .国产精品久久| 免费无遮挡裸体视频| 欧美+日韩+精品| 在线观看66精品国产| 身体一侧抽搐| 国产三级在线视频| 国产精品av视频在线免费观看| 国产高清视频在线观看网站| 国产男人的电影天堂91| 全区人妻精品视频| 免费看av在线观看网站| 久久久久九九精品影院| 成人无遮挡网站| 最后的刺客免费高清国语| 国产精品嫩草影院av在线观看| 青春草国产在线视频 | 啦啦啦啦在线视频资源| 午夜免费激情av| av视频在线观看入口| 91久久精品国产一区二区成人| 美女cb高潮喷水在线观看| 国产精品久久久久久精品电影小说 | 免费不卡的大黄色大毛片视频在线观看 | 久久6这里有精品| 3wmmmm亚洲av在线观看| 男的添女的下面高潮视频| 亚洲欧美成人精品一区二区| 成人一区二区视频在线观看| 啦啦啦观看免费观看视频高清| 久久久精品大字幕| 亚洲三级黄色毛片| 亚洲性久久影院| 大香蕉久久网| 国产熟女欧美一区二区| 九九在线视频观看精品| 夜夜看夜夜爽夜夜摸| 边亲边吃奶的免费视频| 午夜福利在线在线| 黄色日韩在线| 尾随美女入室| 日韩成人伦理影院| 色5月婷婷丁香| 网址你懂的国产日韩在线| 日本成人三级电影网站| 亚洲中文字幕一区二区三区有码在线看| .国产精品久久| 18+在线观看网站| 狂野欧美白嫩少妇大欣赏| 国产精品嫩草影院av在线观看| 国产精品久久久久久久久免| 免费观看精品视频网站| 中文字幕av在线有码专区| 国产精品不卡视频一区二区| 久久久a久久爽久久v久久| 人妻系列 视频| 久久久色成人| 禁无遮挡网站| 一本久久精品| 国产精品久久视频播放| 国产真实乱freesex| 久久久久网色| 日韩成人av中文字幕在线观看| 国产一区二区在线av高清观看| 国产精品一及| 五月伊人婷婷丁香| 亚洲欧美精品专区久久| 此物有八面人人有两片| 精品熟女少妇av免费看| 亚洲色图av天堂| 久久久久久久久久成人| 看片在线看免费视频| 亚洲图色成人| 婷婷色av中文字幕| 国产黄色视频一区二区在线观看 | 又粗又硬又长又爽又黄的视频 | 欧美日韩乱码在线| 91久久精品国产一区二区三区| 亚洲欧美成人综合另类久久久 | 国产高潮美女av| 男的添女的下面高潮视频| av国产免费在线观看| 国产三级中文精品| 成人特级黄色片久久久久久久| 亚洲欧美日韩东京热| 伦理电影大哥的女人| 国产一级毛片七仙女欲春2| 午夜福利在线在线| 日韩欧美三级三区| 国产精品三级大全| 91久久精品国产一区二区三区| 久久久精品欧美日韩精品| 岛国在线免费视频观看| 最后的刺客免费高清国语| 美女 人体艺术 gogo| 亚洲精品456在线播放app| 天堂网av新在线| 日韩视频在线欧美| 夜夜夜夜夜久久久久| 午夜免费激情av| 91久久精品国产一区二区成人| 欧美zozozo另类| 国产真实乱freesex| 午夜精品国产一区二区电影 | 日产精品乱码卡一卡2卡三| av天堂在线播放| 久久这里只有精品中国| www日本黄色视频网| 色吧在线观看| 国产黄色小视频在线观看| 简卡轻食公司| 久久精品国产亚洲av天美| 亚洲丝袜综合中文字幕| 精品久久久噜噜| 久久亚洲国产成人精品v| 国语自产精品视频在线第100页| 亚洲av中文字字幕乱码综合| 国产毛片a区久久久久| 国产精品综合久久久久久久免费| 久久99热这里只有精品18| 欧美又色又爽又黄视频| 久久婷婷人人爽人人干人人爱| 成人三级黄色视频| av天堂在线播放| 亚洲欧美日韩无卡精品| 国产伦精品一区二区三区视频9| 欧美性猛交黑人性爽| 亚洲精品国产av成人精品| 99久国产av精品国产电影| 一本久久精品| av女优亚洲男人天堂| 三级毛片av免费| 麻豆国产av国片精品| 亚洲人与动物交配视频| 99在线视频只有这里精品首页| 97热精品久久久久久| 好男人视频免费观看在线| 日日摸夜夜添夜夜爱| 免费人成视频x8x8入口观看| 男女视频在线观看网站免费| 久久午夜福利片| 国产精品久久久久久av不卡| 天美传媒精品一区二区| 日韩高清综合在线| 免费看日本二区| 国内精品久久久久精免费| 天堂影院成人在线观看| 别揉我奶头 嗯啊视频| 精品99又大又爽又粗少妇毛片| 啦啦啦韩国在线观看视频| 伦精品一区二区三区| 人妻夜夜爽99麻豆av| 99国产极品粉嫩在线观看| 久久精品国产自在天天线| 99在线人妻在线中文字幕| 国产成人影院久久av| 国产精品伦人一区二区| 日本一本二区三区精品| 国产大屁股一区二区在线视频| 中文字幕免费在线视频6| 校园春色视频在线观看| 99热这里只有精品一区| 国产成人精品一,二区 | 亚洲av免费在线观看| 欧美成人a在线观看| 性欧美人与动物交配| 人妻久久中文字幕网| 在线播放国产精品三级| 青春草视频在线免费观看| 亚洲丝袜综合中文字幕| 国产伦一二天堂av在线观看| 高清午夜精品一区二区三区 | 欧美成人精品欧美一级黄| 国产精品电影一区二区三区| 国产女主播在线喷水免费视频网站 | 久久精品国产亚洲av香蕉五月| 狂野欧美激情性xxxx在线观看| 亚洲aⅴ乱码一区二区在线播放| 亚洲人与动物交配视频| 久久草成人影院| 国产 一区 欧美 日韩| 亚洲最大成人中文| av在线观看视频网站免费| 天堂√8在线中文| 免费搜索国产男女视频| 国模一区二区三区四区视频| 国产淫片久久久久久久久| 国产麻豆成人av免费视频| 亚洲人成网站在线播| 国产探花极品一区二区| 哪个播放器可以免费观看大片| 免费大片18禁| 欧美色视频一区免费| 国产久久久一区二区三区| 欧美+日韩+精品| 黄色一级大片看看| 国产高清不卡午夜福利| 色哟哟哟哟哟哟| 免费观看a级毛片全部| 国产高清视频在线观看网站| 欧美性猛交╳xxx乱大交人| 亚洲精品久久国产高清桃花| 直男gayav资源| 精品久久久久久久久久免费视频| 成人亚洲欧美一区二区av| 久久99热这里只有精品18| 好男人视频免费观看在线| 亚洲在线自拍视频| 22中文网久久字幕| 色综合站精品国产| 蜜桃亚洲精品一区二区三区| 波野结衣二区三区在线| 我的女老师完整版在线观看| 嫩草影院入口| 高清毛片免费看| 国内精品一区二区在线观看| 日本五十路高清| 一级毛片久久久久久久久女| 一级黄片播放器| 69av精品久久久久久| av卡一久久| 日本撒尿小便嘘嘘汇集6| 国产在线精品亚洲第一网站| 白带黄色成豆腐渣| 只有这里有精品99| 男女边吃奶边做爰视频| 1024手机看黄色片| 成人二区视频| 国产在线精品亚洲第一网站| 欧美一区二区亚洲| 一夜夜www| 高清毛片免费观看视频网站| 中文字幕精品亚洲无线码一区| 国产久久久一区二区三区| 少妇的逼水好多| 九九在线视频观看精品| 国产极品天堂在线| av免费在线看不卡| 亚洲av第一区精品v没综合| 一本一本综合久久| 中出人妻视频一区二区| 免费观看精品视频网站| 欧美不卡视频在线免费观看| 成人毛片60女人毛片免费| 国产午夜精品久久久久久一区二区三区| 99热只有精品国产| 亚洲七黄色美女视频| 国产精品一区www在线观看| av黄色大香蕉| 天天一区二区日本电影三级| 我的老师免费观看完整版| 亚洲国产精品sss在线观看| 有码 亚洲区| 99久久无色码亚洲精品果冻| 99久久精品国产国产毛片| 亚洲第一电影网av| 欧美激情国产日韩精品一区| 男人舔奶头视频| 少妇的逼好多水| 亚洲欧美中文字幕日韩二区| 国产成人午夜福利电影在线观看| 日本五十路高清| 69av精品久久久久久| 成人美女网站在线观看视频| 三级国产精品欧美在线观看| 久久中文看片网| 少妇裸体淫交视频免费看高清| 久久久国产成人免费| 尤物成人国产欧美一区二区三区| 国内精品久久久久精免费| 国产黄片美女视频| 精华霜和精华液先用哪个| 亚洲国产欧美人成| 久久久国产成人免费| 男女那种视频在线观看| 变态另类成人亚洲欧美熟女| 日韩欧美一区二区三区在线观看| 亚洲精品国产av成人精品| 成人一区二区视频在线观看| 亚洲精品久久久久久婷婷小说 | 99热6这里只有精品| 久久久久久久亚洲中文字幕| av福利片在线观看| 国产精品久久久久久精品电影| 亚洲欧美清纯卡通| 亚洲三级黄色毛片| 神马国产精品三级电影在线观看| 淫秽高清视频在线观看| 亚洲欧美中文字幕日韩二区| 日韩视频在线欧美| 国内精品美女久久久久久| 波多野结衣高清作品| 麻豆成人午夜福利视频| 天堂网av新在线| 麻豆久久精品国产亚洲av| 国国产精品蜜臀av免费| 乱系列少妇在线播放| 91狼人影院| 久久99热这里只有精品18| 日本欧美国产在线视频| 高清在线视频一区二区三区 | 99热6这里只有精品| 天天一区二区日本电影三级| 最新中文字幕久久久久| 久久6这里有精品| 成人亚洲精品av一区二区| 伦理电影大哥的女人| 久久中文看片网| 国产成人aa在线观看| 国产亚洲精品av在线| 3wmmmm亚洲av在线观看| 欧美性感艳星| 美女内射精品一级片tv| 干丝袜人妻中文字幕| h日本视频在线播放| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 熟女电影av网| 国产av不卡久久| 久久精品夜色国产| 国产在视频线在精品| 看黄色毛片网站| 大型黄色视频在线免费观看| 深夜精品福利| 日韩亚洲欧美综合| 中文字幕久久专区| 欧美精品一区二区大全| 亚洲欧洲日产国产| 狠狠狠狠99中文字幕| 蜜桃亚洲精品一区二区三区| www.av在线官网国产| 国产不卡一卡二| 一区二区三区免费毛片| av在线老鸭窝| 你懂的网址亚洲精品在线观看 | 国内精品一区二区在线观看| 深夜a级毛片| 国产黄片视频在线免费观看| 99久国产av精品| 内射极品少妇av片p| 最好的美女福利视频网| 综合色丁香网| 国产v大片淫在线免费观看| 欧美激情国产日韩精品一区| 精品人妻偷拍中文字幕| 国产亚洲91精品色在线| 亚洲四区av| 欧美最黄视频在线播放免费| ponron亚洲| АⅤ资源中文在线天堂| 国产淫片久久久久久久久| 免费av观看视频| 午夜爱爱视频在线播放| av在线亚洲专区| 成人国产麻豆网| 亚洲四区av| 国产精品人妻久久久久久| 男人舔女人下体高潮全视频| 亚洲精品久久国产高清桃花| 啦啦啦观看免费观看视频高清| ponron亚洲| 日韩成人av中文字幕在线观看| 亚洲人成网站在线观看播放| 男女做爰动态图高潮gif福利片| 美女 人体艺术 gogo| 国产白丝娇喘喷水9色精品| av免费在线看不卡| 国产精华一区二区三区| 欧美最黄视频在线播放免费| 国产精品福利在线免费观看| 亚洲av第一区精品v没综合| 精品久久久久久久久久免费视频| 亚洲av中文av极速乱| 少妇猛男粗大的猛烈进出视频 | 蜜桃久久精品国产亚洲av| 亚洲成人久久性| 午夜老司机福利剧场| 亚洲国产日韩欧美精品在线观看| 久久久久久久久大av| 国产单亲对白刺激| 波多野结衣高清无吗| 最后的刺客免费高清国语| 国产成人a区在线观看| 此物有八面人人有两片| 日日撸夜夜添| 变态另类成人亚洲欧美熟女| 国语自产精品视频在线第100页| 国产一区亚洲一区在线观看| 成人无遮挡网站| 国产色婷婷99| 97人妻精品一区二区三区麻豆| 亚洲成a人片在线一区二区| 欧美成人精品欧美一级黄| 欧美激情国产日韩精品一区| 欧美+亚洲+日韩+国产| 日日干狠狠操夜夜爽| 夜夜夜夜夜久久久久| 国产精品蜜桃在线观看 | a级毛片免费高清观看在线播放| 亚洲国产精品国产精品| 午夜福利在线观看免费完整高清在 | 亚洲,欧美,日韩| 亚洲av免费在线观看| 美女cb高潮喷水在线观看| 女的被弄到高潮叫床怎么办| ponron亚洲| 男女边吃奶边做爰视频| 午夜久久久久精精品| 日韩一本色道免费dvd| 亚洲国产欧美人成| 一本一本综合久久| 麻豆av噜噜一区二区三区| 午夜免费男女啪啪视频观看| 亚洲人成网站在线播放欧美日韩| 亚洲成人中文字幕在线播放| 卡戴珊不雅视频在线播放| 人妻久久中文字幕网| 黄色配什么色好看| 99久久精品热视频| 久久精品国产亚洲av香蕉五月| 18禁在线无遮挡免费观看视频| 欧美日本视频| 日产精品乱码卡一卡2卡三| av天堂在线播放| 久久久久久久久久黄片| 给我免费播放毛片高清在线观看| 99久久成人亚洲精品观看| 波野结衣二区三区在线| 欧美日韩精品成人综合77777| 日本欧美国产在线视频| 亚洲成人av在线免费| 91久久精品国产一区二区成人| 成人永久免费在线观看视频| 丰满人妻一区二区三区视频av| 亚洲欧美清纯卡通| 亚洲图色成人| 黄色配什么色好看| 丰满的人妻完整版| 久久精品国产亚洲网站| 久久亚洲国产成人精品v| .国产精品久久| 九九久久精品国产亚洲av麻豆| 久久久久九九精品影院| 久久久久国产网址| 日产精品乱码卡一卡2卡三| 26uuu在线亚洲综合色| 人妻系列 视频| 免费av观看视频| 天天躁夜夜躁狠狠久久av| 嫩草影院新地址| 亚洲欧美日韩高清在线视频| 国产高潮美女av| 午夜福利在线观看吧| 亚洲人成网站高清观看| 亚洲精品成人久久久久久| 毛片女人毛片| 婷婷亚洲欧美| 国产精品日韩av在线免费观看| 免费搜索国产男女视频| 精品久久久噜噜| 亚洲国产精品sss在线观看| 精品人妻熟女av久视频| 男的添女的下面高潮视频| 一边摸一边抽搐一进一小说| 不卡视频在线观看欧美| 亚洲成人久久性| 日日干狠狠操夜夜爽| 天堂网av新在线| 18禁黄网站禁片免费观看直播| 亚洲四区av| 欧美日韩国产亚洲二区| 久久久午夜欧美精品| 精品免费久久久久久久清纯| 晚上一个人看的免费电影| 一级av片app| 国内精品一区二区在线观看| 亚洲精品亚洲一区二区| 一边摸一边抽搐一进一小说| 久久久久久久久中文| 99在线人妻在线中文字幕| 亚洲人与动物交配视频| 一区二区三区高清视频在线| 日日撸夜夜添| 久久久色成人| 日本在线视频免费播放| av天堂中文字幕网| 精品久久国产蜜桃| 嘟嘟电影网在线观看| 联通29元200g的流量卡| 亚洲精品久久久久久婷婷小说 | 一区二区三区免费毛片| 非洲黑人性xxxx精品又粗又长| 成人永久免费在线观看视频| 国产精品,欧美在线| 国产av一区在线观看免费| 午夜福利高清视频| 美女国产视频在线观看| 免费搜索国产男女视频| 一本久久中文字幕| 在线天堂最新版资源| 18禁在线播放成人免费| 内地一区二区视频在线| 日本免费一区二区三区高清不卡| 欧美性猛交黑人性爽| 亚洲不卡免费看| 成人毛片60女人毛片免费| 岛国在线免费视频观看| 国产精品美女特级片免费视频播放器| 中文字幕人妻熟人妻熟丝袜美| 男的添女的下面高潮视频| 国产成人福利小说| 直男gayav资源| 日韩精品青青久久久久久| 亚洲国产精品成人综合色| 黄色欧美视频在线观看| 亚洲av.av天堂| 国产精品美女特级片免费视频播放器| 亚洲无线观看免费| 色噜噜av男人的天堂激情| 成人无遮挡网站| 中国美白少妇内射xxxbb| 丰满人妻一区二区三区视频av| 国产精品日韩av在线免费观看| 亚洲精品国产av成人精品| 日本在线视频免费播放| 久久久欧美国产精品| av国产免费在线观看| 国产精华一区二区三区| 亚洲无线观看免费| 高清日韩中文字幕在线| or卡值多少钱| 国产91av在线免费观看| 久久精品91蜜桃| 一级毛片电影观看 | 国产一区二区激情短视频| 国产精品一区www在线观看| 高清在线视频一区二区三区 | 菩萨蛮人人尽说江南好唐韦庄 | 91狼人影院| www.色视频.com| 久久综合国产亚洲精品| 一本精品99久久精品77| 91久久精品电影网| 美女xxoo啪啪120秒动态图| 亚洲欧美精品综合久久99| 日本成人三级电影网站| 国产精品日韩av在线免费观看|