• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Up/down-conversion luminescence of monoclinic Gd2O3:Er3+nanoparticles prepared by laser ablation in liquid

    2022-08-01 05:59:24HuaWeiDeng鄧華威andDiHuChen陳弟虎
    Chinese Physics B 2022年7期
    關(guān)鍵詞:華威

    Hua-Wei Deng(鄧華威) and Di-Hu Chen(陳弟虎)

    State Key Laboratory of Optoelectronic Materials and Technologies,School of Electronics and Information Technology,Sun Yat-Sen University,Guangzhou 510275,China

    Keywords: Gd2O3,nanoparticles,luminescence,laser ablation in liquid

    1. Introduction

    Rare earth luminescent materials have attracted much attention in recent years due to the unique electronic structure and physical properties of rare earth ions.[1–4]At present,rare earth luminescent materials have been widely used in lighting, display and other fields.[5–10]Rare earth-doped gadolinium oxide is a kind of good luminescent material.[11]On the one hand,the physical and chemical properties of gadolinium oxide are stable.[12]On the other hand,gadolinium ions can be easily substituted by other rare earth ions to get controllable luminescence.[13]In addition, the phonon energy of gadolinium oxide is low, which contributes to the efficiency of upconversion luminescence.[14]Due to the unique energy level structure of Er3+ion, Er3+ion possesses both up-conversion and down-conversion luminescence properties.[15,16]For this reason, compared with other rare earth ions, erbium ion may have more applications.Tunable fluorescent color is a requirement in the application of fluorescent materials.[17–19]It is worth to mention that there exist cross relaxation processes among adjacent Er3+ions.[20]Therefore, the electron distribution in corresponding energy levels can be easily tuned by simply adjusting the doping concentration of Er3+ions, and thus getting controllable fluorescence. In addition, applying nanomaterials to bioimaging is popular in recent years.[21–27]Due to the good tissue penetration of up-conversion excitation light,the application of up-conversion fluorescent materials in bio-imaging has attracted much attention.[28,29]Erbium-doped gadolinium oxide is a good kind of up-conversion fluorescent material.[30]

    At present, the studies on monoclinic rare earth-doped gadolinium oxide nanoparticles are rare.[15]The most popular methods for synthesizing monoclinic gadolinium oxide are combustion method and solid-state method.[31]The nanoparticles synthesized by combustion method usually float in the air after burning, which may cause dust pollution. While for solid-state method, it is usually not easy to synthesize nanosized particles. To date,more and more researchers have been dedicating to the research of preparing nanomaterials by laser ablation in liquid(LAL)method.[32–43]Compared with solidstate method,monoclinic gadolinium oxide nanoparticles can be easier to synthesize by LAL.[44]Additionally, nanoparticles synthesized by LAL can be easily collected compared with combustion method because they are dispersed in liquid as they are prepared.

    In this work,erbium-doped monoclinic gadolinium oxide nanoparticles were successfully prepared by LAL technique.The nanoparticles can be used as down-conversion phosphors as well as up-conversion phosphors. We got tunable luminescence by simply adjusting the concentration of erbium. In addition,the results of cytotoxicity and fluorescence imaging of living cells indicate that the material has the potential for applications in bioimaging.

    2. Experimental details

    2.1. Material synthesis

    The detailed method of material preparation has been reported in previous work.[45]There are two steps in the preparation process. The first step is to prepare targets. The raw materials (Gd2O3and Er2O3powders) for preparing the targets were purchased from Aladdin Chemistry(China). First,grind the Gd2O3and Er2O3powders with different atomic ratios(Er/(Gd+Er)=0.5%,2%,5%,10%,20%)in a mortar to make them fully mixed. Then an appropriate amount of polyvinyl alcohol (PVA) glue (10 wt%) was added and mixed with the powders.After the powders were dried,they were compressed into tablets. Finally, the tablets were sintered at 1550°C for 6 hours to make ceramic targets. The second step is to synthesize nanoparticles. The target was immersed in deionized water,and then a beam of pulsed laser(wavelength=532 nm,pulse duration = 5 ns, focal length = 200 mm, pulse power=90 mJ,repetition rate=5 Hz)was focused on the target to ablate the target for 15 minutes. Finally, the obtained colloid solution was collected for further characterization.

    2.2. Characterization

    The morphology of the nanoparticles was observed by using a transmission electron microscope (TEM, FEI Tecnai G2 F30). Dynamic light scattering(DLS)measurements were carried out with an EliteSizer Omni instrument(Brookhaven).The crystal structure of the nanoparticles was characterized by using an x-ray diffraction (XRD) diffractometer (Rigaku,SmartLabx). The fluorescence spectrum and fluorescence lifetime were measured by using a fluorescence spectrometer(FLS980,Edinburgh).

    2.3. Cytotoxicity assay

    RAW264.7 cells which were purchased from Forevergen Biotechnology Co., Ltd (Guangzhou, China) were incubated with different concentrations of Gd2O3:2%Er3+nanoparticles(20 μg/mL,40 μg/mL,80 μg/mL,and 160 μg/mL)and culture media (DMEM, as the negative control) in their logarithmic growth period. All groups were cultured in a cell incubator for 24 hours. Cell viability assay was carried out by using the Cell Counting Kit-8 (CCK-8) colorimetric solution. And the absorbance at 450 nm was measured by using a microplate reader(Multiskan Ex Primary EIA V,ThermoFisher,USA).

    2.4. Fluorescence imaging of cells

    RAW264.7 cells were incubated with the Gd2O3:2%Er3+nanoparticles(100 μg/mL)for 12 hours. After co-incubation,the cells were then washed with PBS solution to remove excess particles and dead cells. Fluorescence imaging of the cells was performed on a two-photon confocal laser scanning microscopy(LSM 710 NLO, Carl Zeiss, Jena, Germany)operating at an excitation wavelength of 980 nm.

    3. Results and discussion

    The crystal structure of the samples prepared by LAL were characterized by XRD. The XRD patterns are shown in Fig.1.

    For samples with Er3+concentration of 0.5% to 10%,the XRD patterns match the standard card of monoclinic gadolinium oxide (PDF#42-1465). While for the sample Gd2O3:20%Er3+, there is obvious impurity phase. By comparing with standard PDF cards, it can be found that the impurity phase matches the cubic gadolinium oxide (PDF#11-0604). The results indicate that the crystal structure is monoclinic phase at lower Er3+concentration, while cubic phase will appear in the case of high Er3+concentration. Figure 2(a)is a TEM image of the typical sample Gd2O3:2%Er3+. It can be seen from Fig.2(a)that the sample is nanosized. According to TEM data, a statistical analysis which is inserted in Fig. 2(a) of 160 particles indicated that the average size of sample 2%Er is 22.2±7.6 nm. The particle size distribution of the nanoparticles in solution was monitored by DLS measurement. As shown in Fig.2(b),the peaks of the particle hydrodynamic diameter distribution of Gd2O3:xEr3+(x=0.5%,2%,5%,10%,20%)nanoparticles locate at 214 nm,286 nm,227 nm,239 nm,and 265 nm respectively.

    Fig.3. Excitation spectrum of Gd2O3:2%Er3+ nanoparticles.

    The typical excitation spectrum of Gd2O3:2%Er3+nanoparticles monitored at 548 nm is shown in Fig.3. There are mainly three characteristic absorption peaks in the excitation spectrum. The absorption peaks at 367 nm, 379 nm,and 408 nm correspond to4I15/2→2G9/2,4I15/2→4G11/2,and4I15/2→2H9/2transitions of Er3+ion, respectively. The absorption at 379 nm is the strongest, therefore, 379 nm was chosen as the excitation wavelength for the study of downconversion luminescence. Figure 4(a) are emission visible light spectra of Gd2O3:xEr (x= 0.5%, 2%, 5%, 10%, and 20%)nanoparticles under the excitation of 379 nm. The emission peaks at 527 nm, 548 nm, and 670 nm correspond to2H11/2→4I15/2,4S3/2→4I15/2, and4F9/2→4I15/2transitions of Er3+ion respectively. The near-infrared emission spectra under the excitation of 379 nm were also measured as shown in Fig. 4(b). The emission peaks at 978 nm and 1540 nm correspond to4I11/2→4I15/2and4I13/2→4I15/2transitions of Er3+ion respectively. In addition,it can be seen from Fig. 4(a) that with the increase of the Er3+ion concentration the intensity ratio of 548-nm emission band to 670-nm emission band(I548nm/I670nm)gradually decreases. Thereby fluorescence color was tuned by simply adjusting the concentration of Er3+ion. This phenomenon can be attributed to the increase of the concentration of Er3+ion. When an ion has been excited, there are two types of de-excitation: radiative transition and nonradiative transition. If the exciton undergoes a radiative transition from excited to lower state,photons will be emitted. In addition to luminescence,there is the possibility of nonradiative de-excitation;that is,a process in which the ion can reach its ground state by a mechanism other than the emission of photons.[46]The main nonradiative transition processes include multiphonon emission and energy transfer.[46]According to Dexter’s energy transfer theory,the dependence onR,whereRis the separation between two ions,of the transfer probability can be written as follows:[47,48]

    wheresis a positive integer taking the values of 6,8,10,and those values correspond to dipole–dipole,dipole–quadrupole,and quadrupole–quadrupole interactions,respectively. Therefore, the probability of energy transfer between erbium ions increases with the erbium ion concentration. Energy transfer processes between same ions can be mainly divided into two kinds of processes, namely general resonant transfer and cross-relaxation which is a special case of nonradiative resonant transfer.[49,50]In case of general resonant transfer, the initial de-excited state of sensitizer and the final excited state of activator are same. Therefore, the emission color does not change because the population of electrons in excited state does not change. In case of cross-relaxation, one of the ions transfers a part of its excitation energy to the other center,different from the general resonant transfer,the initial de-excited state of sensitizer and the final excited state of activator are different in cross-relaxation process. Hence, the population of electrons in some excited states can be changed by crossrelaxation, and the emission color changes accordingly. In our experiment, the ratio of red to green intensity changed significantly with the increase of Er3+ion concentration. In general energy transfer processes between same ions, only the cross-relaxation process results in a significant change in color. Therefore, we consider this experimental phenomenon results from the cross-relaxation caused by the concentration change. There are also some articles have reported the crossrelaxation between Er3+ions and suggested that the change of the red–green intensity ratio with the change of Er ion concentration is caused by cross-relaxation.[20,51–54]The fluorescence lifetime of 548 nm of Gd2O3:xEr (x=0.5%, 2%, 5%,10%, and 20%)nanoparticles under the excitation of 379 nm had been measured.The results are shown in Fig.5.The decay curves conform to double exponential fitting[55]

    whereIis fluorescent intensity which is proportional to the counts in Fig.5,tis decay time,τ1andτ2are fitted lifetimes,I0,A1, andA2are constants. The average lifetime values are calculated by the following formula[55]

    As shown in Fig.5,the average lifetime of characteristic emission peak of Er3+decreases with the increase of the amount of Er3+. The significant change in fluorescence lifetime reflects the strong energy transfer between Er3+ions. From the fitting results, there are two decay rates. One of them reflects the decay of a conventional emission. We suppose the other results from the defects on nanoparticles. It has been reported that the defects on nanoparticles can cause double exponential decay rate.[56]Moreover, the oxide nanoparticles synthesized by laser in liquid usually have many defects.[32]There are many studies that aim to alter materials properties by creating defects using laser ablation in liquid(LAL)technology.[32]Those studies are also called laser defect-engineering in liquid(LDL).[32]Therefore,we suppose that the double exponential decay rate may result from the defects on nanoparticles.

    Fig. 4. (a) Visible emission spectra and (b) near infrared emission spectra of Gd2O3:xEr3+ (x=0.5, 2%, 5%, 10%, 20%)nanoparticles under the excitation of 379 nm.

    The up-conversion visible fluorescence spectra of Gd2O3:xEr (x=0.5%, 2%, 5%, 10%, and 20%) nanoparticles under excitation at 980 nm are shown in Fig.6(a). Three main peaks at 527 nm, 548 nm, and 671 nm are observed.Those emission bands are assigned as the2H11/2→4I15/2,4S3/2→4I15/2,and4F9/2→4I15/2transitions of Er3+ion respectively. The near-infrared emission spectra under the excitation of 980 nm were also measured as shown in Fig. 6(b).Since the measurement range cannot include the excitation wavelength, the emission spectrum from 900 nm to 1100 nm was not measured under 980-nm excitation. The emission peak at 1540 nm correspond to4I13/2→4I15/2transition of Er3+ion.It can be seen from the up-conversion emission spectra of all samples that with the increase of the Er3+ion concentration the intensity ratio of 548-nm emission band to 671-nm emission band (I548nm/I670nm) gradually decreases. In our opinion, this phenomenon is caused by the cross-relaxation process between erbium ions. It has been reported that the up-conversion emission intensity and pump power follow the following relationship[57]

    whereIis the emission intensity,Pis the pump power,andnis the number of the photons involved in up-conversion photoluminescence process. The value ofnis the slop of the linear fitting equation which can be obtained by fitting the plots of lnIversus lnP. As shown in Fig. 7, the value ofnfor green emission band at 548 nm is 1.79 and the value ofnfor red emission band at 671 nm is 1.71. The results that the fitted n is close to two suggest that two photons absorption process is involved in green and red up-conversion photoluminescence processes. This deviation from the expected phenomenon is due to the saturation effects.[58]The valuen=2 is the ideal value for pure saturation processes. The number of the luminescence center is a constant and does not change with the pump power. Therefore,the saturation effect is obviously under higher power excitation.[59]In addition, it was reported that higher pump power can increase the competition between linear decay and the upconversion process of the intermediate excited states,which results in a reduced slope.[59,60]

    Fig.5. Decay curves and lifetime values of Gd2O3:xEr3+(x=0.5,2%,5%,10%,20%)nanoparticles(λex=379 nm,λem=548 nm).

    Fig. 6. (a) Visible emission spectra and (b) near-infrared emission spectra of Gd2O3:xEr3+ (x=0.5, 2%, 5%, 10%, 20%)nanoparticles under the excitation of 980 nm.

    Fig.7.Double logarithmic plots of up-conversion emission intensities versus pump powers in Gd2O3:2%Er3+ nanoparticles under 980-nm excitation.

    In order to better understand the luminescence process of up-conversion and down-conversion processes, the energy level diagram of Er3+ions and the possible energy transfer processes are shown in Fig.8. The possible down-conversion process is shown in the left side of Fig.8. Under the excitation of 379 nm,ground-state(4I15/2)electrons of Er3+ions absorb photons and populate the excited states(4G11/2).The electrons in the excitedstate4G11/2can easily relax to the lower excited states (2H11/2,4S3/2, and4F9/2) via no-radiative relaxation process. Finally, the electrons transfer from excited state to ground state through photon emission. For the up-conversion luminescence under excitation of 980 nm,there are mainly two luminescence processes. One is green emission process. First,the ground state electron transfers to the4I11/2state through ground state absorption (GSA), and then the electron in the4I11/2state absorbs another photon and transfers to the4F7/2state. Then, the electron in the4F7/2state transfers to the2H11/2or4S3/2states through non-radiative relaxation. Finally, the electron transfers from the2H11/2or4S3/2states back to the ground state and the energy is released in the form of green luminescence. Another luminescence process is red emission process. The electron in4I11/2state transfers to the lower4I13/2state through non-radiative relaxation,and then it transfers to the4F9/2state by absorbing another photon. Finally, the electron transfers back to the ground state through photon emission. As the concentration of Er3+ions increases,the probability of cross-relaxation between adjacent Er3+ions will increase,thereby the relative intensity of red emission increases and the relative intensity of green emission decreases.For the up-conversion process,the number of electrons occupying the4I11/2energy level greatly increases due to the GSA process. In this case, the cross-relaxation process is mainly4F7/2,4I11/2→4F9/2,4F9/2.

    Fig. 8. The possible scheme of energy transfer process of Gd2O3:Er3+nanoparticles.

    As shown in Fig.6(a),there are five samples,and the visible luminescence intensity of two samples(sample 10%Er and sample 20%Er) is close to that of sample 2%Er. Therefore,we think the visible fluorescence imaging of sample 2%Er is representative and may show the upconversion fluorescence imaging capability of most samples. So, we choose sample 2%Er for fluorescence imaging application. To explore the feasibility of using Gd2O3:Er3+nanoparticles for biological imaging, firstly the biocompatibility of the Gd2O3:Er3+nanoparticles should be evaluated. As shown in Fig. 9,RAW264.7 cells are employed to assay the cells viability of the Gd2O3:2%Er3+nanoparticles. After 24 hours of incubation with RAW264.7 cell,the nanoparticles had no significant effect on the cell viability of RAW264.7 cell. This shows that the cytotoxicity of the products is low. In order to test the capability of the provided Gd2O3:Er3+nanoparticles for bio-imaging,two-photon fluorescent confocal imaging experiment was conducted. Figures 10(a), 10(b), and 10(c) are the bright-filed image,fluorescence image,and merged image of RAW264.7 cells incubated with Gd2O3:2%Er3+nanoparticles respectively. It is obvious that nanoparticles can be swallowed by cells, and no significant damage of cells was found. Additionally, nanoparticles in cells can emit fluorescence under the irradiation of 980-nm laser. Therefore, the provided Gd2O3:Er3+nanoparticle is a potential candidate for bio-imaging.

    In general,color could be represented by the Commission International del’Eclairage (CIE) 1931 chromaticity coordinates.The color coordinates for the phosphors were calculated based on the corresponding emission spectra. Figure 11 is the CIE chromaticity diagram of Gd2O3:xEr(x=0.5%,2%,5%,10%, 20%) under the excitation of 379 nm or 980 nm. As shown in Fig. 11, with the increase of erbium concentration,the color gradually changes from green to orange. The results show that the fluorescent color can be tuned by simply controlling the Er concentration,and the LAL-prepared nanoparticles could be considered as a promising candidate for luminescent material.

    Fig.9. Normalized viability of RAW264.7 cells co-incubated with different concentrations of Gd2O3:2%Er3+ nanoparticles. The mass in this figure is the mass of nanoparticles,means±s.d.,n=8.

    Fig. 10. Fluorescence imaging of RAW264.7 cells incubated with Gd2O3:2%Er3+ nanoparticles. (a) Bright field image; (b) fluorescence image;(c)merged image.

    Fig.11. CIE chromaticity coordinates for Gd2O3:xEr3+ (x=0.5,2%,5%,10%,20%)under 379-nm and 980-nm excitations.

    4. Conclusion

    In summary, monoclinic Er3+-doped Gd2O3nanoparticles were successfully synthesized by LAL technique. The effect of the concentration of Er3+ion on the fluorescence properties has been studied. The fluorescent color can be tuned by controlling the amount of erbium. For cellular fluorescence imaging, the cytotoxicity is low, and the fluorescence in cell is strong enough. The results indicate that the Gd2O3:Er3+nanoparticles synthesized by LAL technique are promising candidates for bio-imaging or other fields that require controllable fluorescence.

    猜你喜歡
    華威
    張?zhí)煲怼度A威先生》的敘述人稱與經(jīng)典生成
    藝術(shù)家(2023年2期)2023-09-13 10:13:09
    中國重汽湖北華威公司:再獲“高新技術(shù)企業(yè)”榮譽
    商用汽車(2020年6期)2020-08-14 06:00:26
    紅門贊
    孔華威:用儒家之道“武裝”創(chuàng)業(yè)者
    華東科技(2016年10期)2016-11-11 06:17:49
    睡眠止疼術(shù)
    20世紀40年代官場中的阿Q
    雪蓮(2015年9期)2015-12-15 20:50:54
    華威先生(節(jié)選)
    英國小鮮肉熱心做慈善
    汽車生活(2014年11期)2014-12-03 12:51:05
    《華威先生》反諷情境下的悖論敘事
    羅文倩 最執(zhí)著的事
    投資與合作(2009年3期)2009-05-08 10:02:10
    成人精品一区二区免费| 毛片女人毛片| 色av中文字幕| 久久精品亚洲精品国产色婷小说| 亚洲熟女毛片儿| 五月伊人婷婷丁香| 在线观看美女被高潮喷水网站 | 国产97色在线日韩免费| 色综合婷婷激情| 日本黄大片高清| 在线观看一区二区三区| 国产黄色小视频在线观看| 99热6这里只有精品| 免费在线观看日本一区| 黄色 视频免费看| 美女黄网站色视频| 麻豆av在线久日| 欧美极品一区二区三区四区| 久久精品国产综合久久久| 亚洲专区中文字幕在线| 久久久久久国产a免费观看| 国产av又大| 国产又黄又爽又无遮挡在线| 亚洲中文字幕一区二区三区有码在线看 | 亚洲欧美日韩无卡精品| 日本免费a在线| 操出白浆在线播放| 午夜老司机福利片| 99久久精品国产亚洲精品| 亚洲国产精品久久男人天堂| 国产乱人伦免费视频| av国产免费在线观看| 91av网站免费观看| av片东京热男人的天堂| 两性午夜刺激爽爽歪歪视频在线观看 | 18美女黄网站色大片免费观看| 成人三级做爰电影| 国产精品一区二区精品视频观看| 免费av毛片视频| 久久亚洲真实| 最近最新中文字幕大全电影3| 国语自产精品视频在线第100页| 丁香欧美五月| av超薄肉色丝袜交足视频| 亚洲av电影不卡..在线观看| av福利片在线观看| 五月玫瑰六月丁香| x7x7x7水蜜桃| 亚洲va日本ⅴa欧美va伊人久久| 亚洲自拍偷在线| av在线天堂中文字幕| 国产日本99.免费观看| 人人妻人人看人人澡| 91字幕亚洲| 国产三级黄色录像| 久久久久性生活片| 99国产精品一区二区三区| 亚洲成人精品中文字幕电影| 久久亚洲真实| 久久午夜综合久久蜜桃| 我的老师免费观看完整版| 亚洲精品美女久久久久99蜜臀| 两性夫妻黄色片| xxx96com| 嫩草影视91久久| 中文字幕熟女人妻在线| 午夜福利成人在线免费观看| 在线a可以看的网站| 99久久精品热视频| 嫁个100分男人电影在线观看| 国产人伦9x9x在线观看| 欧美一区二区精品小视频在线| 国产一区二区在线av高清观看| 亚洲人成电影免费在线| 欧美日韩国产亚洲二区| 在线观看一区二区三区| 这个男人来自地球电影免费观看| 免费观看精品视频网站| 免费看a级黄色片| 午夜亚洲福利在线播放| 精品欧美一区二区三区在线| 国内精品一区二区在线观看| 久久精品国产清高在天天线| tocl精华| 中文资源天堂在线| 一区福利在线观看| 久久午夜亚洲精品久久| 91九色精品人成在线观看| 免费看a级黄色片| 一个人免费在线观看电影 | 久久久久国产精品人妻aⅴ院| 欧美在线黄色| 久久久久九九精品影院| 天堂av国产一区二区熟女人妻 | 成年人黄色毛片网站| 精品国产乱子伦一区二区三区| 免费在线观看影片大全网站| 舔av片在线| 少妇的丰满在线观看| www日本在线高清视频| 午夜福利欧美成人| 男插女下体视频免费在线播放| 最近最新中文字幕大全电影3| 久久婷婷成人综合色麻豆| 麻豆国产97在线/欧美 | 欧美又色又爽又黄视频| 亚洲aⅴ乱码一区二区在线播放 | av在线天堂中文字幕| 亚洲第一欧美日韩一区二区三区| 久久精品91蜜桃| 19禁男女啪啪无遮挡网站| 18禁黄网站禁片午夜丰满| 欧美乱码精品一区二区三区| 亚洲成人中文字幕在线播放| 久久这里只有精品19| 欧美日本视频| 欧美黑人精品巨大| 一级作爱视频免费观看| 超碰成人久久| 国产不卡一卡二| 色精品久久人妻99蜜桃| 国产1区2区3区精品| 午夜福利在线在线| 色播亚洲综合网| 正在播放国产对白刺激| 成人国产一区最新在线观看| 叶爱在线成人免费视频播放| 熟女少妇亚洲综合色aaa.| 欧美日韩瑟瑟在线播放| 五月玫瑰六月丁香| 成年免费大片在线观看| 亚洲专区国产一区二区| 久久久久久大精品| 免费看日本二区| 熟妇人妻久久中文字幕3abv| 国产精品免费一区二区三区在线| 免费在线观看黄色视频的| 国产亚洲精品综合一区在线观看 | 成人18禁高潮啪啪吃奶动态图| 麻豆久久精品国产亚洲av| 亚洲av电影在线进入| 中文字幕av在线有码专区| 小说图片视频综合网站| 欧美性猛交╳xxx乱大交人| 欧美成人免费av一区二区三区| 亚洲欧美精品综合一区二区三区| av有码第一页| 国产精品永久免费网站| 伊人久久大香线蕉亚洲五| 男女之事视频高清在线观看| 男女那种视频在线观看| 亚洲欧美日韩无卡精品| 欧美色视频一区免费| 人人妻人人看人人澡| avwww免费| 国产亚洲av嫩草精品影院| 日日摸夜夜添夜夜添小说| 亚洲欧美日韩无卡精品| 成人av在线播放网站| 国产午夜精品论理片| 亚洲精品久久成人aⅴ小说| 1024手机看黄色片| 亚洲欧美日韩东京热| 1024香蕉在线观看| 首页视频小说图片口味搜索| 人妻夜夜爽99麻豆av| 叶爱在线成人免费视频播放| 日韩欧美国产在线观看| 成人三级黄色视频| 最近在线观看免费完整版| 香蕉久久夜色| 深夜精品福利| 欧美3d第一页| 亚洲一区二区三区色噜噜| 舔av片在线| 国内久久婷婷六月综合欲色啪| 身体一侧抽搐| 丝袜美腿诱惑在线| 久久久精品大字幕| avwww免费| 亚洲一卡2卡3卡4卡5卡精品中文| 国语自产精品视频在线第100页| 久久久水蜜桃国产精品网| 中出人妻视频一区二区| 老汉色∧v一级毛片| 精品国产乱码久久久久久男人| svipshipincom国产片| 免费在线观看影片大全网站| 麻豆av在线久日| 男男h啪啪无遮挡| 亚洲国产看品久久| 国产成人av教育| 亚洲av五月六月丁香网| 久久精品综合一区二区三区| 天堂影院成人在线观看| 成人国产一区最新在线观看| 午夜福利视频1000在线观看| 又黄又爽又免费观看的视频| 一个人免费在线观看的高清视频| 国产aⅴ精品一区二区三区波| 又粗又爽又猛毛片免费看| av视频在线观看入口| 精品国内亚洲2022精品成人| av欧美777| av福利片在线| 欧美日韩瑟瑟在线播放| 午夜福利免费观看在线| 日韩欧美国产在线观看| 99re在线观看精品视频| tocl精华| 国产精品亚洲一级av第二区| 亚洲一码二码三码区别大吗| 在线观看舔阴道视频| 国产免费av片在线观看野外av| 一进一出抽搐动态| 成人特级黄色片久久久久久久| 国产精品精品国产色婷婷| 成人18禁高潮啪啪吃奶动态图| 2021天堂中文幕一二区在线观| 久久精品成人免费网站| 欧美性长视频在线观看| 天天添夜夜摸| 欧美极品一区二区三区四区| 2021天堂中文幕一二区在线观| 中亚洲国语对白在线视频| 真人做人爱边吃奶动态| 久久久久久久久久黄片| 国产精品 欧美亚洲| 国产精品久久久久久亚洲av鲁大| 午夜免费激情av| 女人爽到高潮嗷嗷叫在线视频| 免费电影在线观看免费观看| 99热这里只有精品一区 | 无遮挡黄片免费观看| 丝袜人妻中文字幕| 超碰成人久久| 国产精品九九99| 精品久久久久久成人av| 欧美日本亚洲视频在线播放| 男人的好看免费观看在线视频 | 国产高清有码在线观看视频 | 国产蜜桃级精品一区二区三区| 亚洲欧美激情综合另类| 日韩欧美 国产精品| 欧美zozozo另类| 久久 成人 亚洲| 国产蜜桃级精品一区二区三区| 夜夜夜夜夜久久久久| 精品一区二区三区视频在线观看免费| 1024视频免费在线观看| 日韩精品中文字幕看吧| 免费观看人在逋| 成人一区二区视频在线观看| 亚洲激情在线av| 国产成人欧美在线观看| 午夜福利在线在线| 精品欧美国产一区二区三| 亚洲av成人一区二区三| 女生性感内裤真人,穿戴方法视频| 日本三级黄在线观看| 午夜免费成人在线视频| 精品久久蜜臀av无| 国产精品国产高清国产av| 国产亚洲欧美在线一区二区| 亚洲天堂国产精品一区在线| av免费在线观看网站| a级毛片a级免费在线| 亚洲av成人精品一区久久| www日本黄色视频网| 国产av又大| 黄色成人免费大全| 亚洲国产精品成人综合色| 欧美日本视频| 亚洲无线在线观看| 啦啦啦观看免费观看视频高清| 国产真人三级小视频在线观看| 久久久精品国产亚洲av高清涩受| 免费在线观看影片大全网站| 欧美成狂野欧美在线观看| 国产黄片美女视频| 免费人成视频x8x8入口观看| 不卡av一区二区三区| 国产亚洲欧美在线一区二区| 亚洲欧洲精品一区二区精品久久久| 亚洲成人精品中文字幕电影| 国产区一区二久久| 午夜福利在线在线| 亚洲人与动物交配视频| 久久婷婷成人综合色麻豆| 中国美女看黄片| 欧美 亚洲 国产 日韩一| 欧美性猛交黑人性爽| 精品一区二区三区av网在线观看| 日本 av在线| 国产亚洲欧美98| 欧美日韩黄片免| 母亲3免费完整高清在线观看| 中文资源天堂在线| 99在线人妻在线中文字幕| 亚洲avbb在线观看| 91字幕亚洲| 一本久久中文字幕| 777久久人妻少妇嫩草av网站| 少妇裸体淫交视频免费看高清 | 老熟妇仑乱视频hdxx| 国产精品久久视频播放| 黄色成人免费大全| 欧美zozozo另类| 在线观看舔阴道视频| 丰满的人妻完整版| 欧美3d第一页| 全区人妻精品视频| 天堂动漫精品| 久久久国产成人精品二区| 精品国产亚洲在线| 最近最新中文字幕大全免费视频| 欧美国产日韩亚洲一区| 身体一侧抽搐| 久久人妻福利社区极品人妻图片| 欧美中文综合在线视频| 老熟妇仑乱视频hdxx| 日本 欧美在线| 国产午夜精品论理片| 精品乱码久久久久久99久播| 两人在一起打扑克的视频| 亚洲熟女毛片儿| 大型av网站在线播放| 亚洲国产欧美网| 国产欧美日韩一区二区三| 无人区码免费观看不卡| 不卡av一区二区三区| 人人妻人人澡欧美一区二区| av超薄肉色丝袜交足视频| 制服人妻中文乱码| 婷婷精品国产亚洲av| 少妇裸体淫交视频免费看高清 | 一二三四社区在线视频社区8| 欧美大码av| 99久久精品热视频| 日韩欧美国产在线观看| 久久久久久久久久黄片| 精品国产乱子伦一区二区三区| 久久久久久久久久黄片| 日韩大尺度精品在线看网址| 国产欧美日韩精品亚洲av| 日本一本二区三区精品| 亚洲男人天堂网一区| 亚洲欧洲精品一区二区精品久久久| 久久精品夜夜夜夜夜久久蜜豆 | 午夜影院日韩av| xxxwww97欧美| 日本五十路高清| 无人区码免费观看不卡| 午夜视频精品福利| 亚洲国产精品成人综合色| 精品日产1卡2卡| 国产成人一区二区三区免费视频网站| 一本大道久久a久久精品| 黄片小视频在线播放| 日本撒尿小便嘘嘘汇集6| 亚洲一区二区三区不卡视频| 国产精品香港三级国产av潘金莲| 午夜精品在线福利| 国产成+人综合+亚洲专区| 免费av毛片视频| 久久久精品国产亚洲av高清涩受| 亚洲欧美日韩东京热| 老汉色av国产亚洲站长工具| 欧美日韩亚洲国产一区二区在线观看| 欧美日韩黄片免| 亚洲av熟女| 可以在线观看毛片的网站| 久久婷婷人人爽人人干人人爱| x7x7x7水蜜桃| 国产午夜福利久久久久久| 国产精品精品国产色婷婷| 国产又黄又爽又无遮挡在线| 亚洲av成人不卡在线观看播放网| 中国美女看黄片| 特级一级黄色大片| 黄色女人牲交| 99久久精品国产亚洲精品| 亚洲电影在线观看av| 国产高清有码在线观看视频 | 妹子高潮喷水视频| 国产欧美日韩一区二区精品| 欧美+亚洲+日韩+国产| 久久久精品国产亚洲av高清涩受| 久久国产乱子伦精品免费另类| 国产单亲对白刺激| 亚洲美女视频黄频| 日本一本二区三区精品| 国产三级黄色录像| 国产伦一二天堂av在线观看| 制服丝袜大香蕉在线| 欧美 亚洲 国产 日韩一| 亚洲av熟女| 欧美精品亚洲一区二区| 青草久久国产| 欧美一区二区精品小视频在线| 黄色片一级片一级黄色片| 此物有八面人人有两片| 成人国语在线视频| 亚洲美女视频黄频| 淫妇啪啪啪对白视频| 国产午夜精品久久久久久| 精品高清国产在线一区| 久久中文字幕一级| 国产乱人伦免费视频| 中亚洲国语对白在线视频| 久久香蕉精品热| 真人一进一出gif抽搐免费| 悠悠久久av| 午夜激情福利司机影院| 亚洲欧美日韩无卡精品| 日本三级黄在线观看| 亚洲,欧美精品.| 精品国内亚洲2022精品成人| 极品教师在线免费播放| 婷婷亚洲欧美| 两性夫妻黄色片| 18禁观看日本| 老司机午夜福利在线观看视频| av欧美777| 91大片在线观看| 哪里可以看免费的av片| 亚洲成av人片在线播放无| 一夜夜www| 国产精品1区2区在线观看.| a在线观看视频网站| 老司机靠b影院| 99热6这里只有精品| 天天躁狠狠躁夜夜躁狠狠躁| 国产成人啪精品午夜网站| 在线免费观看的www视频| 可以在线观看毛片的网站| 国产精品自产拍在线观看55亚洲| 国产精品一区二区三区四区免费观看 | 亚洲成人精品中文字幕电影| 色尼玛亚洲综合影院| 在线观看66精品国产| 男人的好看免费观看在线视频 | 精品午夜福利视频在线观看一区| 两个人免费观看高清视频| 91大片在线观看| 黄色视频不卡| 好看av亚洲va欧美ⅴa在| 岛国在线免费视频观看| 欧美成人午夜精品| 美女 人体艺术 gogo| 欧美av亚洲av综合av国产av| 国内久久婷婷六月综合欲色啪| 国产精品一区二区三区四区久久| 欧美高清成人免费视频www| 日本a在线网址| av免费在线观看网站| 国产亚洲av嫩草精品影院| 国产99白浆流出| 99热6这里只有精品| 99re在线观看精品视频| 亚洲av成人精品一区久久| 91成年电影在线观看| 亚洲自偷自拍图片 自拍| 两性夫妻黄色片| 两个人的视频大全免费| 欧美丝袜亚洲另类 | 91av网站免费观看| 在线a可以看的网站| 国产真实乱freesex| 亚洲自拍偷在线| 高清在线国产一区| 亚洲中文av在线| 国产亚洲精品一区二区www| 亚洲国产欧美一区二区综合| 午夜视频精品福利| 国产单亲对白刺激| 午夜免费观看网址| 亚洲av中文字字幕乱码综合| 国产成人精品无人区| 麻豆成人av在线观看| 久久久国产成人免费| 色在线成人网| 亚洲欧洲精品一区二区精品久久久| 亚洲精品粉嫩美女一区| 老司机深夜福利视频在线观看| 精品久久久久久久末码| 一进一出抽搐gif免费好疼| 夜夜夜夜夜久久久久| 亚洲精品久久成人aⅴ小说| 精品久久久久久久久久免费视频| 丝袜美腿诱惑在线| 亚洲熟女毛片儿| 99热6这里只有精品| 久久精品夜夜夜夜夜久久蜜豆 | 他把我摸到了高潮在线观看| 久久久久久久久中文| 免费人成视频x8x8入口观看| 国产高清视频在线播放一区| 老司机福利观看| 亚洲国产欧洲综合997久久,| 欧美乱色亚洲激情| 国产亚洲av嫩草精品影院| 免费看a级黄色片| 伦理电影免费视频| 亚洲人成77777在线视频| 白带黄色成豆腐渣| 免费在线观看黄色视频的| 亚洲国产看品久久| 99精品在免费线老司机午夜| 一个人免费在线观看电影 | 十八禁网站免费在线| 久久精品亚洲精品国产色婷小说| 91国产中文字幕| 亚洲真实伦在线观看| 亚洲第一电影网av| 琪琪午夜伦伦电影理论片6080| 激情在线观看视频在线高清| 欧美人与性动交α欧美精品济南到| 亚洲欧美日韩无卡精品| 久久久精品大字幕| 亚洲七黄色美女视频| 欧美三级亚洲精品| 久久草成人影院| 久久久久久久久久黄片| 亚洲自偷自拍图片 自拍| 久久九九热精品免费| 天天躁狠狠躁夜夜躁狠狠躁| 黄色a级毛片大全视频| 男女之事视频高清在线观看| 我的老师免费观看完整版| 亚洲欧美精品综合久久99| 天堂动漫精品| 久久久久国产精品人妻aⅴ院| 麻豆成人午夜福利视频| avwww免费| 亚洲av中文字字幕乱码综合| 久久天躁狠狠躁夜夜2o2o| 神马国产精品三级电影在线观看 | 欧美日韩中文字幕国产精品一区二区三区| 手机成人av网站| bbb黄色大片| 99久久精品热视频| 国产亚洲精品av在线| 俺也久久电影网| 色在线成人网| 人妻丰满熟妇av一区二区三区| 日本免费a在线| 色哟哟哟哟哟哟| 成年女人毛片免费观看观看9| 国产精品一区二区三区四区久久| 757午夜福利合集在线观看| 一级作爱视频免费观看| 国产高清激情床上av| 成人精品一区二区免费| 在线观看午夜福利视频| 亚洲成人精品中文字幕电影| 人妻丰满熟妇av一区二区三区| 岛国在线免费视频观看| 91字幕亚洲| 级片在线观看| 日本免费a在线| 亚洲成人久久性| 欧美另类亚洲清纯唯美| 亚洲国产欧美人成| 在线观看66精品国产| 夜夜夜夜夜久久久久| 亚洲18禁久久av| 成人国产综合亚洲| 久久这里只有精品19| 国产精品,欧美在线| 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲午夜精品一区,二区,三区| 亚洲人与动物交配视频| 亚洲激情在线av| 免费在线观看视频国产中文字幕亚洲| 成年人黄色毛片网站| av在线播放免费不卡| 色综合婷婷激情| 午夜福利视频1000在线观看| 国产一区在线观看成人免费| 中文字幕av在线有码专区| 嫁个100分男人电影在线观看| 国产成人系列免费观看| 黄色毛片三级朝国网站| 十八禁人妻一区二区| av国产免费在线观看| 一级毛片高清免费大全| 桃红色精品国产亚洲av| 欧美在线黄色| 午夜日韩欧美国产| 国产成人影院久久av| 天天躁狠狠躁夜夜躁狠狠躁| 窝窝影院91人妻| 这个男人来自地球电影免费观看| 成人三级黄色视频| 麻豆一二三区av精品| 午夜免费激情av| 午夜福利欧美成人| 男男h啪啪无遮挡| 青草久久国产| 国产高清激情床上av| 一本综合久久免费| 国产熟女午夜一区二区三区| 国产免费av片在线观看野外av| 无限看片的www在线观看| 在线观看免费午夜福利视频| 国产蜜桃级精品一区二区三区| 特级一级黄色大片| 一进一出抽搐动态| 美女高潮喷水抽搐中文字幕| 757午夜福利合集在线观看| x7x7x7水蜜桃| 十八禁网站免费在线| 三级男女做爰猛烈吃奶摸视频| 国产单亲对白刺激|