• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Laser fragmentation in liquid synthesis of novel palladium-sulfur compound nanoparticles as efficient electrocatalysts for hydrogen evolution reaction

    2022-08-01 06:01:58GuoShuaiFu付國帥HongZhiGao高宏志GuoWeiYang楊國偉PengYu于鵬andPuLiu劉璞
    Chinese Physics B 2022年7期
    關(guān)鍵詞:宏志

    Guo-Shuai Fu(付國帥), Hong-Zhi Gao(高宏志), Guo-Wei Yang(楊國偉), Peng Yu(于鵬), and Pu Liu(劉璞)

    State Key Laboratory of Optoelectronic Materials and Technologies,Nanotechnology Research Center,School of Materials Science&Engineering,Sun Yat-sen University,Guangzhou 510275,China

    Keywords: Pd-based electrocatalyst,hydrogen evolution reaction,laser fragmentation in liquid,nanoparticles

    1. Introduction

    Hydrogen energy is considered to be an appealing green energy source for replacing fossil fuels due to its ultra-high energy density and environmental friendliness. Catalytic water splitting to produce hydrogen,with the advantages of high energy conversion efficiency, simple operation, and zero carbon emission,has been widely recognized as one of the most promising methods to obtain hydrogen.[1]To apply electrochemical water splitting successfully in actual work,it is necessary to develop catalysts with high activity, superior stability, and at a low cost. Platinum-based materials have long been considered to be the most efficient catalysts for the desorption of hydrogen from water, as the strength of the Pt–H bond is associated with the fastest reaction rate for the HER.[2]However, the application of platinum-based catalysts in HER is limited due to the high cost and low reserves of platinum resources on the earth. At present, there have been many reports of non-precious-metal-based electrocatalysts in the academic field,such as metal-free carbon,[3]transition metals,[4]transition metal oxides,[5]transition metal carbides,[6,7]transition metal sulfides,[8–10]and metal alloys.[11,12]However,the catalytic activity and stability of these catalysts are poor and hardly comparable to that of Pt-based catalysts.

    Palladium-based (Pd-based) catalysts, which have attracted much attention in recent years, with its Gibbs free energy for atomic hydrogen adsorption (ΔGH*) being very close to that of platinum, have been considered as an alternative HER electrocatalytic material with great potential.[13]For example,Pd-MoS2,[14]Pd-CNx,[15]PdMnCo/NC,[16]and Pd4Se[17]have been reported showing excellent electrochemical performance under acidic conditions. However, most of these works also point out that the high dependence on a single structure of the reported Pd-based catalysts severely restricts their further improvement of the HER performance.Nevertheless, there was a report demonstrating that a kind of amorphous Li-PPS NDs,[18]which was obtained by using a simple lithium intercalation method to modify layered crystalline Pd3P2S8,has shown an excellent electrochemical property. Their current density of 10 mA·cm-2only needs a low overpotential of-91 mV,and the Tafel slope is 29 mV·dec-1,which is equivalent to Pt/C. The activation of this catalytic activity is attributed to changes in morphology and structure(loss of crystallinity, formation of vacancies,etc.) during the lithiation process. The above Pd-based catalysts exhibit superior HER performance under acidic conditions. However,due to the greater Pd–H binding energy, the HER activity of Pd is severely constrained.[19]Therefore,it is important to develop a Pd-based HER catalyst with high activity as well as long-term stability. Most notably, the HER activity of palladium has been reported to have a significant particle size effect. When the particle size range of palladium nanoparticles is 3 nm–42 nm, the best HER catalytic activity is obtained at 20 nm.[20]Herein, we used the laser fragmentation in liquid method(LFL)to modify layered PdPS crystals to obtain a kind of metastable palladium sulfur compound nanoparticles(LFL-PdS NPs) with a uniform particle size of about 20 nm.With a small overpotential of-66 mV at a current density of 10 mA·cm-2, a small Tafel slope of 42 mV·dec-1, the LFLPdS NPs have exhibited excellent HER activity and stability,outcompeting PdPS crystal(-470 mV and 149 mV·dec-1,respectively),and even superior to the performance of the commercial Pt/C catalyst in 0.5-M H2SO4. The activation of the electrocatalytic activity of LFL-PdS NPs was considered to result from the transformation of morphology and structure of layered PdPS crystals during the laser-induced solid–liquid interaction process while avoiding the introduction of any impurities. Therefore, this work provided a simple and efficient method to build high-performance nanoparticle electrocatalysts by the way of morphology and structure changes induced by laser fragmentation in liquid.

    2. Experimental

    2.1. Preparation of LFL-PdS NPs

    Preparation of PdPS nanoparticles is performed by laser fragmentation in liquid (LFL). The block layered PdPS crystal was ground, and 10 mg of the ground PdPS powder was dispersed in 50-ml isopropanol/water (volume ratio of isopropanol:water=3:1)solution with a glass container. After ultrasonic dispersion,the glass container is fixed to a magnetic stirrer and the stirrer is allowed to stir continuously to get a uniform fragmentation while the Nd-YAG laser is used to converge. During the fragmentation process, the Nd-YAG laser was operated at its third harmonic(355-nm wavelength)and kept pulsed laser energy of 120 mJ with a pulse duration of 10 ns and frequency of 10 Hz for the 2-h pulsed laser action of the synthesis process. The obtained solution after laser fragmentation was dried in an oven at 60°C to remove the moisture and obtain the LFL-PdS NPs nanocomposite in powdered form.

    2.2. Materials characterization

    G500 high-resolution thermal field emission scanning electron microscope (Gemini500), transmission electron microscope with an accelerating voltage of 200 kV (JEM-2010HR)and 300 kV(FEI Tecnai G2 F30)were used to characterize the structure and surface morphology of the sample.The phase analysis of the sample was carried out with the Rigaku RIGAKU powder x-ray diffractometer, and the x-ray diffraction pattern was obtained at a scanning speed of 2°per minute from 5°to 90°. The x-ray photoelectron spectroscopy(XPS)performs component analysis on the surface of the sample.

    2.3. Electrochemical measurements

    The HER measurements were tested on the Autolab workstation using a typical three-electrode system with a graphite rod as the counter electrode, Ag/AgCl as the reference electrode, and a catalyst-loaded glass carbon electrode(GCE) as the working electrode. The catalyst ink was prepared by dispersing 5 mg of LFL-PdS NPs in 1 ml of deionized water. After sonicated,the electrocatalyst ink(5 μl)was loaded onto a glassy carbon electrode (3 mm in diameter) as the working electrode and the catalyst-loaded GCE was dried at room temperature,then 5 μl of 5-wt%Nafion solution was added dropwise on the surface of the working electrode and dried at room temperature to protect the catalyst. Using the same method, the pristine PdPS crystal and 20%commercial Pt/C catalyst were used to modify the GCEs.The linear sweep voltammetry(LSV)was carried out in 0.5-M H2SO4aqueous solution with a scan rate of 5 mV·s-1. The set current density of the chronoamperometry durability test is 20 mA·cm-2.The stability test of cyclic voltammetry is a continuous potential cycling in the potential window of-0.1 V to 0.25 V (versusRHE) at a scan rate of 100 mV·s-1. After the potential cycle, the LSV curve was recorded at a scan rate of 5 mV·s-1.Record theCVcurve in the non-Faraday region (0.15 V to 0.45 V,versus to RHE)at different scanning rates to evaluate the ECSA.The scanning rate were 20,40,80,120,160,200,and 240 mV·s-1for LFL-PdS NPs, and 80, 120, 160, 200,240,280,and 320 mV·s-1for PdPS crystal. Electrochemical impedance spectroscopy measurements were conducted with a frequency from 0.01 Hz to 105Hz and amplitude of 10 mV at an overpotential of 66 mV(versusRHE).

    3. Results and discussion

    3.1. Characterization

    The crystal structures of pristine PdPS crystals and LFL-PdS NPs were analyzed by XRD as shown in Fig. 1.The diffraction pattern for PdPS crystals shows eight obvious peaks at 13.34°, 23.1°, 25.46°, 25.88°, 26.78°, 29.98°,31.52°,34.98°,40.64°,41.78°,corresponding to(200),(111),(310), (211), (400), (311), (020), (411), (511), (321) crystal planes in the standard spectrum of PdPS(ICSD 2331),respectively. The positions of the diffraction peaks are unchanged,and the XRD patterns of the powders are consistent with the standard spectra of the PdPS crystals,indicating that the original PdPS material used for laser fragmentation in liquid(LFL)is a highly crystalline pure-phase PdPS crystal. When LFL was performed to treat samples, the high local pressure and high temperatures of several thousand degrees celsius increase the internal defects of the material,deteriorate the crystallinity,and cause the appearance of metastable phases. The structural defects inside the sample are beneficial to improve the electrocatalytic properties of the material.[21]The LFL-PdS NPs sample shows a sharp diffraction peak at 13.3°, 25.46°,26.8°, corresponding to the(200), (310), (400)crystal planes of the PdPS crystal.[22]The diffraction peak of LFL-PdS NPs appearing at 39°corresponds to the (111) crystal plane of Pd, indicating the precipitation of Pd. At the same time, the diffraction peak intensity decreases,and the half-height width increases, indicating the fragmentation and size reduction of PdPS crystals and the appearance of nanocrystals during the laser fragmentation in liquid. LFL is a promising method for the preparation of amorphous nanoparticles.[23]

    Fig.1. XRD crystal structure analysis of PdPS crystal and LFL-PdS NPs.

    To observe the morphological changes brought about by the laser for the pristine material,the samples were characterized using a G500 high-resolution thermal field emission scanning electron microscope. The SEM images of PdPS crystals,shown in Fig.2(a),reflect the irregular lamellar structure of the PdPS crystal. The SEM images of LFL-PdS NPs are shown in Figs.2(b)–2(c). The layered PdPS crystals are fragmented by laser action and subsequently formed into nanoparticles with a diameter of about 20 nm by the cooling effect of the surrounding liquid and its surface tension. The nanospheres are tightly arranged and uniformly distributed, exposing a large number of active sites, which is conducive to improving the electrochemical properties of the material. It has been studied that surface Pd nanoparticles have a significant particle size effect,and a particle size of 20 nm has the best HER activity.

    The morphology and structure of PdPS crystals before and after the LFL process were further characterized by TEM.The PdPS crystals were formed by stacking thin sheets together, and the stacked sheets can be seen, with clear lattice stripes and diffraction spots, indicating the good crystallinity of the original PdPS crystals (Figs. 2(d)–2(e)). Figure 2(f)shows a typical low-magnification transmission electron microscopy(TEM)image of the LFL-PdS NPs,in which a batch of spherical nanoparticles is developed from the fragmentation of flaky PdPS crystals under the action of the laser. Polycrystalline rings can be seen after LFL-PdS NPs undergo selected area diffraction (Fig. 2(f)). High-resolution transmission electron microscopy (HRTEM) was used to characterize the LFL-PdS NPs(Fig.2(g)). The lattice fringes of LFL-PdS NPs display interplanar spacings of 0.23 nm in the particle,corresponding to the (111) crystal plane of Pd, which match well with the crystallographic spacing of the broad peak corresponding to 2θof 39°in XRD powder diffraction. Some of the lattice stripes outside the white box are disordered and indistinct,indicating that the local extreme environment in the LFL led to the formation of amorphous regions.LFL-PdS NPs are a mixed state consisting of amorphous and nanocrystalline structures.In addition,to determine the elemental content,distribution and structural characteristics of LFL-PdPS NPs, an EDS line scan of the sample was performed. EDS elemental analysis of the green area in Fig.2(h)showed that the percentage of Pd atoms was 71.37%, the percentage of P atoms was 15%,and the percentage of S atoms was 13.63%,with a ratio of roughly 5:1:1(Fig.2(i)). Figure 2(j)shows the distribution of Pd,P,and S elements. As seen that Pd elements are mainly concentrated on the nanospheres, P elements are mainly distributed in the area outside the nanospheres, and S elements are more uniformly distributed. The Pd–P bond in the PdPS crystal is so weak that it is easily broken under the action of a longtime highenergy laser. P almost does not exist inside the PdS nanoparticles but exists in the form of phosphate. The Pd and S elements form nanospheres as PdS compounds, while the Pd–S bond is also partially broken and the S element exists in the form of sulfate. This result can correspond to the XPS results(Fig.3).

    The surface analysis of LFL-PdS NPs was carried out using x-ray photoelectron spectroscopy(Fig.3). From Fig.3(a),it is clear that LFL-PdS NPs contain three elements,S,P,and Pd, indicating that all of the elements are preserved after the LFL of the PdPS crystal. Figures 3(b)–3(d) show the XPS spectra of Pd 3d, P 2p, and S 2p. The Pd 3d5/2and 3d3/2peaks are observed at 336.1-eV and 341.5-eV components of Pd,suggesting the formation of Pd clusters,respectively. Two additional small peaks at 336.61 eV and 341.87 eV are also observed in the spectrum,which might be attributed to the small amount of Pd2+from residual PdPS crystals[24](Fig. 3(b)).LFL-PdS NPs retained only the peaks at 134.23 eV corresponding to phosphate[25,26](Fig. 3(c)). The phosphate may come from the phosphate adsorbed on the surface of LFL-PdS NPs,which indicates that the P may be detached from the material during the reaction, thus forming a large number of P vacancies that can enhance HER activity.[27]And then,double peaks of S 2p appeared at 162.79 eV and 163 eV,corresponding to 2p3/2and 2p1/2,[28]as shown in Fig.3(d). In addition,the peak of sulfate appears at 167.59 eV. Furthermore, the C 1s spectrum was fitted for three peaks of 284.58,285.78,and 288.33 eV which match the standard signals of amorphous carbon shell.[29–32]

    Fig. 2. (a) SEM images of the PdPS crystal, (b)–(c) SEM images of LFL-PdS NPs, (d) TEM images of PdPS crystals, (e) HRTEM images and corresponding electron diffraction patterns of PdPS crystals,(f)TEM images of LFL-PdS NPs and corresponding electron diffraction patterns,(g)HRTEM images of LFL-PdS NPs,(i)EDS spectra of LFL-PdS NPs,(j)the elemental distribution of LFL-PdS NPs.

    Fig.3. XPS spectra of LFL-PdS NPs: (a)full XPS spectra, (b)P 2p spectra of XPS,(c)S 2p spectra of XPS,(d) Pd 3d spectra of XPS,(e)C 1s spectra of XPS.

    3.2. Electrochemical activity

    The HER performance of LFL-PdS NPs was investigated in a 0.5-M H2SO4aqueous solution and compared with commercial Pt/C catalysts (20 wt%), PdPS crystals. Figure 4(a) displays the HER polarization curves obtained from linear sweep voltammetry (LSV) measurements.LFL-PdS NPs show a very small onset potential value of-8.5 mVversusRHE, much smaller than that of PdPS crystal (-144 mV) (Fig. 4(a)). Moreover, LFL-PdS NPs (Tafel slope: 42 mV·dec-1)(Fig.4(b))exhibit higher catalytic activity compared to PdPS crystals (Tafel slope: 149 mV·dec-1);its activity is close to that of commercial Pt/C (Tafel slope:39 mV·dec-1). Such a small Tafel slope indicates faster kinetics of the catalytic reaction of LFL-PdS NPs with the Volmer–Tafel mechanism acting as the HER pathway.[33]The binding of adsorbed hydrogen atoms in this process becomes the rate-limiting step of the hydrogen evolution reaction.[34]The faster catalytic reaction kinetics allows the laser-treated LFLPdS NPs to reach high current densities with a low overpotential: 10 mA·cm-2at-66 mV and 50 mA·cm-2at-133 mV.As shown in Fig. 4(a), its operating potential is already very close to that of the commercial Pt/C catalyst-55 mV.

    Fig.4. (a)Polarization curves of PdPS crystal,LFL-PdS NPs,20%commercial Pt/C catalyst in 0.5-M H2SO4,(b)the corresponding Tafel slope.

    Fig. 5. (a) and (c) Measurement of double-layer capacitance (Cdl) in 0.5-M H2SO4 by cyclic voltammetry, (b) double-layer capacitance diagrams of LFL-PdPS,(d)double-layer capacitance diagrams of PdPS crystal.

    To evaluate the activity of LFL-PdS NPs, the electrochemically active surface areas(ECSA)of LFL-PdS NPs and PdPS crystals were compared by calculating the electrochemical bilayer capacitance(Cdl).The ECSA represents the intrinsic electrocatalytic activity of the electrocatalyst and is related to the number of active sites as well as the electrical conductivity of the catalyst.[35]As shown in Fig. 5(a)–5(d), theCdlof LFL-PdS NPs is 2.6 mF·cm-2(Fig. 5(d)), which is much higher than theCdlof PdPS crystals (Cdl= 39.3 μF·cm-2)(Fig. 5(b)). The higherCdlof LFL-PdS NPs indicates that laser fragmentation in liquid leads to a larger electrochemical active area of LFL-PdS NPs,and the intrinsic activity and number of active sites are better than those of PdPS crystals.Electrochemical impedance spectroscopy was carried out on LFL-PdS NPs and PdPS crystals. As can be seen from Fig.6,the charge transfer impedanceRctof LFL-PdS NPs is significantly smaller than that of the PdPS crystal, indicating that LFL-PdS NPs possess a faster electrocatalytic kinetic behavior.

    Fig. 6. EIS Nyquist plots for the LFL-PdS NPs and PdPS crystal and the corresponding Randies equivalent circuit diagram.

    In addition, LFL-PdS NPs have remarkable durability in HER. As shown in Fig. 7(a), the polarization curve obtained is only slightly negatively shifted, and the overpotential at 10 mA·cm-2is only negatively shifted by 5 mV after 104cyclic voltammetry cycles. Moreover, the chronopotentiometry measurements indicate that LFL-PdS NPs possess excellent long-term operation stability at 20 mA·cm-2(Fig.7(b)).

    Fig. 7. Stability test of LFL-PdS NPs in the HER. (a) Polarization curves of LFL-PdS NPs before and after 104 cyclic voltammetry tests between-0.15 V and 0.25 V(versus RHE).(b)Chronoamperometric measurements of LFL-PdS NPs under j=20 mA·cm-2 in 0.5-M H2SO4 aqueous solution.

    3.3. HER enhancement mechanism

    Based on the excellent HER activity of LFL-PdS NPs prompted us to probe the enhanced mechanism. Recently,Yang and co-workers have found that amorphization of palladium sulfides could be possible to enhance the activity towards the HER.[36]This may be the reason why our LFLPdS NPs exhibit excellent activity. Furthermore, the conductivity of the catalyst is improved due to the precipitation of Pd clusters. The electrochemical impedance spectroscopic data (Fig. 6) show a charge transfer resistance,Rctof 10 Ω for the LFL-PdS NPs while the value obtained is 1700 Ω for bulk PdPS.Mechanistically,the hydrogen evolution reaction is generally Volmer–Heyrovsky or Volmer–Tafel mechanism.[37]Three possible principal steps are involved in the electrochemical HER process as given below:[38]

    Volmer reaction(electrochemical hydrogen adsorption)

    Heyrovsky reaction(electrochemical desorption)

    Tafel reaction(chemical desorption)

    Generally, the hydrogen adsorption energy is considered as a criterion for the performance of HER catalysts. There are two processes of hydrogen adsorption and desorption steps on the catalyst surface, a suitable hydrogen adsorption energy is required to facilitate the hydrogen adsorption and desorption at the same time. The Tafel slope of 42 mV·dec-1suggests that a Heyrovsky-reaction-determined Volmer–Heyrovsky mechanism works in the LFL-PdS NPs catalyst(Fig.4(b)). The bulk PdPS however, shows a Tafel slope of 149 mV·dec-1revealing that the Volmer reaction is slow. Hence,we speculate that during the laser fragmentation process,the escape of P atoms causes the PdS atoms to re-bond. This process may improve the hydrogen adsorption energy and make it easier to adsorb hydrogen.

    4. Conclusion

    In summary, by introducing processes of LFL-induced structural engineering, we developed a top–down method to prepare LFL-PdS nanoparticles by modifying PdPS crystals through laser fragmentation in liquid. The prepared novel metastable LFL-PdS composite nanoparticles(LFL-PdS NPs)presented regular spherical nanometrology with smooth surface and uniform particle size distributions, meanwhile possessing excellent HER activity and stability. In acidic media, LFL-PdS NPs have excellent HER activity, very close to that of commercial Pt/C. The overpotential for LFL-PdS NPs at 10 mA·cm-2is only-66 mV and the Tafel slope is 42 mV·dec-1. More attractively, the LFL-PdS NPs exhibit excellent stability in the HER process, which simultaneously solves the catalytic activity and stability problems of Pd-based catalysts. Our structural engineering strategy of this work provided an avenue to tune and prepare crystal structures of twodimensional materials with unique properties and enhanced performances, which could be used for various research on further promising functional nanomaterial applications.

    Acknowledgments

    Project supported by the Natural Science Foundation of Guangdong Province, China (Grant No. 2016A030313339),the Science and Technology Planning Project of Guangdong Province, China (Grant No. 2017B090918002), the National Key Basic Research Program of China (Grant Nos.2014CB931700 and 2017YFA020623),the National Natural Science Foundation of China (Grant Nos. 51832011 and 91833302), and the Fund from State Key Laboratory of Optoelectronic Materials and Technologies (Grant No. OEMT-2021-PZ-02).

    猜你喜歡
    宏志
    摯友藝苑
    嘆世艱
    爭當(dāng)排雷兵
    上海故事(2020年8期)2020-10-22 02:13:49
    新時(shí)期宏志教育的現(xiàn)實(shí)意義與實(shí)施途徑
    準(zhǔn)備回家的他
    貓頭鷹和公雞的爭吵
    朋友的作用
    相見歡·七都新顏
    含笑花(2015年1期)2015-03-12 01:38:24
    親近自然
    中國攝影家(2013年9期)2013-04-29 00:44:03
    以文化為先導(dǎo) 辦有特色的宏志教育
    亚洲三级黄色毛片| 国产一区亚洲一区在线观看| 国产精品一区二区在线观看99 | av卡一久久| 最近视频中文字幕2019在线8| 国产精品一区二区三区四区久久| 美女黄网站色视频| 色吧在线观看| 欧美日本亚洲视频在线播放| 国产三级中文精品| 寂寞人妻少妇视频99o| 久久久久久久久久久免费av| 欧美高清成人免费视频www| 午夜久久久久精精品| 亚洲国产精品久久男人天堂| 亚洲精品456在线播放app| 午夜福利视频1000在线观看| 性色avwww在线观看| 在现免费观看毛片| 欧美色视频一区免费| 久久久久九九精品影院| 国产在视频线精品| 午夜福利视频1000在线观看| 亚洲五月天丁香| 简卡轻食公司| 欧美极品一区二区三区四区| 中文在线观看免费www的网站| 国产淫语在线视频| 亚洲国产日韩欧美精品在线观看| 欧美最新免费一区二区三区| ponron亚洲| 久久99蜜桃精品久久| 少妇丰满av| 中文精品一卡2卡3卡4更新| 午夜亚洲福利在线播放| 久久6这里有精品| 好男人在线观看高清免费视频| 日本黄色片子视频| 内地一区二区视频在线| 久久久a久久爽久久v久久| 亚洲精华国产精华液的使用体验| 国产精品乱码一区二三区的特点| 黄色配什么色好看| 亚洲第一区二区三区不卡| 国产精品综合久久久久久久免费| 只有这里有精品99| 精品久久久久久电影网 | 亚洲人与动物交配视频| 51国产日韩欧美| 国产亚洲一区二区精品| 中文字幕人妻熟人妻熟丝袜美| 中文在线观看免费www的网站| 看片在线看免费视频| 国产精品乱码一区二三区的特点| 精品熟女少妇av免费看| 国产乱人视频| 日本色播在线视频| 99久久中文字幕三级久久日本| 97在线视频观看| 嫩草影院精品99| 一个人免费在线观看电影| 狠狠狠狠99中文字幕| 国产黄片视频在线免费观看| 性插视频无遮挡在线免费观看| 国产亚洲av嫩草精品影院| 简卡轻食公司| 麻豆av噜噜一区二区三区| 又爽又黄无遮挡网站| 中文字幕人妻熟人妻熟丝袜美| 美女被艹到高潮喷水动态| 人人妻人人看人人澡| 亚洲欧美日韩东京热| 国产av码专区亚洲av| 美女脱内裤让男人舔精品视频| 日韩精品青青久久久久久| 久久精品久久久久久噜噜老黄 | 久久精品久久久久久久性| 婷婷色av中文字幕| 欧美高清性xxxxhd video| 国产色婷婷99| 国产探花在线观看一区二区| 少妇的逼水好多| 人人妻人人看人人澡| 国产毛片a区久久久久| 精品熟女少妇av免费看| 国产av在哪里看| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 精品久久久久久久末码| 午夜老司机福利剧场| 99国产精品一区二区蜜桃av| 男人和女人高潮做爰伦理| 三级国产精品片| 中文在线观看免费www的网站| kizo精华| 日本黄色视频三级网站网址| 日本与韩国留学比较| 少妇人妻一区二区三区视频| 深夜a级毛片| 国产真实伦视频高清在线观看| 亚洲国产欧洲综合997久久,| 插阴视频在线观看视频| 最近的中文字幕免费完整| 中文在线观看免费www的网站| 一级黄色大片毛片| 午夜a级毛片| 欧美一区二区国产精品久久精品| 日韩高清综合在线| 国产69精品久久久久777片| 国产激情偷乱视频一区二区| 夫妻性生交免费视频一级片| 汤姆久久久久久久影院中文字幕 | 日韩人妻高清精品专区| 热99在线观看视频| 日本爱情动作片www.在线观看| 最后的刺客免费高清国语| 一卡2卡三卡四卡精品乱码亚洲| 麻豆一二三区av精品| 国产精品国产高清国产av| 成人毛片60女人毛片免费| 我的女老师完整版在线观看| 亚洲av一区综合| 久久久国产成人免费| 国产91av在线免费观看| 中文字幕av在线有码专区| 精品酒店卫生间| 国产精品久久久久久久电影| 欧美日韩精品成人综合77777| 国产一区二区在线av高清观看| 亚洲综合精品二区| 成人鲁丝片一二三区免费| 又黄又爽又刺激的免费视频.| 看免费成人av毛片| 国产av码专区亚洲av| 久久99精品国语久久久| 久久国产乱子免费精品| or卡值多少钱| 日韩高清综合在线| 91精品国产九色| 99久久人妻综合| 欧美日本视频| 精品国产一区二区三区久久久樱花 | 草草在线视频免费看| 26uuu在线亚洲综合色| 亚洲怡红院男人天堂| 日韩三级伦理在线观看| 国产亚洲午夜精品一区二区久久 | 99久久精品一区二区三区| 国产精品人妻久久久久久| 久久鲁丝午夜福利片| .国产精品久久| 麻豆久久精品国产亚洲av| 亚洲精品日韩在线中文字幕| 日本色播在线视频| 亚洲综合色惰| 国产亚洲最大av| 国产高清国产精品国产三级 | 久久人人爽人人片av| 老司机福利观看| 国产 一区 欧美 日韩| 亚洲性久久影院| 国产高清不卡午夜福利| 舔av片在线| 一级二级三级毛片免费看| 日日干狠狠操夜夜爽| 毛片女人毛片| 国产视频内射| 老女人水多毛片| 人人妻人人看人人澡| 国产毛片a区久久久久| 精品一区二区三区人妻视频| 亚洲乱码一区二区免费版| 亚洲伊人久久精品综合 | 最近的中文字幕免费完整| 中文字幕免费在线视频6| 精品久久久噜噜| 亚洲最大成人中文| 人妻夜夜爽99麻豆av| 精品人妻视频免费看| 亚洲一级一片aⅴ在线观看| 日日干狠狠操夜夜爽| 国产人妻一区二区三区在| 免费黄网站久久成人精品| 久久久久久久亚洲中文字幕| 91精品一卡2卡3卡4卡| 亚洲中文字幕日韩| 国产一区二区三区av在线| av又黄又爽大尺度在线免费看 | 亚洲av电影不卡..在线观看| 国产日韩欧美在线精品| 日本免费在线观看一区| 国产精品福利在线免费观看| 99在线人妻在线中文字幕| 丝袜美腿在线中文| 精品无人区乱码1区二区| 在线播放国产精品三级| av在线亚洲专区| 纵有疾风起免费观看全集完整版 | 人人妻人人澡人人爽人人夜夜 | 亚洲成色77777| 91aial.com中文字幕在线观看| 天堂√8在线中文| 亚洲va在线va天堂va国产| 精品无人区乱码1区二区| 国产综合懂色| 特级一级黄色大片| 国产精品一区二区性色av| 日本午夜av视频| 九色成人免费人妻av| 亚洲精品影视一区二区三区av| 建设人人有责人人尽责人人享有的 | 久久精品综合一区二区三区| 最近中文字幕高清免费大全6| 国产淫片久久久久久久久| 国产91av在线免费观看| 精品少妇黑人巨大在线播放 | 狂野欧美激情性xxxx在线观看| 日本一二三区视频观看| 欧美成人午夜免费资源| 久久亚洲国产成人精品v| 人妻夜夜爽99麻豆av| 99久久精品热视频| 99国产精品一区二区蜜桃av| a级毛色黄片| 青春草视频在线免费观看| 国产av码专区亚洲av| 美女国产视频在线观看| 亚洲av一区综合| 三级毛片av免费| 久久久久久久亚洲中文字幕| av福利片在线观看| 国产不卡一卡二| 18禁在线播放成人免费| 亚洲国产精品成人久久小说| 精品久久久噜噜| 国内精品美女久久久久久| 国产成年人精品一区二区| 欧美xxxx黑人xx丫x性爽| 91精品国产九色| 亚洲在久久综合| av国产免费在线观看| 最近中文字幕高清免费大全6| 亚洲一区高清亚洲精品| 精品国内亚洲2022精品成人| 免费无遮挡裸体视频| 亚洲激情五月婷婷啪啪| 我要搜黄色片| 中文字幕亚洲精品专区| 99视频精品全部免费 在线| 国国产精品蜜臀av免费| 麻豆成人午夜福利视频| 亚洲av不卡在线观看| 亚洲,欧美,日韩| 日韩av在线免费看完整版不卡| 国产成人免费观看mmmm| 国产黄色小视频在线观看| 美女高潮的动态| 在线播放无遮挡| 国产av在哪里看| 热99在线观看视频| 国产精品久久视频播放| 老司机福利观看| 成年版毛片免费区| 日产精品乱码卡一卡2卡三| 黑人高潮一二区| 日韩av在线大香蕉| 久久99热6这里只有精品| 99热这里只有是精品50| 伦精品一区二区三区| ponron亚洲| 日韩大片免费观看网站 | 国产精品美女特级片免费视频播放器| 蜜桃久久精品国产亚洲av| 亚洲怡红院男人天堂| 美女黄网站色视频| 69av精品久久久久久| 免费黄色在线免费观看| 丝袜喷水一区| 色综合色国产| 汤姆久久久久久久影院中文字幕 | 91精品一卡2卡3卡4卡| 亚洲国产高清在线一区二区三| av国产免费在线观看| or卡值多少钱| 国产淫片久久久久久久久| 国产乱人偷精品视频| 久久久久国产网址| 欧美又色又爽又黄视频| 99在线人妻在线中文字幕| 免费观看的影片在线观看| 国产乱人偷精品视频| 国内精品一区二区在线观看| 日日啪夜夜撸| 久久久久久国产a免费观看| 久久久国产成人免费| 乱码一卡2卡4卡精品| 女人久久www免费人成看片 | 中文乱码字字幕精品一区二区三区 | 青春草亚洲视频在线观看| 国产成人aa在线观看| 国产成人午夜福利电影在线观看| 1000部很黄的大片| 久久精品影院6| 久久久国产成人免费| 欧美日本视频| 国产不卡一卡二| 国产黄片视频在线免费观看| 亚洲人与动物交配视频| 国产激情偷乱视频一区二区| 午夜福利在线在线| 成人漫画全彩无遮挡| 久热久热在线精品观看| 成年版毛片免费区| 国产精品一区二区三区四区久久| 亚洲国产色片| 麻豆一二三区av精品| 亚洲精品久久久久久婷婷小说 | 一本一本综合久久| 成人综合一区亚洲| 成人亚洲欧美一区二区av| av又黄又爽大尺度在线免费看 | 免费看日本二区| 日韩在线高清观看一区二区三区| 亚洲精品日韩在线中文字幕| 91久久精品国产一区二区三区| 国产精品美女特级片免费视频播放器| 中国美白少妇内射xxxbb| 亚洲成人精品中文字幕电影| 美女xxoo啪啪120秒动态图| 人妻系列 视频| 精品久久久久久久人妻蜜臀av| 久久99精品国语久久久| 久久6这里有精品| 亚洲图色成人| 国产高清不卡午夜福利| av又黄又爽大尺度在线免费看 | 18禁动态无遮挡网站| 黄色日韩在线| 国产成人免费观看mmmm| 午夜福利视频1000在线观看| 精品99又大又爽又粗少妇毛片| 色综合色国产| 久久精品久久久久久噜噜老黄 | 欧美不卡视频在线免费观看| 亚洲一级一片aⅴ在线观看| 久久国内精品自在自线图片| 日本一本二区三区精品| 日本黄色视频三级网站网址| 99热网站在线观看| 亚洲精品影视一区二区三区av| 欧美成人午夜免费资源| 亚洲中文字幕日韩| 亚洲18禁久久av| 2021少妇久久久久久久久久久| 国产综合懂色| 午夜福利在线在线| 乱人视频在线观看| 久久人人爽人人片av| 亚洲在久久综合| 色噜噜av男人的天堂激情| 日韩av在线大香蕉| 国产亚洲av片在线观看秒播厂 | 亚洲av不卡在线观看| 久久精品国产亚洲av涩爱| 只有这里有精品99| 视频中文字幕在线观看| 蜜桃久久精品国产亚洲av| 亚洲国产高清在线一区二区三| 国产成人精品婷婷| 最近的中文字幕免费完整| 内射极品少妇av片p| 少妇被粗大猛烈的视频| 91久久精品国产一区二区成人| 青春草视频在线免费观看| 日本色播在线视频| 国产真实乱freesex| 亚洲国产精品合色在线| 日本猛色少妇xxxxx猛交久久| 国产91av在线免费观看| 亚洲激情五月婷婷啪啪| 国产精华一区二区三区| 麻豆成人av视频| av免费在线看不卡| 女人被狂操c到高潮| 最近中文字幕2019免费版| 欧美性感艳星| 天堂影院成人在线观看| 国产极品天堂在线| 国产精华一区二区三区| 色综合色国产| 国产高清国产精品国产三级 | 秋霞伦理黄片| 色噜噜av男人的天堂激情| 久久久久网色| 麻豆成人av视频| 精品午夜福利在线看| 国产单亲对白刺激| 小说图片视频综合网站| 黄片无遮挡物在线观看| 我要搜黄色片| 韩国高清视频一区二区三区| 九九在线视频观看精品| 偷拍熟女少妇极品色| 国产探花在线观看一区二区| 22中文网久久字幕| 免费观看性生交大片5| 精品久久久久久久久久久久久| 国产免费一级a男人的天堂| 久久久精品欧美日韩精品| 久久久久久久国产电影| 欧美日韩一区二区视频在线观看视频在线 | 欧美bdsm另类| 亚洲五月天丁香| 看片在线看免费视频| 亚洲成人精品中文字幕电影| 99久久无色码亚洲精品果冻| 亚洲天堂国产精品一区在线| 1000部很黄的大片| 舔av片在线| 免费黄网站久久成人精品| 亚洲欧美精品自产自拍| 国产视频首页在线观看| 中文字幕制服av| 纵有疾风起免费观看全集完整版 | 日本午夜av视频| 国产精品嫩草影院av在线观看| 国产免费男女视频| 长腿黑丝高跟| 欧美极品一区二区三区四区| 国产极品精品免费视频能看的| 国产精品爽爽va在线观看网站| 特大巨黑吊av在线直播| 国产免费一级a男人的天堂| 国产黄色小视频在线观看| videos熟女内射| 久久99蜜桃精品久久| 国语对白做爰xxxⅹ性视频网站| 国产成人午夜福利电影在线观看| 久久精品夜夜夜夜夜久久蜜豆| 在线免费十八禁| 亚洲国产精品合色在线| 亚洲18禁久久av| 嘟嘟电影网在线观看| 大话2 男鬼变身卡| 69人妻影院| 国产成人午夜福利电影在线观看| 国产伦精品一区二区三区视频9| 最近2019中文字幕mv第一页| 波野结衣二区三区在线| 青春草亚洲视频在线观看| 老女人水多毛片| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 日韩一区二区三区影片| 国产精品.久久久| 日本猛色少妇xxxxx猛交久久| 特大巨黑吊av在线直播| 成年女人看的毛片在线观看| 欧美一区二区亚洲| 国产精品麻豆人妻色哟哟久久 | 又粗又爽又猛毛片免费看| 日韩av在线大香蕉| 亚洲丝袜综合中文字幕| 色噜噜av男人的天堂激情| 国产老妇伦熟女老妇高清| 久久精品国产亚洲av涩爱| 国产国拍精品亚洲av在线观看| 国产精品伦人一区二区| 精品熟女少妇av免费看| 日本av手机在线免费观看| 亚洲人成网站高清观看| 村上凉子中文字幕在线| 精品欧美国产一区二区三| 熟妇人妻久久中文字幕3abv| 日韩欧美三级三区| 免费看日本二区| 亚洲av日韩在线播放| 狠狠狠狠99中文字幕| 日韩一区二区视频免费看| 免费播放大片免费观看视频在线观看 | 男女视频在线观看网站免费| 成人一区二区视频在线观看| 久久婷婷人人爽人人干人人爱| 亚洲人与动物交配视频| .国产精品久久| 我要看日韩黄色一级片| 日本一本二区三区精品| 91av网一区二区| 非洲黑人性xxxx精品又粗又长| 插逼视频在线观看| 91久久精品国产一区二区成人| 日日摸夜夜添夜夜添av毛片| 国产成年人精品一区二区| 99热这里只有精品一区| 只有这里有精品99| 免费观看的影片在线观看| 99久久九九国产精品国产免费| 成人漫画全彩无遮挡| 欧美一级a爱片免费观看看| 亚洲欧洲国产日韩| 国产精品一二三区在线看| 永久免费av网站大全| 午夜免费激情av| 亚洲成色77777| 免费观看性生交大片5| 国产伦理片在线播放av一区| 亚洲18禁久久av| 国产av一区在线观看免费| 黄片无遮挡物在线观看| 午夜爱爱视频在线播放| 91久久精品电影网| 久久久久网色| 麻豆久久精品国产亚洲av| 国产亚洲精品久久久com| 亚洲最大成人中文| 激情 狠狠 欧美| 久久这里有精品视频免费| 国产精品人妻久久久影院| 国产精品久久电影中文字幕| 国产三级中文精品| 成人av在线播放网站| 亚洲第一区二区三区不卡| 日日摸夜夜添夜夜爱| 中国美白少妇内射xxxbb| or卡值多少钱| 97超碰精品成人国产| 精品午夜福利在线看| 亚洲精品乱码久久久v下载方式| 黄片wwwwww| 免费看日本二区| 美女大奶头视频| 欧美成人免费av一区二区三区| 99热全是精品| 久久久久久久久久成人| or卡值多少钱| 日韩欧美在线乱码| 国国产精品蜜臀av免费| 看黄色毛片网站| 美女xxoo啪啪120秒动态图| 波多野结衣巨乳人妻| 亚洲av成人av| 男女那种视频在线观看| 高清日韩中文字幕在线| 日韩欧美国产在线观看| 黄片wwwwww| 嘟嘟电影网在线观看| 深夜a级毛片| 免费在线观看成人毛片| 日韩一本色道免费dvd| 国产精品熟女久久久久浪| 全区人妻精品视频| 丝袜美腿在线中文| 亚洲欧美日韩东京热| 爱豆传媒免费全集在线观看| 亚洲人成网站在线播| 久久国产乱子免费精品| 免费在线观看成人毛片| 日韩av在线免费看完整版不卡| 热99re8久久精品国产| 亚洲精品乱码久久久久久按摩| 免费黄色在线免费观看| 精品国产露脸久久av麻豆 | 我的女老师完整版在线观看| 成年av动漫网址| 97人妻精品一区二区三区麻豆| 婷婷色av中文字幕| 日本与韩国留学比较| 青春草国产在线视频| 波多野结衣高清无吗| 国产美女午夜福利| 一区二区三区高清视频在线| 中文乱码字字幕精品一区二区三区 | 成人性生交大片免费视频hd| 午夜福利在线观看免费完整高清在| videossex国产| 国产精品1区2区在线观看.| 一二三四中文在线观看免费高清| 国产免费男女视频| 国产精品精品国产色婷婷| 18+在线观看网站| 男女国产视频网站| 国产在线男女| 激情 狠狠 欧美| 亚洲成av人片在线播放无| 97在线视频观看| 亚洲av中文字字幕乱码综合| 久久久精品94久久精品| 国产在线男女| 成人特级av手机在线观看| 国产在线男女| 亚洲最大成人av| 国产伦理片在线播放av一区| 18禁在线播放成人免费| 高清视频免费观看一区二区 | a级毛片免费高清观看在线播放| 国产欧美日韩精品一区二区| av又黄又爽大尺度在线免费看 | 久久久久久久久久久免费av| 久久韩国三级中文字幕| 黄色配什么色好看| 一二三四中文在线观看免费高清| 亚洲最大成人中文| 日日干狠狠操夜夜爽| 看免费成人av毛片| 国产黄片视频在线免费观看| 搞女人的毛片| av在线播放精品| 日韩,欧美,国产一区二区三区 | 特级一级黄色大片| 91在线精品国自产拍蜜月| 欧美激情久久久久久爽电影| 一个人观看的视频www高清免费观看| 老司机影院毛片| 欧美色视频一区免费| 波多野结衣高清无吗| 99久国产av精品| 精品国产三级普通话版|