• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Real non-Hermitian energy spectra without any symmetry

    2022-08-01 05:58:26BoxueZhang張博學(xué)QingyaLi李青铔XiaoZhang張笑andChingHuaLee李慶華
    Chinese Physics B 2022年7期

    Boxue Zhang(張博學(xué)), Qingya Li(李青铔), Xiao Zhang(張笑), and Ching Hua Lee(李慶華)

    1School of Physics,Sun Yat-sen University,Guangzhou 510275,China

    2Department of Physics,National University of Singapore,Singapore 117542,Singapore

    Keywords: non-Hermitian physics,real energy spectra,non-Hermitian skin effect

    1. Introduction

    Non-Hermitian systems have recently inspired intense research efforts for their unconventional mathematical properties and physical robustness, such as enlarged topological symmetries,[1–8]exceptional point sensing,[9–15]quantized classical responses,[16]modified bulk–boundary correspondences,[17–32]unconventional entanglement entropy scaling,[4,33–39]enhanced Rabi oscillations,[26,40,41]and effective non-Hermitian curved space.[42,43]Yet, many of these exciting phenomena are often difficult to probe experimentally due to their intrinsically unstable nature from complex eigenenergies. While real eigenenergies can be symmetryenforced,i.e.,through PT-symmetry,[44–51]doing so is incompatible with realizing many of the most exotic non-Hermitian phenomena.[20,52–66]

    In this work, we carefully investigate how the non-Hermitian skin effect (NHSE)[67–73]can also enforce real non-Hermitian spectra, even for lattices whose couplings and momentum-space descriptions do not admit any obvious symmetry. The NHSE has been heavily associated with modified bulk-boundary correspondences[17,39]and,in our context,implies that a system can robustly possess real spectrum in the presence of a boundary, even though its bulk is unstable with complex eigenenergies.Physically,this is because the directed amplification in a NHSE lattice can be stabilized by the interfering wavepackets from a boundary or spatial inhomogeneity,a mechanism that is unrelated to conventional symmetry protection.

    We elucidate this route towards real eigenspectra in terms of the inverse skin depth[17,74]κ, which is an additional degree of freedom that mathematically takes the role of imaginary momentum. It physically controls the accumulation and interference of skin states at a boundary, and mathematically replaces the Bloch description of the lattice by an effective surrogate[74]model that can look completely different.Specifically,we shall show that in a bounded lattice,the reality of the spectrum is only destroyed by a spontaneous symmetry breaking process that can occur much later than the explicit symmetry breaking at the Bloch level.

    2. OBC vs. PBC spectra

    We first review and distinguish the approaches for computing the eigenenergy spectrum under open vs. periodic boundary conditions(OBCs vs. PBCs). Given a generic non-Hermitian HamiltonianH(k),PBC eigenenergies ?Eand OBC eigenenergies ˉEare obtained very differently. To find the set ofE ∈?E,we simply solve for eigenenergiesEsuch that characteristic polynomialP(E,k) = Det[H(k)-EI] = 0, wherek ∈[0,2π). However, under OBCs, translation invariance is broken, and in general the spectrum is not indexed by real momentumk. Instead, the OBC spectrumE ∈ˉEis given by eigenenergiesEthat solve

    and are degenerate in bothEandκ. Hereκis the imaginary part of the complexified momentump=k+iκthat also represents the inverse decay length(skin depth)of eigenstates viz. eipx~e-κx, i.e., taking the role of a length scale[75,76]not present in Hermitian systems. Thisκdegeneracy is required because OBC skin eigenstates have exponential spatial profiles,and we need a superposition of two of them with identicalEandκto satisfy OBCs at two arbitrarily separated boundaries (as we interpolate between OBCs and PBCs, we observe a peculiar scaling behavior of the corresponding effectiveκ[98]). In general,we writeκ=κ(k)to emphasize itsk-dependence,andp=k+iκ(k)is known as the generalized Brillouin zone(GBZ).[17,18,18,19,21–23,78]H(p)=H(k+iκ(k))is also referred to as the surrogate Hamiltonian,which is used instead of the original Bloch HamiltonianH(k)in computing topological invariants(however,the topological eigenenergies themselves fall outside of the purview of our prescription,because they are isolated solutions that are not adiabatically connected to any Bloch solution)[80–82]and spectral properties under OBCs.

    Note that the above prescriptions for the OBC and PBC eigenenergies cocide in the case of Hermitian lattices, since aspcycles through real values [0,2π), every value ofElies on the real line and will be visited at least twice, both withκ=Im(p)=0.

    2.1. Minimal model with different OBC vs. PBC spectra

    As a concrete demonstration, we consider a minimal model withHmin(z) =z++Az2, wherez= eik. In real space, it contains two symmetric nearest neighbor (NN)hoppings and another uncompensated next-nearest-neighbor(NNN) hopping:Hmin= ∑x|x+1〉〈x|+|x〉〈x+1|+A|x+2〉〈x|. Clearly, its PBC spectrum is given by ?E=2cosk+Ae2ik,and is entirely complex unlessA=0,as plotted as the thick red curve in Fig.1 forA=2. However, large segments of its OBC spectrum lie on the real line,as shown by the black dots.

    Fig. 1. Real OBC vs. real PBC spectra in terms of the symmetry of κ(E)solutions. Shown are the OBC(black)and PBC(red)spectra of the model Hmin with dispersion E(z)=z+z-1+2z2; the inset plots show Im(E(z))as a function of κ =-log|z| (green κ curves) at various fixed Re(E(z))slices. PBC eigenenergies (red dots) correspond to (Re(E(z)),Im(E(z)))consistent with κ =0,and OBC eigenenergies(black dots)correspond degeneracies in both κ and E(z)(green curve intersections). In particular,we have real OBC eigenenergies when the green curves intersect at Im(E)=0,which often occurs even when the PBC eigenenergies are non-real.

    Below,we explain how one can visually derive the OBC and PBC spectra. We turn to the plots ofκsolutions vs.Im(E), for fixed Re(E) slices. Going from large to small Re(E),we find that PBC eigenenergies(red)first appear when we pass Re(E)=4, followed by OBC eigenenergies (black)after Re(E)=3. In the green Im(E) vs.κplots, it is apparent that PBC eigenenergies appear when the greenκsolution curves crossκ=0,while OBC eigenenergies only appear when theκcurves intersect. This is exactly what was prescribed earlier-κ=0 gives the PBC spectrum, whileκdegeneracies give the OBC spectrum. As Re(E) decreases further,additional PBC winding loops appear,and they correspond to additional 0 crossings ofκfrom the green curve that is emerging from smallκ.At Re(E)≈-0.79,that green curve goes over the original blackκintersection,thereby splitting it into two black intersections.That corresponds to the two black OBC branches away from the realEline. Finally,when these twoκintersections gap out at sufficiently negative Re(E),the OBC eigenenergies disappear.

    All in all,we see that real OBC eigenenergies correspond to intersections of theκcurves at Im(E)=0, which can exist even if PBC eigenenergies are already complex,i.e.,if theκcurves crossκ=0 at Im(E)/=0. As such, the breakdown of the reality of the spectra can be understood as the breaking of the symmetry of theκcurves. In the following we detail the conditions to have non-real PBC and OBC spectrum, and it is clear that the later is often harder to achieve.While a non-real PBC spectrum only requires theκcurves to have asymmetric zero crossings,which are almost guaranteed in a system without PT symmetry, a non-real OBC spectrum requires that symmetry to be spontaneously broken, i.e., broken at the level of“extrema”corresponding to the intersection points. Tellingly, it is often much harder to have asymmetricκintersections rather thanκzero crossings,and that explains the relative robustness of real OBC spectra compared to real PBC spectra.

    3. Parameter spaces for real eigenenergies

    We next present the parameter space for real OBC spectra for several paradigmatic models. It has to be emphasized that almost all eigenenergies (under both OBCs and PBCs) fundamentally depend on the form of the dispersionP(E,p),and only indirectly on the form of the Hamiltonian.The exceptions are the eigenenergies of isolated topological modes,which are protected by bulk eigenstate topology, but we will not focus on them here.

    3.1. Separable energy dispersions P(E,p)

    We first discuss separable dispersions,namely,those withP(E,p)=F(E)+G(p), whereF(E) is a function ofEandG(p) is a Laurent polynomial ofz= eip. As long asG(p)gives an OBC spectral curve that does not contain branches,we can in principle achieve a real spectrum by modifying the model such thatF(E)conformally[85]maps the curve onto the real line. For this reason, the non-Hermitian SSH model and its variants can all possess real spectra.[17,85,86]

    3.1.1. Single-component Hamiltonians

    We start with the single-component Hamiltonians,whose characteristic polynomials are simply given byP(E,p) =H(p)-E. As discussed above,cases with only two NN hoppings are trivial,since they are always reducible to the equivalence class ofH(z)=z+z-1. As such,the minimal nontrivial case is the 3-hoppings modelHmin(z), which we just examined. There are two ways to generalize to the next level of sophistication through a fourth hopping term,namely,

    wherez= eip. These two models capture all the possibilities for Hamiltonians with hoppings spanning four sites, up to reflection and translation symmetry. Note that for singlecomponent models, the onsite term is just a trivial constant.Also, all meaningful models must possess both left and right hoppings, since otherwise the OBC spectrum will collapse onto a single point.[87,88]

    Fig.2.Regions of the parameter space with real OBC spectra(black)for the following 2-component models: (a)H11-band and(b)H21-band. In(b),models with A=B also trivially result in real spectra. The numerical threshold is Max|Im(E)|<ε =10-6.

    As we can see from Figs. 2(a) and 2(b), there exists a rather large(black)region in the(A,B)parameter space where the spectra still remain real,despiteAandBmanifestly breaking any possible symmetry. Indeed, theAz2+Bz3term ofH11-band(z) gives rise to robustly complex eigenenergies under PBCs, even though it can still give a real spectrum forAas large as 0.35 (Fig. 2(a)). ForH21-band(z) with dispersion 2cosp+Ae2ip+Be-2ip, the OBC spectrum is trivially real forA=B, but still remains real for a large parameter region away from that(Fig.2(b)). Physically,this is so because interference from waves reflected off a boundary are sufficient in preventing a wavepacket from being amplified indefinitely.

    3.1.2. Two-component Hamiltonians

    In 2-band models,we have

    such that separable dispersions correspond to Hamiltonians withp-independent traces,which can occur when the diagonal terms are either zero or constant. Physically,this corresponds to the absence of homogeneous same-sublattice net hoppings across different unit cells.

    In this case of constant trace,the dispersion is essentially determined byF(E)=-G(p)=DetH2(p),directly generalizing the case of 1-component models upon the conformal transformE →E2-[TrH2]E.The only difference is thatG(p)now contains products of matrix elements ofH2(p), and as such is usually a higher-order polynomial describing OBC spectra with no analytic solution. While a higher-orderG(p) can result in a more branched and hence complex OBC spectrum,with appropriate model design,there can still be larger parameter regions with real OBC spectra,see Fig.3.

    For instructive purposes, we first study the 2-component model with almost trivial NHSE:

    Fig. 3. Regions of the parameter space with real OBC spectra (black) for the following 2-component separable models: (a) H02-band; (b) H12-band with C=2,D=3; (c)H12-band with C=1/2,D=1; (d)H12-band with C=2,D=2; (e)H22-band with C=2,D=3; (f)H22-band with C=2,D=1;(g)H32-band with C=2,D=2;(h)H32-band with A=0.1,B=0.1. The numerical threshold is Max|Im(E)|<ε=10-6. Note that the PBC spectra of all of these models are complex.

    3.2. Inseparable energy dispersions P(E,p)

    We next consider more sophisticated dispersions which contain products ofEandz= eik. In general, they are not analytically tractable, although their spectral graph structure can often still be heuristically predicted.[85]In this work, we shall limit ourselves to 2-component models. From Eq. (4),those with inseparable dispersions correspond to those withp-dependent traces, i.e., those with same-sublattice hoppings across unit cells.

    3.2.1. Analytically tractable examples

    First, we introduce an inseparable case whose condition for real spectrum can still be analytically derived. Consider

    admits realEsolutions generated by realpas long as 0≤AB ≤C.Outside of this regime,complex pairs ofEsolutions appear(Fig. 4(a)), leading to non-real spectra. Figure S1 shows the boundary behaviour of spectra from real to non-real as the parameter varies. This criterion 0≤AB ≤Centails that the real spectrum hinges on the presence of nonzero coupling, and is numerically verified in Fig.4(a).

    Next, we introduce another Hamiltonian which admits real spectrum for parameters that make it separable:

    Fig. 4. Regions of the parameter space with real OBC spectra (black) for the following 2-component inseparable models: (a) H1in(z); (b) H2in(z);(c) H3in(z); (d) H4in(z) with the regime boundary approximately depicted by curves (0.28+A)(0.28+B) = 0.35 and its reflection across line A=-B(green),1.2=A(-0.8B+1)and its reflection across line A=-B plus further reflection across line A=B(red);(e)H5in(z);(f)H6in(z). The system length is L=30 for all and the numerical threshold is Max|Im(E)|<ε,where ε =10-5 for(c)and ε =10-6 for the other cases.

    3.2.2. More general examples

    Next,we introduce a few more models whose propensity for real OBC spectra cannot be predicted through any simple way:

    LikeH1inof Eq. (9), the modelH3incontains constant offdiagonal couplings. However, despite its simple algebraic form,it is not analytically tractable,and in fact behaviors completely differently fromH1in,and in fact the other models too.

    The real spectrum parameter region ofH6inis an interesting intersection of a diagonalA=Bline segment, and a smaller extended region. These two parameter subregions have different origins. For the former, the OBC spectrum is real because the PBC spectrum is also real;largerA=Bcloses the band gap and releases complex eigenenergies. For the latter,the PBC spectrum is always complex(example in Fig.S2),but an open boundary creates sufficient interference to stop indefinite amplification,leading to a completely real spectrum.

    4. Discussion

    In this work,we have seen that real non-Hermitian OBC spectra are generically more robust than real PBC spectra.This can be explained in terms of the inverse skin depthκ(E)solutions curves–while the PBC spectrum becomes complex onceκ(E)/=0 at ImE/=0,a complex OBC spectrum requiresκ(E)curves to intersect at ImE/=0,which is a more demanding condition. While there exists a very general electrostatics approach[89]that returns possible parent Hamiltonians for any desired real OBC spectrum and skin localization, this work showcases particularly simple ansatz models that have the benefit of being as local as possible.

    The discovery of these Hamiltonians with real spectra complements existing efforts towards the design of stable non-Hermitian system, particularly the PT-symmetry route. With a greater set of ansatze models that are not symmetry constrained,a larger variety of interesting non-Hermitian physics,i.e.,non-Hermitian skin clusters and pseudogaps[90–92]can be realized not just with enhanced stability,but also with generically non-reciprocal platforms such as circuits with MOSFETs or operational amplifiers.[20,46,59,93–97]Yet, the NHSE is not guaranteed to yield real spectra,and in Appendix A,we have also listed down models which failed,to aid further search efforts.

    Appendix A:Inseparable energy dispersions not giving real spectra

    While the main text had discussed various models with real spectra despite having no favorable symmetries,it is also important to record models where thisdoes not occur. As discussed, NHSE-induced real spectra depend on the algebraic properties of theκ(E) curves, and it is instructive to list the models where they do not behave favorably as such.

    For instance, the following deformations ofH1in(z) have no real spectra:

    Models with non-symmetric hopping systems:

    Acknowledgments

    X.Z.is supported by the National Natural Science Foundation of China(Grant No.11874431),the National Key R&D Program of China (Grant No. 2018YFA0306800), and the Guangdong Science and Technology Innovation Youth Talent Program(Grant No.2016TQ03X688).

    国产精品精品国产色婷婷| 特级一级黄色大片| 亚洲 欧美一区二区三区| 精品一区二区三区av网在线观看| 美女高潮的动态| 免费看日本二区| 美女扒开内裤让男人捅视频| 夜夜夜夜夜久久久久| 精品久久蜜臀av无| www.精华液| 级片在线观看| 最新美女视频免费是黄的| 中文在线观看免费www的网站| 亚洲av中文字字幕乱码综合| 又黄又粗又硬又大视频| 黄色日韩在线| 国内精品美女久久久久久| 精品电影一区二区在线| ponron亚洲| 女人高潮潮喷娇喘18禁视频| 婷婷精品国产亚洲av| 国产乱人伦免费视频| 丁香六月欧美| 久久久久久久久中文| 久久国产精品影院| 日韩人妻高清精品专区| 搡老岳熟女国产| 国内揄拍国产精品人妻在线| 深夜精品福利| 舔av片在线| 免费观看人在逋| 狠狠狠狠99中文字幕| 国产精品久久视频播放| 成年人黄色毛片网站| 亚洲一区高清亚洲精品| 成熟少妇高潮喷水视频| 天堂网av新在线| 中文字幕高清在线视频| 特级一级黄色大片| 在线观看66精品国产| 黑人巨大精品欧美一区二区mp4| 欧美+亚洲+日韩+国产| av国产免费在线观看| 一二三四社区在线视频社区8| 91av网站免费观看| 高清毛片免费观看视频网站| 欧美色欧美亚洲另类二区| 亚洲人与动物交配视频| 午夜福利成人在线免费观看| 精品久久久久久久久久免费视频| 国产1区2区3区精品| 欧美绝顶高潮抽搐喷水| 小说图片视频综合网站| 村上凉子中文字幕在线| 黄片小视频在线播放| 久久中文字幕一级| 嫩草影院入口| 国产亚洲av嫩草精品影院| 久久久久国产一级毛片高清牌| 高潮久久久久久久久久久不卡| 欧美日韩瑟瑟在线播放| 麻豆久久精品国产亚洲av| 99re在线观看精品视频| 19禁男女啪啪无遮挡网站| 最近最新中文字幕大全免费视频| 免费人成视频x8x8入口观看| 欧美日韩一级在线毛片| e午夜精品久久久久久久| 精品久久久久久成人av| 91老司机精品| 国产精品亚洲美女久久久| 久久香蕉精品热| 日韩精品青青久久久久久| 最新中文字幕久久久久 | 国产午夜精品久久久久久| 一个人免费在线观看的高清视频| 99国产精品一区二区蜜桃av| 99在线视频只有这里精品首页| 精品一区二区三区四区五区乱码| 人妻久久中文字幕网| 久久久久久久久免费视频了| 91九色精品人成在线观看| 国产精品一区二区精品视频观看| 久久久久久九九精品二区国产| av国产免费在线观看| 黄片小视频在线播放| 听说在线观看完整版免费高清| 最近最新免费中文字幕在线| 国产真实乱freesex| 在线观看午夜福利视频| 91久久精品国产一区二区成人 | 综合色av麻豆| 最近最新免费中文字幕在线| 非洲黑人性xxxx精品又粗又长| svipshipincom国产片| 九色国产91popny在线| 免费看光身美女| 国内少妇人妻偷人精品xxx网站 | 婷婷丁香在线五月| 91老司机精品| 亚洲欧美日韩东京热| 麻豆久久精品国产亚洲av| 一a级毛片在线观看| 女生性感内裤真人,穿戴方法视频| 成人午夜高清在线视频| 黄色片一级片一级黄色片| 亚洲一区高清亚洲精品| 成人18禁在线播放| 一级毛片高清免费大全| h日本视频在线播放| 亚洲 国产 在线| 国产伦精品一区二区三区视频9 | 99国产极品粉嫩在线观看| 黄片小视频在线播放| а√天堂www在线а√下载| 久久久久性生活片| 日本在线视频免费播放| 超碰成人久久| 亚洲av成人不卡在线观看播放网| 日韩欧美精品v在线| 97超视频在线观看视频| 69av精品久久久久久| 桃色一区二区三区在线观看| 亚洲人成网站高清观看| 免费无遮挡裸体视频| 男女午夜视频在线观看| 久久精品影院6| 中国美女看黄片| 久久久国产成人精品二区| 精品国产乱子伦一区二区三区| 在线观看66精品国产| 无遮挡黄片免费观看| 国产一区二区激情短视频| 日本一二三区视频观看| 国产成人啪精品午夜网站| 天天一区二区日本电影三级| www.自偷自拍.com| 国产精品免费一区二区三区在线| 日日干狠狠操夜夜爽| 久久久色成人| 国产成人啪精品午夜网站| 国产伦一二天堂av在线观看| 亚洲一区二区三区色噜噜| 天天躁狠狠躁夜夜躁狠狠躁| www.999成人在线观看| 亚洲av第一区精品v没综合| 亚洲国产色片| 国产精品永久免费网站| 亚洲国产欧美网| 身体一侧抽搐| 热99在线观看视频| 日本免费a在线| 久久久国产成人免费| 亚洲天堂国产精品一区在线| 免费一级毛片在线播放高清视频| 国产视频一区二区在线看| 美女免费视频网站| 色综合站精品国产| 国产麻豆成人av免费视频| 观看免费一级毛片| 一级黄色大片毛片| 亚洲片人在线观看| 在线观看美女被高潮喷水网站 | 男人舔女人的私密视频| 国产精品,欧美在线| 久久性视频一级片| 黑人欧美特级aaaaaa片| 在线a可以看的网站| 亚洲片人在线观看| 欧美zozozo另类| 老司机午夜福利在线观看视频| 亚洲国产欧美网| 国产午夜福利久久久久久| 日韩欧美一区二区三区在线观看| 国产精品av久久久久免费| 熟女人妻精品中文字幕| 真实男女啪啪啪动态图| 亚洲欧美日韩东京热| 国产野战对白在线观看| 久久精品影院6| 日本一二三区视频观看| 法律面前人人平等表现在哪些方面| 韩国av一区二区三区四区| 国产高潮美女av| 18禁国产床啪视频网站| 亚洲国产精品成人综合色| 久久精品国产99精品国产亚洲性色| 成人一区二区视频在线观看| 色哟哟哟哟哟哟| 亚洲精品色激情综合| 亚洲五月天丁香| 成熟少妇高潮喷水视频| 又黄又粗又硬又大视频| 人人妻,人人澡人人爽秒播| 亚洲熟妇中文字幕五十中出| 色精品久久人妻99蜜桃| www.精华液| 手机成人av网站| 国产一区在线观看成人免费| 国产精品精品国产色婷婷| 一进一出抽搐动态| 亚洲在线观看片| 亚洲 欧美 日韩 在线 免费| 黄色女人牲交| 嫩草影院入口| 色尼玛亚洲综合影院| 99久久久亚洲精品蜜臀av| 国产欧美日韩一区二区三| 欧美xxxx黑人xx丫x性爽| 国产久久久一区二区三区| 欧美激情久久久久久爽电影| 久久久国产欧美日韩av| 国内毛片毛片毛片毛片毛片| 亚洲人成伊人成综合网2020| 欧美乱码精品一区二区三区| 国产精品综合久久久久久久免费| 视频区欧美日本亚洲| 久久这里只有精品19| 欧美乱码精品一区二区三区| 亚洲精品在线观看二区| 国产精品自产拍在线观看55亚洲| 久久这里只有精品19| 亚洲av成人一区二区三| 亚洲av成人不卡在线观看播放网| 亚洲av成人av| 麻豆国产av国片精品| 久久久久国产一级毛片高清牌| 人妻丰满熟妇av一区二区三区| 999久久久精品免费观看国产| 日韩欧美三级三区| 日本一二三区视频观看| 一级毛片女人18水好多| 国产一级毛片七仙女欲春2| 波多野结衣高清作品| 成人性生交大片免费视频hd| 亚洲天堂国产精品一区在线| 熟女电影av网| 国产精品免费一区二区三区在线| 黄片大片在线免费观看| 天堂影院成人在线观看| 国产精品一区二区精品视频观看| 国产精品,欧美在线| 国产亚洲av嫩草精品影院| 久久人妻av系列| 亚洲人成网站在线播放欧美日韩| 国产私拍福利视频在线观看| 久久精品91无色码中文字幕| 一本精品99久久精品77| 九九在线视频观看精品| 久久精品国产清高在天天线| 久久午夜亚洲精品久久| 欧美最黄视频在线播放免费| 午夜福利在线观看免费完整高清在 | 亚洲片人在线观看| 少妇裸体淫交视频免费看高清| 三级毛片av免费| 国产亚洲精品一区二区www| 国产av在哪里看| 51午夜福利影视在线观看| 婷婷丁香在线五月| 一个人看的www免费观看视频| 欧美午夜高清在线| 真人一进一出gif抽搐免费| 免费在线观看日本一区| 一进一出抽搐gif免费好疼| 丰满人妻一区二区三区视频av | 亚洲九九香蕉| 色视频www国产| 两性午夜刺激爽爽歪歪视频在线观看| 丁香欧美五月| 欧美成人性av电影在线观看| 国产成人啪精品午夜网站| 小说图片视频综合网站| 免费高清视频大片| 熟女人妻精品中文字幕| 一本综合久久免费| 国产又色又爽无遮挡免费看| 欧美在线一区亚洲| www.熟女人妻精品国产| 身体一侧抽搐| 国产精品自产拍在线观看55亚洲| 亚洲成a人片在线一区二区| 国产伦一二天堂av在线观看| 男女下面进入的视频免费午夜| 18美女黄网站色大片免费观看| 国内精品久久久久精免费| 18禁观看日本| 天天添夜夜摸| 国产v大片淫在线免费观看| 欧美激情久久久久久爽电影| 99久久精品热视频| 美女cb高潮喷水在线观看 | 草草在线视频免费看| 欧美成人性av电影在线观看| 制服人妻中文乱码| 好男人电影高清在线观看| 欧美成人性av电影在线观看| 最近最新中文字幕大全电影3| 好男人电影高清在线观看| 少妇裸体淫交视频免费看高清| 老司机福利观看| 久久久久久九九精品二区国产| 欧美成人性av电影在线观看| 最近最新中文字幕大全电影3| 男人舔女人的私密视频| 制服丝袜大香蕉在线| 观看免费一级毛片| 国内少妇人妻偷人精品xxx网站 | 天天一区二区日本电影三级| 精品乱码久久久久久99久播| 三级毛片av免费| 亚洲av五月六月丁香网| 亚洲18禁久久av| 女人被狂操c到高潮| 国产视频一区二区在线看| 亚洲中文av在线| 老司机午夜福利在线观看视频| 国产亚洲精品久久久久久毛片| www.999成人在线观看| e午夜精品久久久久久久| 久久香蕉精品热| 成在线人永久免费视频| 精品日产1卡2卡| 国产精品久久久久久久电影 | 夜夜爽天天搞| 男女那种视频在线观看| 免费在线观看影片大全网站| 国产精品女同一区二区软件 | 天堂av国产一区二区熟女人妻| 国产三级在线视频| 欧美xxxx黑人xx丫x性爽| 麻豆久久精品国产亚洲av| 国产亚洲欧美在线一区二区| 日本撒尿小便嘘嘘汇集6| 色老头精品视频在线观看| 视频区欧美日本亚洲| 99热这里只有精品一区 | 97超视频在线观看视频| 国产成人av教育| 网址你懂的国产日韩在线| 99在线人妻在线中文字幕| 日本撒尿小便嘘嘘汇集6| 国产亚洲av高清不卡| a级毛片a级免费在线| 天堂影院成人在线观看| 波多野结衣高清无吗| 狠狠狠狠99中文字幕| 亚洲在线观看片| 亚洲自拍偷在线| 一本久久中文字幕| 色综合婷婷激情| 国产蜜桃级精品一区二区三区| 亚洲狠狠婷婷综合久久图片| 欧美日韩亚洲国产一区二区在线观看| 999久久久精品免费观看国产| 国产伦人伦偷精品视频| 欧美一级毛片孕妇| 亚洲成人久久性| 日日干狠狠操夜夜爽| 亚洲 欧美一区二区三区| 在线观看一区二区三区| 一进一出抽搐动态| 国产乱人伦免费视频| 麻豆国产97在线/欧美| 国产日本99.免费观看| 亚洲成人免费电影在线观看| 一个人免费在线观看的高清视频| 午夜成年电影在线免费观看| 国产高潮美女av| 久久亚洲真实| 午夜日韩欧美国产| 色噜噜av男人的天堂激情| 99在线视频只有这里精品首页| 亚洲va日本ⅴa欧美va伊人久久| 久久久久久久久久黄片| aaaaa片日本免费| 欧美日韩精品网址| 国产一区二区激情短视频| 久久久久精品国产欧美久久久| 亚洲乱码一区二区免费版| a在线观看视频网站| 国产熟女xx| 亚洲激情在线av| 色视频www国产| 亚洲熟女毛片儿| 黄频高清免费视频| 看片在线看免费视频| 久久久久久九九精品二区国产| 久久精品91无色码中文字幕| 日韩欧美在线乱码| 日韩欧美三级三区| 99久国产av精品| 日韩免费av在线播放| a级毛片在线看网站| 国产激情欧美一区二区| 国产又色又爽无遮挡免费看| 熟女人妻精品中文字幕| 国产视频一区二区在线看| 亚洲av第一区精品v没综合| 人妻丰满熟妇av一区二区三区| 五月伊人婷婷丁香| 成人性生交大片免费视频hd| 在线a可以看的网站| 两个人视频免费观看高清| 啦啦啦韩国在线观看视频| 热99在线观看视频| 午夜激情欧美在线| 国产亚洲精品久久久久久毛片| 久久中文字幕人妻熟女| 黑人欧美特级aaaaaa片| 日韩欧美精品v在线| 亚洲成人久久爱视频| 欧美不卡视频在线免费观看| 视频区欧美日本亚洲| 亚洲在线观看片| 久久亚洲精品不卡| 免费在线观看成人毛片| 亚洲熟女毛片儿| 亚洲精品中文字幕一二三四区| 丰满人妻熟妇乱又伦精品不卡| 亚洲国产精品sss在线观看| 十八禁人妻一区二区| 亚洲欧美日韩东京热| 欧美性猛交黑人性爽| 制服人妻中文乱码| 少妇人妻一区二区三区视频| 久99久视频精品免费| 熟女电影av网| 久久久久久久精品吃奶| 欧美高清成人免费视频www| АⅤ资源中文在线天堂| 99久久成人亚洲精品观看| 天天躁狠狠躁夜夜躁狠狠躁| 欧美色视频一区免费| 黄色成人免费大全| 亚洲精品中文字幕一二三四区| netflix在线观看网站| 国产av不卡久久| 国产高清videossex| 丁香欧美五月| 免费在线观看亚洲国产| 国产一区二区三区视频了| 99国产精品一区二区蜜桃av| 色综合婷婷激情| 长腿黑丝高跟| 精品久久久久久久久久久久久| 97人妻精品一区二区三区麻豆| 国产精品美女特级片免费视频播放器 | 蜜桃久久精品国产亚洲av| av天堂在线播放| 好男人在线观看高清免费视频| 亚洲精品一卡2卡三卡4卡5卡| 一夜夜www| 在线国产一区二区在线| 欧美黑人欧美精品刺激| 最新在线观看一区二区三区| 国产精品一区二区免费欧美| 久久精品aⅴ一区二区三区四区| 99久久综合精品五月天人人| 久久欧美精品欧美久久欧美| 色综合欧美亚洲国产小说| 91字幕亚洲| 亚洲人成电影免费在线| 欧美三级亚洲精品| 叶爱在线成人免费视频播放| 人人妻人人看人人澡| 中文字幕人妻丝袜一区二区| 久久午夜综合久久蜜桃| 一区福利在线观看| 老司机福利观看| www日本黄色视频网| 国产成人欧美在线观看| 婷婷精品国产亚洲av在线| 美女cb高潮喷水在线观看 | 亚洲国产精品成人综合色| 特级一级黄色大片| 国产精品女同一区二区软件 | ponron亚洲| 毛片女人毛片| 午夜两性在线视频| 国产精华一区二区三区| av天堂中文字幕网| 男女之事视频高清在线观看| 国产亚洲精品一区二区www| 中文字幕熟女人妻在线| 国产激情偷乱视频一区二区| 日韩精品青青久久久久久| 日韩有码中文字幕| 亚洲成人久久性| 亚洲色图 男人天堂 中文字幕| 亚洲av五月六月丁香网| 两个人视频免费观看高清| 国产精品野战在线观看| 亚洲熟妇熟女久久| 日韩大尺度精品在线看网址| 国产精品久久久久久精品电影| 丰满人妻熟妇乱又伦精品不卡| 国产精品久久久人人做人人爽| 成熟少妇高潮喷水视频| 午夜福利欧美成人| 欧美另类亚洲清纯唯美| 一a级毛片在线观看| 国产精品久久电影中文字幕| 国产一区二区在线观看日韩 | 成年人黄色毛片网站| 精品国产亚洲在线| 男人的好看免费观看在线视频| 亚洲 欧美 日韩 在线 免费| 国产成人影院久久av| 午夜福利在线观看免费完整高清在 | 久久久久久大精品| 美女被艹到高潮喷水动态| 老汉色av国产亚洲站长工具| 亚洲欧美日韩高清在线视频| 九色成人免费人妻av| 一级毛片高清免费大全| 久久久精品欧美日韩精品| 中文资源天堂在线| 视频区欧美日本亚洲| 亚洲午夜理论影院| 国产精品爽爽va在线观看网站| 中文资源天堂在线| 精品国产乱码久久久久久男人| 熟妇人妻久久中文字幕3abv| 91av网站免费观看| 成人高潮视频无遮挡免费网站| 欧美在线一区亚洲| 国产黄片美女视频| 午夜福利在线观看吧| 亚洲国产高清在线一区二区三| 香蕉国产在线看| 色哟哟哟哟哟哟| 黄色片一级片一级黄色片| 伊人久久大香线蕉亚洲五| 国产日本99.免费观看| 精品久久久久久,| www国产在线视频色| av国产免费在线观看| 日本三级黄在线观看| 在线永久观看黄色视频| xxx96com| 免费高清视频大片| 天堂av国产一区二区熟女人妻| 淫秽高清视频在线观看| 韩国av一区二区三区四区| 最近视频中文字幕2019在线8| 看黄色毛片网站| 性色av乱码一区二区三区2| 精品福利观看| 男人的好看免费观看在线视频| 免费在线观看影片大全网站| 无人区码免费观看不卡| 午夜影院日韩av| 免费看日本二区| 久久亚洲精品不卡| 精品99又大又爽又粗少妇毛片 | 欧美成人性av电影在线观看| 黄色成人免费大全| 99riav亚洲国产免费| 国产高潮美女av| 国产视频内射| 国产真人三级小视频在线观看| 国产成人啪精品午夜网站| 亚洲av免费在线观看| 午夜日韩欧美国产| 成人午夜高清在线视频| 亚洲人成网站在线播放欧美日韩| 精品一区二区三区视频在线 | 国产精品久久久av美女十八| 国产久久久一区二区三区| 88av欧美| 国产成人精品久久二区二区免费| 少妇裸体淫交视频免费看高清| 老熟妇乱子伦视频在线观看| 亚洲国产欧美一区二区综合| 成人特级黄色片久久久久久久| 精品一区二区三区视频在线 | 日本 av在线| 中文在线观看免费www的网站| 99精品欧美一区二区三区四区| 一区二区三区国产精品乱码| 久久中文字幕一级| 手机成人av网站| 免费观看的影片在线观看| 亚洲成人久久性| 国产视频内射| 国内揄拍国产精品人妻在线| 国产高清三级在线| 色综合站精品国产| 欧美绝顶高潮抽搐喷水| 母亲3免费完整高清在线观看| 亚洲精品在线美女| 久久这里只有精品19| 美女午夜性视频免费| 九色国产91popny在线| 亚洲中文av在线| 免费看光身美女| 俺也久久电影网| 神马国产精品三级电影在线观看| 精品日产1卡2卡| 岛国视频午夜一区免费看| 99久久99久久久精品蜜桃| 国产成人精品久久二区二区91| 全区人妻精品视频| 亚洲人成电影免费在线| 天天躁狠狠躁夜夜躁狠狠躁| 色尼玛亚洲综合影院| 老汉色av国产亚洲站长工具| 一本综合久久免费| 精品久久久久久久末码| 久久久久久人人人人人| 首页视频小说图片口味搜索| 丰满的人妻完整版| 波多野结衣巨乳人妻| 亚洲七黄色美女视频|