• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Study on the characteristics of non-Maxwellian magnetized sheath in Hall thruster acceleration region

    2022-08-01 11:34:06LongCHEN陳龍YuhaoAN安宇豪ShaojuanSUN孫少娟PingDUAN段萍BoruiJIANG姜博瑞YehuiYANG楊葉慧andZuojunCUI崔作君
    Plasma Science and Technology 2022年7期
    關(guān)鍵詞:陳龍

    Long CHEN(陳龍),Yuhao AN(安宇豪),Shaojuan SUN(孫少娟),Ping DUAN(段萍),Borui JIANG(姜博瑞),Yehui YANG(楊葉慧)and Zuojun CUI(崔作君)

    College of Science,Dalian Maritime University,Dalian 116026,People’s Republic of China

    Abstract The secondary electron emission(SEE)and inclined magnetic field are typical features at the channel wall of the Hall thruster acceleration region(AR),and the characteristics of the magnetized sheath have a significant effect on the radial potential distribution,ion radial acceleration and wall erosion.In this work,the magnetohydrodynamics model is used to study the characteristics of the magnetized sheath with SEE in the AR of Hall thruster.The electrons are assumed to obey non-extensive distribution,the ions and secondary electrons are magnetized.Based on the Sagdeev potential,the modified Bohm criterion is derived,and the influences of the non-extensive parameter and magnetic field on the AR sheath structure and parameters are discussed.Results show that,with the decrease of the parameter q,the high-energy electron leads to an increase of the potential drop in the sheath,and the sheath thickness expands accordingly,the kinetic energy rises when ions reach the wall,which can aggravate the wall erosion.Increasing the magnetic field inclination angle in the AR of the Hall thruster,the Lorenz force along the x direction acting as a resistance decelerating ions becomes larger which can reduce the wall erosion,while the strength of magnetic field in the AR has little effect on Bohm criterion and wall potential.The propellant type also has a certain effect on the values of wall potential,secondary electron number density and sheath thickness.

    Keywords:Hall thruster,magnetized sheath,non-extensive distribution,secondary electron emission

    1.Introduction

    Hall thruster is one of the most effective space propulsion devices due to its high specific impulse and excellent precision,which is widely used in satellite attitude control,position maintenance and orbit adjustment[1,2].The main structure of Hall thruster includes buffer cavity,anode,discharge channel,electromagnetic coil,magnetic circuit structure and hollow cathode outside the discharge channel,the discharge channel is formed by two coaxial insulated cylinders.The electric field generated in the channel is usually along the central axis which can accelerate ions to produce thrust and electromagnetic coils are located outside the discharge channel to generate a quasi-radial magnetic field[3–5].The orthogonal electromagnetic fields force electrons to perform E× B drift motion along the circumferential direction and collide with the propellants to generate plasma.Since the electron velocity is far greater than the ion’s,the wall contacting with the plasma always accumulates negative charges and forms the sheath,which is a non-electrically neutral region and its potential is negative to the plasma.The potential drop forms an electric field perpendicular to the wall,attracting ions to the wall while repelling electrons.A stable sheath is formed when the flow of electrons and ions reaches equilibrium[6,7].The electrons with high kinetic energy can induce SEE which can significantly change wall floating potential and sheath features[8].The SEE yield varies according to the wall material,for example,boron nitride(BN)is usually used as the wall material of Hall thruster and its SEE coefficient is usually in the range of 0.2–1[9].Besides,the magnetic field in the discharge channel constrains the electrical conductivity across magnetic field,so the sheath characteristics can be greatly altered[10].As the wall of AR is close to the thruster magnetic pole,the magnetic field strength in the sheath region around AR is relatively high(up to 0.15 T)and the magnetization effect of the ions cannot be ignored.

    The kinetic simulations studied by Sydorenko[11]and Smirnov[12]have shown that the high-energy tail of the electron velocity distribution function(EVDF)in the thruster is almost exhausted due to the collision between the electrons and the wall;meanwhile,experimental studies[13,14]have proved that the electron energy distribution function in the thruster obviously deviates from the Maxwellian distribution due to the strong interaction between the electrons and the wall.Maxwellian distribution approximation has its limitations for systems such as long-range Coulomb interactions and non-thermodynamic equilibrium plasmas.However,many of the fluid simulations and mixed simulation on Hall thruster sheath still adopted the Maxwellian distribution of electrons as approximation[3,15–17].In 1988,Tsallis[18]introduced a statistical method to extend the Boltzmann entropy concept to nonextensive generalized entropy,and its entropy form is

    wherekBis Boltzmann’s constant,N is the sum of micro states,piis the probability of a certain micro state,and q is the nonextensive degree of the system,which works as an indicator to reflect the system’s degree of deviation away from the Maxwellian equilibrium.The most special property of q entropy is its non-additive(namely non-extensive),which means that the sum entropy of each independent system is different from the entropy of the entire system.Therefore,the total entropy of the two independent subsystems satisfies the following relationship[19]

    where I and J are two independent subsystems.Equation(2)shows that when q=1,the entropy of the composite system is equal to the sum entropy of the two independent subsystems,which means thatqentropy degenerates to the standard extended Boltzmann–Gibbs entropy;whenq< 1,the generalized entropy of the composite system is greater than the sum entropy of each component,which is called super-extension distribution;when q> 1,the generalized entropy of the composite system is less than the sum entropy of each component,which is called sub-extension distribution.

    In recent years,the non-extensive distribution of electrons has been applied to study the fundamental problems of plasma sheath under different physical conditions[19–30].Dhawanet al[21]considered the non-extensive distribution of electron,ion temperature and ion neutral collision in the simulation.The ion enters the sheath region at a velocity lower than the typical Bohm velocity,which would change with the non-extensive parameter,and finally affect the sheath thickness.Zouet al[22]established a fluid model of collisional magnetized plasma sheath with nonextensive electrons and derived the modified Bohm criterion.The study has found that Bohm velocity decreased with the increase of parameter q,indicating that the physical structure of the collisional magnetized sheath with Maxwellian distribution electrons is significantly different from that with non-extensive electrons.Safaet al[23]studied the magnetized sheath structure with nonextensive distribution and Ghaniet al[24]studied the dusty plasma sheath structure with super-extensive electron distribution and dust particle SEE.They have found that the q value can affect the width of plasma sheath.Basnetet al[25]studied the characteristics of the magnetized plasma sheath in the presence of both Boltzmann and non-extensive distribution electrons using the fluid model.The results have shown that the parameter q and density ratio have significant effects on the parameters of the magnetized plasma sheath.

    In conclusion,the non-Maxwellian electron distribution has a significant effect on the sheath characteristics,which should also be considered in the sheath simulation of Hall thruster.Furthermore,the magnetic field strength in the sheath around AR is about 0.15 T,which means the magnetized effects of ions and electrons cannot be ignored.In this work,assuming that electrons obey non-extensive distribution,the effects of non-extensive parameter and magnetic field on Bohm criterion,wall potential,spatial charge density,secondary electron density distribution and ion kinetic energy are studied by numerical simulation.In section 2,the magnetohydrodynamics equations used in this work which consider the magnetization effect,the self-consistent Bohm criterion and the wall floating potential are described.In section 3,the numerical results and discussions are presented.Finally,conclusions are given in section 4.

    2.Physical model and basic equations

    A magnetized plasma sheath model is established near the wall of the Hall thruster AR,as shown in figure 1.Here,x,y,z represent the radial,circumferential and axial directions of the Hall thruster channel,respectively.For simplification,the physical parameters of the sheath are assumed to be consistent along the circumferential and axial directions.Thus,the spatial coordinate can be reduced into one-dimension(radial direction).The sheath edge is at the position x=0,the wall is at x=xw,and the area between x and xwis the magnetized sheath region.The velocities of magnetized ions and magnetized electrons are three-dimensional in velocity space due to the existence of inclined magnetic field.The applied constant magnetic field is located in the(x,z)plane,and the angle between the magnetic field and the x-axis isθ,then the form of the inclined magnetic feild is:B=B(c os θex+sin θez),where B is the magnitude of magnetic field.At the interface(x=0)between the bulk plasma and the sheath,the electrostatic potential is set toφ=0.Besides ions and electrons,the sheath also contains magnetized secondary electrons generated by high-energy primary electrons impacting the wall.

    Using the fluid model and assuming the electrons in the plasma sheath obey the non-extensive distribution of Tsallis statistical theory,the one-dimensional velocity distribution function of the electrons is[26]

    whereCqis a normalization constant,and its form is

    whereme,veandTeare mass,velocity and temperature of electrons in the sheath region,respectively.eis the elementary charge,kBis the Boltzmann constant,φis the electric potential.Γ is the standard gamma function,ne0is the electron number density at the sheath edge.Whenq=1,equation(3)reduces to the Maxwellian–Boltzmann velocity distribution function;whenq<-1,the non-extensive velocity distribution function cannot be normalized.Whenq> 1,the velocity distribution function is truncated,its form is[23,27]

    According to the non-extensive EVDF,and integrating equation(3)in space,the electron density with non-extensive distribution can be obtained as follows:

    whereneis the electron number density in the sheath region.

    The magnetized ions are described by the fluid equations namely,the continuity equation and momentum transport equation,which are shown,in the steady state,in equations(7)and(8):

    whereni,viandmiare number density,velocity vector and mass of ions,respectively.

    The secondary electrons are generated by high-energy electrons impacting the wall and treated as fluid.Thus,the magnetized secondary electrons in the sheath satisfy the continuity and momentum equations,as follows:

    wherens,msandTsare number density,mass and temperature of secondary electrons,vsxis the velocity of secondary electrons in thex-direction,andvsis the three-dimensional velocity vector of the secondary electrons.

    Poisson’s equation that relates the charge density to sheath electrostatic potential is given as:

    wheree0is the vacuum permittivity.

    At the wall surface,the secondary electrons flow satisfies the following form:

    wherejsis the secondary electron flux ejected from the wall andjeis the electron flux reaching the wall,γis the SEE coefficient.When the sheath is stable,the ion and electron current densities at the insulation wall are equivalent,that is:

    In equation(13)

    wherejiis the current density of ions,andφwis the floating potential at the wall.At the sheath edge,charged particle number density satisfies the plasma quasi-neutrality condition:ni0=ns0+ne0.

    whereusxwis the initial velocity of the secondary electrons emitted from the wall in thex-direction,Φwis the normalized wall potential.Equations(27),(28),(30)and(31)show the relationship between the ion Bohm velocityuix0,the wall potential Φwand the secondary electron number densityδat the sheath edge,which form a self-consistent sheath model.By numerically solving these four equations,the evolving trends of ion Bohm velocity,wall potential and sheath edge secondary electron number density with non-extensive parameter and magnetic field inclination angle are studied.Taking these derived parameters as the initial conditions,the equations(17)–(26)can be solved numerically.Since it is a set of stiff ordinary differential equations,the‘ode15s’solver from MATLAB software is used to treat this problem,the specific numerical method used in the solver is the numerical differentiation formulas(NDFs)[31].After that,the physical parameters of sheath around AR wall,such as sheath potential and secondary electron number density distribution can be obtained.

    3.Numerical results and discussion

    The physical parameters used in this work are set as follows:Φ(ξ=0)=0,E0=0.01,n0=1 × 1017m-3,Te=10 eV,ts=0.01,γ=0.01 –0.8,B=0.04 –0.1 T,θ=0° – 80°,the axial velocity of ionsuiz0in the AR of Hall thruster is set to Mach number between 7 and 24(the corresponding ion velocity is about --

    15000 45000 m s1for xenon propellant andT=

    e 10 eV).Krypton(Kr)and xenon(Xe)are selected as the propellant gas to study the effect of ion mass on discharge.

    3.1.The effect of non-extensive parameter on the AR sheath

    Figure 2(a)shows the EVDF profile for different non-extensive parameterqaccording to equation(3).Whenq=1,the non-extensive distribution function reduces to the Maxwellian distribution.Whenq<1,the function profile becomes wider and the peak value is smaller,so the number of high-energy electrons in the system is relatively large.On the contrary,whenq>1,the EVDF shows a clear truncation in the high energy tail,this means in large-qcase,high velocity electrons extinct and the number of high-energy electrons in the system is relatively small,this feature could cause narrower sheath thickness due to smaller electron flux to the channel wall.Besides,the influence ofqon low velocity electron proportion is nearly linear.Figures 2(b)–(d)show the effects of nonextensive parameterqon the wall potential,secondary electron number density and Bohm velocity with different propellant gas,respectively.Figure 2(b)shows that the wall potential becomes larger with increasing the value of parameterq.When the value of the parameterqis relatively large,according to figure 2(a),there are less high-velocity electrons in the sheath,the electron flux towards the wall decreases relatively.Less negative charges accumulate in the wall,thus the wall potential is high.It also can be seen in figure 2(b)that the wall potential is lower when the propellant gas is Xe.The potential drop in the sheath region becomes larger for increasing mass number of ions,which also causes high energy ion bombardment on the wall.Figure 2(c)shows that the number density of secondary electrons reaching the sheath edge increases with the increase of the parameterq.This is due to the higher electron density at the wall whenqis relatively large,which induces high yield of SEE.In addition,as the propellant gas is Xe,the number density of secondary electrons reaching the sheath edge is less.Compared with Kr,when Xe is selected as the propellant gas,the wall potential is relatively lower,resulting in fewer electron flux reaching the wall,therefore the SEE also decreases in the condition of sameγ,secondary electron density also diminishes at the sheath edge.

    Figure 1.Schematic diagram of the discharge channel and the magnetized plasma sheath at channel wall in AR of Hall thruster.

    Figure 2.Sheath parameters versus parameter q.(a)Non-extensive electron velocity distribution,(b)wall potential,(c)secondary electrons density at the sheath edge,(d)Bohm velocity.

    Figure 3.Sheath parameters versus parameter q.(a)Potential,(b)space charge density,(c)secondary electron density,(d)ion kinetic energy.

    Figure 2(d)shows that Bohm velocity is lower at high values of parameterq.When the value ofqis large,the average velocity of electrons is relatively slow,resulting in the reduction of electron flux to the wall.Consequently,the ion flux at the wall also reduces to preserve the stability of the sheath.According to the continuity equation(7),the Bohm velocity of ions should also decrease.By comparing the two lines in figure 2(d),it can be seen that the ion mass number has little effect on the Bohm velocity.

    Figure 4.Sheath parameters versus magnetic field inclination angle.(a)Wall potential,(b)secondary electron density at the sheath edge,(c)Bohm velocity.

    Figure 3 shows the effect of non-extensive parameterqon several physical quantities in the sheath region when the propellant gas is Xe,two cases of super-extensive distribution(q=0.8 and 0.9)and two cases of sub-extensive distribution(q=1.1 and 1.2)are selected in the simulation.It is clearly seen in figure 3(a)that the potential in the sheath region falls more rapidly for large parameterq,which also causes larger electric field in the sheath.On the other hand,by decreasing the value ofq,the wall potential is reduced due to the accumulation of high-energy electrons on the wall,and the sheath potential drop becomes larger.

    Figure 5.Sheath parameters versus magnetic field inclination angle.(a)Potential,(b)sheath thickness,(c)secondary electron density,(d)ion kinetic energy in x direction.

    It is shown in figure 3(b)that the space charge density profile has a peak,the value of which declines as parameterqdecreases,and the position of which is closer to the wall with smallerq.According to figure 2(a),when the value ofqis relatively small,there are more high-energy electrons which can penetrate deep into the sheath region,and reduce the net space charge density.Figure 3(c)shows that the increase of the parameterqcan enhance the secondary electron number density in the sheath,which is consistent with figure 2(c).Figure 3(d)shows that the growth trend of ion kinetic energyEk(the dimensionless unit of energy iskBTe)transforms with the increase ofq.Whenqtakes a high value,the ion energy entering the sheath is relatively small due to the influence ofqon Bohm velocity.However,at a certain position in the sheath,the line sequence of ion energy is reversed owing to the different growth rates as shown in the enlarged figure window in figure 3(d).Moreover,when the value ofqis small,the sheath potential drop is large,which causes ions get more energy through the sheath.

    3.2.The effect of magnetic field on the AR sheath

    The magnetic field strength around the wall at thruster AR is relatively large,and its influence on the ions and secondary electrons cannot be ignored.Especially in the type of magnetic shielding Hall thruster,which has attracted extensive attention recently,magnetic lines gather at the outlet wall to form a high potential preventing ions from damaging the wall,in such sheath area,the magnetic field strength grows high,and the magnetization on ions and secondary electrons have significant effects on the physical properties of the sheath.

    Figure 4 shows the effects of magnetic field inclination angle on wall potential,ion Bohm velocity and secondary electron number density at the sheath edge.Figure 4(a)shows the variation trend of wall potential with magnetic field angle under differentq.Whenq>1,the wall potential hardly changes with the increase of angle.Whenq<1,the increase of the inclination angle can reduce the wall potential.This is because the magnetic field angle affects the Lorentz force of ions in thex-direction,which hampers the movement of ions towards the wall.It is shown in figure 4(b)that the secondary electron number density at the sheath edge decreases with the increase of magnetic field inclination angle.As the inclination angle takes a high value,the ion density at the wall is less.In order to ensure the stability of the sheath at the wall,the electron density also reduces accordingly.Thus,the secondary electron density decreases under the sameγconditions.Moreover,when the inclination angle is small,qhas a great influence on the secondary electron density at the sheath edge.When the inclination angle is large,the influence ofqon the secondary electron density becomes weak.Figure 4(c)clearly shows that the value of Bohm velocity is lower at higher values of inclination angle.That is,the kinetic energy of ions entering the sheath is smaller.Furthermore,when the magnetic field angle takes a high value,Bohm velocity changes little with different values ofq.

    Figure 5 shows the effect of different magnetic field inclination angle on the potential,space charge density,secondary electron density and positive ion kinetic energy in the sheath region.It is seen in figure 5(a)that as the inclination angle decreases,the space potential falls more rapidly and the sheath thickness becomes thinner.The effect of magnetic field inclination angle on wall potential is consistent with that shown in figure 4(a).In addition,the result shows that the inclination angle in the AR has a significant effect on the sheath thickness.Figure 5(b)shows the effect of angle on sheath thickness at different values ofq.It is found that the sheath thickness increases with the increase of inclination angle.Figure 5(c)shows that the secondary electron number density in the sheath is relatively less at high values of the inclination angle,which is due to the short sheath length and higher electron flux to the wall.As shown in figure 5(d),with the increase of the inclination angle,the kinetic energy of the ions in thex-direction decreases,and the kinetic energy reaching the wall is also smaller.The increase of the inclination angle makes the Lorentz force on the ion in thex-direction stronger,which reduces the ion velocity,and enhances the sheath length.Thus,the component of the magnetic field parallel to the wall plays the dominant role in the influence on the sheath characteristics.

    Figure 6 shows the effect of magnetic field on sheath potential and ion kinetic energy.It is seen in figure 6(a)that as the magnitude of magnetic field enhances,the sheath wall potential and the sheath thickness increase.This is mainly because when the magnitude of magnetic field is small,it has little effect on the sheath potential.Figure 6(b)shows that the kinetic energy of ionsEkis small at high value of the magnetic field.When the magnitude of magnetic field increases,the Lorentz force on ions becomes larger,resulting in the slowdown of ions inx-direction,therefore the kinetic energy of ions reduces.Figure 6(c)shows that the secondary electron number density of the wall is relatively less at high magnitude of the magnetic field,which is mainly because the enhancement of electron magnetization leads to the reduction of electron flux to the wall.In addition,according to the equations(27),(28)and(30),the magnitude of magnetic field has no effect on the Bohm criterion.

    3.3.Wall erosion analysis of acceleration region

    In the radial direction of AR in Hall thruster,potential drop created by the sheath area plays a critical role in the service life of the Hall thruster.Ions elevate the kinetic energy in the sheath and pre-sheath,then bombard and erode the wall.Figure 7 shows the effects of non-extensive parameterqand magnetic field inclination angleθon the ion kinetic energy and the incident angle of ion impact on the wall when the propellant gas is Xe.It is seen in figure 7(a)that as the parameterqand the magnetic field inclination angle increases,the initial kinetic energy of ionsEk0decreases.By increasing the magnetic field inclination angle,the influence of parameterqbecomes weaker.It is also shown in figure 7(b)that the kinetic energy of the ions reaching the wallEkwincreases with the increase of the magnetic field inclination angle,and decreases with the increase of the parameterq.When the parameterqtakes a smaller value,the kinetic energy of the ions at the wall changes significantly with the magnetic field angle.Figure 7(c)shows that as the magnetic field inclination angle and parameterqincrease,the incident angle between the ion and the wall normal increases gradually,which indicates that the trajectory of ions is more parallel to the wall when parameterqorθincreases.

    Figure 6.Sheath parameters versus magnetic field strength.(a)Potential,(b)ion kinetic energy,(c)secondary electron density.

    Figure 7.Energy and the wall erosion versus parameter q and magnetic field inclination angle.(a)Ion initial kinetic energy,(b)ion kinetic energy at the wall,(c)the incident angle of the ions,(d)wall erosion rate.

    Figure 8.Sheath thickness versus the axial velocity of ions.(a) B=0.05 T,(b) B=0.1 T.

    The erosion rate at the wall of Hall thruster is directly proportional to the ion current density perpendicular to the wall and the material sputtering rate which depends on the ion incident energy and incident angle.Thus,the empirical formula for erosion rate can be expressed ase=ji⊥Y(K,θ)[32],whereji⊥is the ion current density normal to the wall andY(K,θ)is the sputtering yield of the wall material.θ is the average incident angle of ions,Kis the total impact energy of the ions at the wall.The sputtering yield can be further expressed asY(θ,K)=fθ(θ)fK(K),a function determined by incident angle and kinetic energy of ions.By applying the coefficients provided by[32],the effects of non-extensive parameterqand magnetic field inclination angle on erosion rate can be derived,as shown in figure 7(d).It can be seen that as non-extensive parameterqand magnetic field inclination angle increase,the erosion rate decreases gradually.When the magnetic field inclination angle is large and perpendicular to the axial direction of the discharge channel of the Hall thruster,the erosion rate is small,indicating that magnetic shielding configuration can reduce the erosion to a certain extent.

    Figure 8 shows the effect of ion axial velocity on AR sheath thickness.The thickness of the sheath gradually expands as the ion axial velocity increases.As shown in figure 8(a),when the magnetic field is about 500 Gs,the sheath thickness has a linear relationship with the ion axial velocity.Once the ion velocity grows rapidly in the AR,the sheath thickness increases accordingly.This phenomenon can be interpreted as that when ion velocity grows,the component of Lorentz force on the ions along the radial direction becomes larger and prevents the ions from reaching the wall,thus the sheath becomes wider in order to maintain the sheath stability.As shown in figure 8(b),when the strength of magnetic field is larger,the sheath thickness changes more obviously.In addition,the atomic mass of the propellant also has a certain influence on the sheath thickness.With the decrease of propellant mass,the change of sheath thickness is clearer,especially when the strength of magnetic field is large,the sheath width with Kr propellant changes nonlinearly.

    4.Conclusion

    In this work,a 1D3V fluid model is established to study the characteristics of magnetized sheath with non-Maxwellian distribution elections in the AR of Hall thruster discharging channel.The modified Bohm criterion is deduced according to Sagdeev potential theory,which is self-consistent with the wall potential and SEE yield.It is found that the non-extensive distribution of electrons has a great impact on the potential,net charge,secondary electron number density,Bohm velocity and wall erosion rate.

    With the increase of non-extensive parameterq,the number of high-energy electrons in the system is relatively small,the wall potential enhances,the secondary electron number density at the sheath edge increases,the value of the Bohm criterion decreases,and the number of ions entering the sheath enhances.When the magnetic field inclination angle in the sheath of AR is relatively large,the wall potential is low,the secondary electron number density at the sheath edge is less,the value of Bohm criterion is small.However,the sheath magnetic field strength in the AR of Hall thruster has no significant effect on Bohm criterion and wall potential.Moreover,the kind of propellant gas also has a certain effect on the values of wall potential and sheath edge secondary electron number density.

    With the decrease of the parameterq,the high-energy electrons lead to an increase of the potential drop in the sheath region,the sheath thickness expands accordingly,the kinetic energy rises when the ions reach the wall,which can aggravate the wall erosion.When the magnetic field inclination angle decreases in the AR of the Hall thruster,the Lorenz force along the x-direction acting as a resistance on ions becomes smaller,the potential falls more rapidly,and the secondary electron number density shows an increasing trend.Under these circumstances,the incident angle between the ion and the wall normal is smaller and the wall erosion is more serious.As the parameterqand magnetic field angle increase,the wall erosion rate of the Hall thruster decreases.

    Acknowledgments

    The work is supported by National Natural Science Foundation of China(Nos.11975062,11605021,11975088)and the China Postdoctoral Science Foundation(No.2017M621120).

    猜你喜歡
    陳龍
    陳龍
    Effect of ion stress on properties of magnetized plasma sheath
    Growth mechanism and characteristics of electron drift instability in Hall thruster with different propellant types
    Modeling of magnetized collisional plasma sheath with nonextensive electron distribution and ionization source
    情書
    Two-dimensional X Se2(X=Mn,V)based magnetic tunneling junctions with high Curie temperature?
    茶,有點(diǎn)苦
    章齡之 “選男友就選胡歌,要結(jié)婚就選陳龍”
    準(zhǔn)確審題正確列式精確驗(yàn)證
    教師·下(2017年10期)2017-12-10 12:35:13
    《機(jī)械工程測(cè)試技術(shù)》教學(xué)方法初探
    国产精品麻豆人妻色哟哟久久| 国产伦精品一区二区三区视频9| 久久99精品国语久久久| 2022亚洲国产成人精品| 免费观看a级毛片全部| 日韩亚洲欧美综合| 各种免费的搞黄视频| 婷婷色麻豆天堂久久| 亚洲精品视频女| 欧美日韩精品成人综合77777| 97超视频在线观看视频| av免费在线看不卡| 一本色道久久久久久精品综合| 亚洲一级一片aⅴ在线观看| 欧美另类一区| 国产av国产精品国产| 中文字幕av电影在线播放| 啦啦啦视频在线资源免费观看| 美女福利国产在线| 午夜老司机福利剧场| 一本一本综合久久| 天堂俺去俺来也www色官网| 自线自在国产av| av在线老鸭窝| 日日摸夜夜添夜夜添av毛片| 久久久久久久久久久免费av| 男女免费视频国产| 日韩av不卡免费在线播放| 日本午夜av视频| 美女国产视频在线观看| www.色视频.com| 桃花免费在线播放| 一级毛片电影观看| 在线观看免费高清a一片| 精品国产国语对白av| 水蜜桃什么品种好| 18禁动态无遮挡网站| 国产成人精品一,二区| 免费看光身美女| 国产日韩欧美视频二区| 青春草国产在线视频| 成年av动漫网址| 欧美变态另类bdsm刘玥| av视频免费观看在线观看| 99re6热这里在线精品视频| 看十八女毛片水多多多| 免费观看在线日韩| 一区二区三区精品91| 成人国产麻豆网| 午夜激情久久久久久久| 国产日韩一区二区三区精品不卡 | 青青草视频在线视频观看| 丝袜美足系列| 下体分泌物呈黄色| 久热久热在线精品观看| 亚洲成色77777| 亚洲欧洲国产日韩| 99久久精品国产国产毛片| 日本91视频免费播放| 最近中文字幕2019免费版| 桃花免费在线播放| 精品人妻熟女av久视频| 麻豆成人av视频| 亚洲熟女精品中文字幕| 好男人视频免费观看在线| av线在线观看网站| 全区人妻精品视频| 高清av免费在线| 国产精品一区二区在线不卡| 天堂俺去俺来也www色官网| 日本黄色片子视频| 99热这里只有是精品在线观看| 飞空精品影院首页| av在线老鸭窝| 久久久久久久久久成人| 肉色欧美久久久久久久蜜桃| 亚洲精品亚洲一区二区| 国精品久久久久久国模美| 中文字幕制服av| www.av在线官网国产| 国产欧美日韩综合在线一区二区| 日韩免费高清中文字幕av| av在线老鸭窝| 中文天堂在线官网| 丰满迷人的少妇在线观看| 久久99热6这里只有精品| 人人妻人人爽人人添夜夜欢视频| 日韩不卡一区二区三区视频在线| 高清欧美精品videossex| 黄色欧美视频在线观看| 在线观看免费日韩欧美大片 | 国产成人精品福利久久| 久久精品国产自在天天线| 91精品国产国语对白视频| 欧美成人午夜免费资源| 国产免费一级a男人的天堂| 国产男女内射视频| 国产无遮挡羞羞视频在线观看| 亚洲在久久综合| 久久精品国产自在天天线| 王馨瑶露胸无遮挡在线观看| 日日啪夜夜爽| a级毛片在线看网站| 欧美另类一区| 18禁观看日本| 欧美日韩综合久久久久久| 日韩大片免费观看网站| 免费观看的影片在线观看| 欧美97在线视频| 久久久久久久久久久久大奶| 天美传媒精品一区二区| 久久久国产欧美日韩av| 男女边摸边吃奶| 国产综合精华液| 欧美成人精品欧美一级黄| videosex国产| 有码 亚洲区| 一边摸一边做爽爽视频免费| 日韩熟女老妇一区二区性免费视频| 99热网站在线观看| 亚洲四区av| 精品一品国产午夜福利视频| 国产精品国产三级专区第一集| 视频中文字幕在线观看| 久久精品国产a三级三级三级| 免费观看av网站的网址| 多毛熟女@视频| 久久久精品区二区三区| 精品国产露脸久久av麻豆| 日韩中文字幕视频在线看片| 日本黄色片子视频| 全区人妻精品视频| 国产精品女同一区二区软件| 免费黄频网站在线观看国产| 日产精品乱码卡一卡2卡三| 天美传媒精品一区二区| 国产精品麻豆人妻色哟哟久久| 男的添女的下面高潮视频| 亚洲情色 制服丝袜| 插阴视频在线观看视频| 女性被躁到高潮视频| 韩国av在线不卡| 少妇精品久久久久久久| 黄色配什么色好看| 男的添女的下面高潮视频| 亚洲国产精品专区欧美| 久久99热这里只频精品6学生| 亚洲精品第二区| 秋霞伦理黄片| 91久久精品电影网| 卡戴珊不雅视频在线播放| 日本91视频免费播放| 日韩人妻高清精品专区| 在线观看免费高清a一片| 久久久久久久亚洲中文字幕| 制服诱惑二区| 日本欧美国产在线视频| 中国美白少妇内射xxxbb| 日韩不卡一区二区三区视频在线| 亚洲精品第二区| 九草在线视频观看| 十分钟在线观看高清视频www| 国产 精品1| 欧美激情国产日韩精品一区| 亚洲一级一片aⅴ在线观看| 亚洲人与动物交配视频| av有码第一页| 91久久精品国产一区二区三区| 国产精品蜜桃在线观看| 寂寞人妻少妇视频99o| 狂野欧美激情性xxxx在线观看| 特大巨黑吊av在线直播| 交换朋友夫妻互换小说| 国产高清有码在线观看视频| 日本黄色片子视频| 秋霞伦理黄片| 大话2 男鬼变身卡| 一本—道久久a久久精品蜜桃钙片| 久久午夜福利片| 国产一级毛片在线| 亚洲国产精品999| 亚洲一区二区三区欧美精品| 精品久久国产蜜桃| 狂野欧美激情性bbbbbb| 大陆偷拍与自拍| 欧美国产精品一级二级三级| 久久精品国产鲁丝片午夜精品| 边亲边吃奶的免费视频| 99久久综合免费| 日韩电影二区| 菩萨蛮人人尽说江南好唐韦庄| 欧美精品亚洲一区二区| 最近中文字幕2019免费版| 伦理电影免费视频| 国产色爽女视频免费观看| 婷婷色麻豆天堂久久| 精品少妇内射三级| 午夜免费观看性视频| 欧美日韩精品成人综合77777| 在现免费观看毛片| 成人免费观看视频高清| 亚洲情色 制服丝袜| 免费黄频网站在线观看国产| 26uuu在线亚洲综合色| 久久久久精品性色| 精品酒店卫生间| 一级片'在线观看视频| 免费看av在线观看网站| 日韩av不卡免费在线播放| 少妇猛男粗大的猛烈进出视频| 国产色婷婷99| 菩萨蛮人人尽说江南好唐韦庄| 午夜激情福利司机影院| 欧美三级亚洲精品| 国产精品一区二区在线不卡| 在线观看www视频免费| 日韩一区二区视频免费看| 全区人妻精品视频| 日韩大片免费观看网站| 亚洲精品国产av成人精品| 国产精品麻豆人妻色哟哟久久| 在线观看免费日韩欧美大片 | 成年美女黄网站色视频大全免费 | 精品国产一区二区三区久久久樱花| 国产高清国产精品国产三级| 久久精品熟女亚洲av麻豆精品| 少妇被粗大猛烈的视频| 国产精品一二三区在线看| 在线天堂最新版资源| 黑人猛操日本美女一级片| 国产视频内射| 亚洲精华国产精华液的使用体验| 久久久久久久久久久久大奶| 久久久久视频综合| 国产精品久久久久成人av| 乱码一卡2卡4卡精品| 精品国产一区二区三区久久久樱花| 最近最新中文字幕免费大全7| 春色校园在线视频观看| 美女中出高潮动态图| 欧美日韩精品成人综合77777| 欧美日韩av久久| 人人妻人人澡人人爽人人夜夜| a级毛片免费高清观看在线播放| 日日啪夜夜爽| 久久久久精品久久久久真实原创| 国产成人aa在线观看| 免费高清在线观看日韩| 国产高清有码在线观看视频| 人妻一区二区av| 在线观看三级黄色| 日本91视频免费播放| 一区在线观看完整版| 亚洲国产精品成人久久小说| 肉色欧美久久久久久久蜜桃| 国模一区二区三区四区视频| 少妇高潮的动态图| 日韩成人av中文字幕在线观看| 国产色爽女视频免费观看| 人成视频在线观看免费观看| 草草在线视频免费看| 久久午夜福利片| 亚洲性久久影院| 一边亲一边摸免费视频| 日本91视频免费播放| 美女主播在线视频| 妹子高潮喷水视频| 汤姆久久久久久久影院中文字幕| 美女cb高潮喷水在线观看| 黄色配什么色好看| 午夜免费鲁丝| 日日摸夜夜添夜夜添av毛片| 精品一区在线观看国产| 欧美97在线视频| 国产一区二区在线观看av| 国产无遮挡羞羞视频在线观看| 欧美精品一区二区大全| 我要看黄色一级片免费的| 国产精品一区二区三区四区免费观看| 视频中文字幕在线观看| 尾随美女入室| 中国国产av一级| 欧美一级a爱片免费观看看| 人人妻人人澡人人看| 在线观看www视频免费| 欧美精品人与动牲交sv欧美| 国产片特级美女逼逼视频| 免费av不卡在线播放| 视频中文字幕在线观看| 欧美变态另类bdsm刘玥| 夫妻午夜视频| 日韩一区二区视频免费看| 99久久中文字幕三级久久日本| 飞空精品影院首页| 日本色播在线视频| 国产精品久久久久久精品古装| 日韩av不卡免费在线播放| 高清欧美精品videossex| 看十八女毛片水多多多| 一二三四中文在线观看免费高清| 国产在线视频一区二区| 精品少妇久久久久久888优播| 久久毛片免费看一区二区三区| 亚洲综合色网址| 中文字幕人妻熟人妻熟丝袜美| 久久精品国产自在天天线| 天堂俺去俺来也www色官网| 22中文网久久字幕| 国产精品嫩草影院av在线观看| 久久久久久久久久人人人人人人| 精品卡一卡二卡四卡免费| 伊人久久精品亚洲午夜| 日韩成人av中文字幕在线观看| 午夜免费男女啪啪视频观看| 多毛熟女@视频| 免费少妇av软件| 一级毛片 在线播放| 成年av动漫网址| 免费观看a级毛片全部| 青春草国产在线视频| 久久久亚洲精品成人影院| 免费观看的影片在线观看| 欧美最新免费一区二区三区| 大片免费播放器 马上看| 看免费成人av毛片| 日日摸夜夜添夜夜爱| 99国产精品免费福利视频| 国产视频首页在线观看| 国产成人午夜福利电影在线观看| 狂野欧美激情性xxxx在线观看| h视频一区二区三区| 久久久久精品久久久久真实原创| 亚洲精品日本国产第一区| 亚洲精品国产av成人精品| 精品一品国产午夜福利视频| 观看av在线不卡| 老司机亚洲免费影院| 日日摸夜夜添夜夜添av毛片| 久久久久久伊人网av| 欧美精品亚洲一区二区| 十八禁网站网址无遮挡| 国产成人免费观看mmmm| 狂野欧美白嫩少妇大欣赏| 亚洲av二区三区四区| 精品久久久久久久久av| 999精品在线视频| 国产精品久久久久久久电影| 中文字幕最新亚洲高清| 亚洲少妇的诱惑av| 91午夜精品亚洲一区二区三区| 亚洲精品av麻豆狂野| 亚洲三级黄色毛片| 欧美日韩视频精品一区| 夜夜骑夜夜射夜夜干| 国产色婷婷99| 一区在线观看完整版| 99久国产av精品国产电影| 欧美+日韩+精品| 国产精品国产三级国产av玫瑰| 建设人人有责人人尽责人人享有的| 亚洲经典国产精华液单| 久久久精品94久久精品| 内地一区二区视频在线| 国产永久视频网站| av卡一久久| 日韩一区二区视频免费看| 美女主播在线视频| 亚洲国产色片| 久久久国产精品麻豆| 国产精品欧美亚洲77777| 九九爱精品视频在线观看| 日韩人妻高清精品专区| 亚洲婷婷狠狠爱综合网| 国产av一区二区精品久久| 少妇丰满av| 51国产日韩欧美| 亚洲成人av在线免费| 狂野欧美激情性xxxx在线观看| 国产亚洲精品第一综合不卡 | 亚洲熟女精品中文字幕| 女性被躁到高潮视频| 欧美激情极品国产一区二区三区 | 18禁在线播放成人免费| 极品少妇高潮喷水抽搐| 免费人妻精品一区二区三区视频| 高清欧美精品videossex| 国产精品99久久久久久久久| 自拍欧美九色日韩亚洲蝌蚪91| 成年av动漫网址| 最新的欧美精品一区二区| 精品久久久精品久久久| 高清视频免费观看一区二区| av又黄又爽大尺度在线免费看| 女的被弄到高潮叫床怎么办| 成人毛片60女人毛片免费| 国精品久久久久久国模美| 日韩欧美一区视频在线观看| 国产一区二区在线观看av| 人妻系列 视频| 大话2 男鬼变身卡| 91久久精品国产一区二区成人| 久久久精品免费免费高清| 少妇人妻久久综合中文| 欧美3d第一页| 天天操日日干夜夜撸| av卡一久久| 欧美+日韩+精品| 夫妻午夜视频| 乱人伦中国视频| 国产精品偷伦视频观看了| 五月天丁香电影| 日韩熟女老妇一区二区性免费视频| 国产片内射在线| 一级爰片在线观看| 亚洲av成人精品一二三区| 麻豆精品久久久久久蜜桃| 精品国产一区二区三区久久久樱花| 国产精品女同一区二区软件| 日韩电影二区| 亚洲av男天堂| 飞空精品影院首页| 日韩av在线免费看完整版不卡| videossex国产| 伦精品一区二区三区| av免费在线看不卡| 91精品国产九色| 伊人亚洲综合成人网| 精品卡一卡二卡四卡免费| 91精品一卡2卡3卡4卡| 日韩大片免费观看网站| 国产69精品久久久久777片| 欧美精品一区二区大全| 成人无遮挡网站| 亚洲在久久综合| 久久久久久久精品精品| 国产成人精品福利久久| 精品少妇久久久久久888优播| 亚洲精品久久成人aⅴ小说 | 久久人人爽av亚洲精品天堂| 精品视频人人做人人爽| av免费在线看不卡| 内地一区二区视频在线| 欧美亚洲 丝袜 人妻 在线| 国产精品熟女久久久久浪| 看十八女毛片水多多多| 久久午夜综合久久蜜桃| 精品一区二区三卡| 精品国产一区二区久久| 久久久精品区二区三区| 亚洲色图综合在线观看| av女优亚洲男人天堂| 高清黄色对白视频在线免费看| av国产久精品久网站免费入址| 一个人看视频在线观看www免费| 国产视频首页在线观看| 国产精品国产av在线观看| 少妇的逼好多水| 久久精品熟女亚洲av麻豆精品| 九色成人免费人妻av| 国产免费又黄又爽又色| 亚洲精品乱久久久久久| 久热久热在线精品观看| 日韩av不卡免费在线播放| 成人无遮挡网站| 欧美 日韩 精品 国产| 日韩av在线免费看完整版不卡| 大香蕉97超碰在线| 日本免费在线观看一区| 亚洲成人手机| 久久精品人人爽人人爽视色| 欧美性感艳星| 免费少妇av软件| 97超视频在线观看视频| 丝瓜视频免费看黄片| 一区二区三区精品91| 国产精品一区www在线观看| 国产熟女欧美一区二区| 美女cb高潮喷水在线观看| 国产成人精品无人区| 下体分泌物呈黄色| 99精国产麻豆久久婷婷| 好男人视频免费观看在线| 久久久国产精品麻豆| 日日摸夜夜添夜夜爱| 女性生殖器流出的白浆| 久久ye,这里只有精品| 国产淫语在线视频| av免费在线看不卡| 伊人久久国产一区二区| 久久精品国产自在天天线| 999精品在线视频| 亚洲美女黄色视频免费看| 麻豆乱淫一区二区| 伊人亚洲综合成人网| 国产成人aa在线观看| 三级国产精品欧美在线观看| 久久精品国产亚洲网站| 亚洲欧洲国产日韩| 日韩一区二区视频免费看| 久久精品久久精品一区二区三区| 日本-黄色视频高清免费观看| 国产 精品1| av免费观看日本| 欧美精品高潮呻吟av久久| 99九九线精品视频在线观看视频| 久久女婷五月综合色啪小说| 亚洲人与动物交配视频| 一区二区av电影网| av视频免费观看在线观看| 少妇猛男粗大的猛烈进出视频| 两个人的视频大全免费| 亚洲国产成人一精品久久久| 国产国拍精品亚洲av在线观看| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 久久久久久久久久人人人人人人| 狂野欧美白嫩少妇大欣赏| 久久久久精品久久久久真实原创| 精品一品国产午夜福利视频| 日日摸夜夜添夜夜爱| 两个人的视频大全免费| 在线亚洲精品国产二区图片欧美 | 亚洲久久久国产精品| 日韩免费高清中文字幕av| 欧美亚洲 丝袜 人妻 在线| 国产乱人偷精品视频| 伦理电影免费视频| 久久国产精品大桥未久av| 欧美xxxx性猛交bbbb| 69精品国产乱码久久久| 久久狼人影院| 高清不卡的av网站| 精品人妻偷拍中文字幕| 自线自在国产av| 欧美国产精品一级二级三级| 久久女婷五月综合色啪小说| 亚洲五月色婷婷综合| 亚洲综合色惰| 午夜福利,免费看| 春色校园在线视频观看| 午夜av观看不卡| 免费少妇av软件| 久久99热这里只频精品6学生| 在线看a的网站| 亚洲国产成人一精品久久久| 亚洲欧洲日产国产| 国产免费现黄频在线看| 免费黄色在线免费观看| 日日撸夜夜添| 人人妻人人爽人人添夜夜欢视频| 大香蕉97超碰在线| 欧美人与性动交α欧美精品济南到 | 成人免费观看视频高清| 狂野欧美白嫩少妇大欣赏| 精品久久久久久电影网| 亚洲国产精品999| 国产亚洲精品久久久com| 国产午夜精品久久久久久一区二区三区| 涩涩av久久男人的天堂| 在线观看美女被高潮喷水网站| 制服丝袜香蕉在线| 亚洲国产成人一精品久久久| 国国产精品蜜臀av免费| 大陆偷拍与自拍| 热re99久久精品国产66热6| 精品午夜福利在线看| 九草在线视频观看| 最近的中文字幕免费完整| 亚洲综合色惰| 99国产精品免费福利视频| 男人爽女人下面视频在线观看| 国产欧美日韩综合在线一区二区| 亚洲人成网站在线观看播放| 国语对白做爰xxxⅹ性视频网站| 久久99蜜桃精品久久| 在线观看一区二区三区激情| 天美传媒精品一区二区| 亚洲av欧美aⅴ国产| 久久久久久久久久久丰满| 成人漫画全彩无遮挡| 大话2 男鬼变身卡| 亚洲美女搞黄在线观看| 亚洲av电影在线观看一区二区三区| 成年美女黄网站色视频大全免费 | 中文精品一卡2卡3卡4更新| 伦精品一区二区三区| av女优亚洲男人天堂| 日韩制服骚丝袜av| a级片在线免费高清观看视频| 亚洲综合精品二区| 日韩中字成人| 少妇的逼水好多| 我要看黄色一级片免费的| 少妇被粗大猛烈的视频| 国产精品人妻久久久久久| 大香蕉97超碰在线| 又大又黄又爽视频免费| 国产成人午夜福利电影在线观看| 久久国内精品自在自线图片| 久久精品久久久久久噜噜老黄| 国产又色又爽无遮挡免| 热99国产精品久久久久久7| 最黄视频免费看| 日韩在线高清观看一区二区三区| 一本一本综合久久| 精品国产一区二区久久| 高清视频免费观看一区二区| 下体分泌物呈黄色| 亚洲av.av天堂| 十八禁网站网址无遮挡| 久久久久国产精品人妻一区二区| 成人国语在线视频| 女人久久www免费人成看片| 天堂俺去俺来也www色官网| 九色成人免费人妻av| 美女脱内裤让男人舔精品视频|