• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Two-dimensional X Se2(X=Mn,V)based magnetic tunneling junctions with high Curie temperature?

    2019-11-06 00:46:30LongfeiPan潘龍飛HongyuWen文宏玉LeHuang黃樂(lè)LongChen陳龍HuiXiongDeng鄧惠雄
    Chinese Physics B 2019年10期
    關(guān)鍵詞:龍飛陳龍

    Longfei Pan(潘龍飛),Hongyu Wen(文宏玉),?, Le Huang(黃樂(lè)),Long Chen(陳龍),Hui-Xiong Deng(鄧惠雄),

    Jian-Bai Xia(夏建白)1,4,and Zhongming Wei(魏鐘鳴)1,4,?

    1State Key Laboratory of Superlattices and Microstructures,Institute of Semiconductors,Chinese Academy of Sciences&College of Materials Science and Opto-Electronic Technology,University of Chinese Academy of Sciences,Beijing 100083,China

    2School of Materials and Energy,Guangdong University of Technology,Guangdong 510006,China

    3Tianjin Key Laboratory of Molecular Optoelectronic Science,Department of Chemistry,Tianjin University,Tianjin 300072,China

    4Beijing Academy of Quantum Information Sciences,Beijing 100193,China

    Keywords:two-dimensional material,magnetic tunneling junctions,tunneling magnetoresistance,ferromagnetism

    1.Introduction

    In the field of spintronics,magnetic tunneling junctions have been an important concern for researchers. MTJs with MgO,Al2O3,or organic molecules acting as tunneling barrier materials have been extensively studied.[1–3]Two-dimensional(2D)materials are widely studied for their novel properties and various advantages.[4–7]2D materials provide a reliable solution to the problems in the manufacturing of highperformance MTJs through the layer-by-layer control of the thickness,sharp interfaces,and high perpendicular magnetic anisotropy(PMA).[8–10]In 2007,Karpan et al.first reported MTJs with a graphene layer as the barrier layer.[11]Another two-dimensional material,hexagonal boron nitride(h-BN)acting as an insulator with a similar structure to graphene,has been used as a barrier layer in MTJs.[12,13]Piquemal-Banci et al.investigated the electronic properties and performance of Co/h-BN/Fe MTJs[14]where the h-BN was directly grown by the chemical vapor deposition(CVD)method on pre-patterned Fe stripes. The authors reported TMR=50%for their Co/h-BN/Fe MTJs. In addition,some MTJs using transition metal dichalcogenides(TMDC)as a barrier have recently been reported.[15,16]

    Lately,great progress has been made in the research of 2D ferromagnetic materials.[17–22]Experimental advances have shown that ferromagnetic order can persist in monolayer CrI3.Atomically thin CrI3flakes with intrinsic ferromagnetism were mechanically exfoliated from bulk material by Huang et al.[17]The material had a Curie temperature(TC)of 45 K,and it had perpendicular magnetic anisotropy.Subsequently,another 2D metal,Fe3GeTe2,with intrinsic ferromagnetism,was reported to have a higher Curie temperature of 205 K and perpendicular magnetic anisotropy.[23]Wafer-scale twodimensional Fe3GeTe2thin films has been grown by molecular beam epitaxy.[24]Moreover,a typical TMR effect was observed in the Fe3GeTe2/h-BN/Fe3GeTe2heterojunction.[25]However, the Curie temperature(TC)in these monolayer ferromagnets was much lower than room temperature,and the ferromagnetic layered material was much desired. Recently,VSe2monolayers with room-temperature(300 K)ferromagnetism were synthesized by molecular beam epitaxy(MBE).[26]Another group also reported MnSe2monolayers with room-temperature(300 K)ferromagnetism and perpendicular magnetic anisotropy on a specific substrate.[27,28]

    Room-temperature ferromagnetism and perpendicular magnetic anisotropy are crucial for industrial applications in magnetic memory.In our calculations,single-layer h-BN was used as the barrier layer,and XSe2was used as the ferromagnetic layer.TMR is defined as the normalized difference between the resistances calculated in parallel spin states and anti-parallel spin states.The TMR is normally expressed asRPand RAPare the resistances in parallel configurations and antiparallel configurations. For the convenience of our calculation,this equation was transformed intowhere GPand GAPare the conductance through the junction with parallel spin alignment and antiparallel spin alignment.Two approaches were proposed to improve the TMR of our MTJs:(i)choosing suitable electrodes and(ii)increasing the number of layers of the h-BN barrier layer finitely.From the local density of states of the MnSe2/h-BN/MnSe2heterojunction,a barrier introduced by h-BN was clearly shown. We proposed new magnetic tunneling junctions that were based on materials with room-temperature ferromagnetism.This increased the working temperature of the MTJs based on a 2D ferromagnet to a room temperature of 300 K.We proposed new magnetic tunneling junctions that were based on materials with room-temperature ferromagnetism.This increased the working temperature of the MTJs based on a 2D ferromagnet to a room temperature of 300 K.

    2.Computational methods

    The device simulation in this work was performed using the first-principles software package ATOMISTIX TOOLKIT,which is based on density functional theory and nonequilibrium Green’s function.[29]The exchange–correlation potential is described by gradient approximation with a Hubbard U parameter(GGA+U)approach.Hubbard term is normally defined as[30]

    where m1and m2represent the projection of the d electrons orbital momentum(m1,m2=?2,?1,0,1,2),and σ represents spin states. The U value was obtained by a linear response method,[31]and the calculation was performed by Quantum-ESPRESSO(QE).[32]A cutoff energy of 100 Hartree was used for the plane-wave basis set. All the atoms and the lattice constants were fully relaxed until the force on each atom is less than 0.01.DFT-D2 method was used to consider Van der Waals force.[33]The Monkhorst–Pack kpoint samplings for transport calculations was 2×3×200 in the a,b,and c directions. The transport direction was along the c direction.The projector augmented wave(PAW)method and planewave basis set as implemented in the Vienna ab-initio simulation package(VASP)was used in electronic structure calculations.[34,35]The exchange–correlation energy was described by the generalized gradient approximation PBE(GGA-PBE)formalism.[36,37]In the PDOS calculations,a kpoint sampling of 11×11×1 was employed.The cutoff energy is 400 eV.Through Landauer conductance formula,conductance can be calculated as[38]

    where σ is the spin index,j represents the Bloch state index,andis the k-points used in the calculation.is the transmission coefficient. The superscript inindicates that the direction of transmission is from the left electrode to the right electrode.

    3.Results and discussion

    The schematic diagram of MnSe2/h-BN/MnSe2MTJs is shown in Fig.1(a).The monolayer MnSe2in the 1-T phase was used as the ferromagnetic layer.[27]Monolayer h-BN was employed as the barrier layer. In this research,we used Ir and Ru as the metal electrodes.Compared with metals such as gold,silver,and copper,Ir and Ru have a smaller lattice mismatch with XSe2. The device configuration is shown in Fig.1(a).The lengths of the left and right electrodes in our simulations exceed 7 ?A.

    On each side,the length of our screening region is approximately 11 ?A,which guarantees the sufficient accuracy of the self-consistent calculation.The MTJs in this research did not contain the pinning layer because of the limitation of the computation amount.Our simulations could qualitatively illustrate the performance of these MTJs.The GGA+U method was used with U=3.71 eV for MnSe2and U=3.93 eV for VSe2,which matches other groups’results well.[39]The detailed computational methods can be found in the methods section.The transmission spectrum of the MnSe2/h-BN/MnSe2MTJs was calculated.As shown in Fig.1,the magnitude of the transmission in a parallel magnetization configuration(PC)was one order of magnitude larger than the transmission in an antiparallel magnetization configuration(APC).This indicates that the MTJs had an apparent TMR effect. The transmission spectrum in Figs.1(d)and 1(e)is like a superposition of the transmission spectrum in PC for the majority and minority spin states.

    Through symmetry properties,d orbital component could be distinguished as ?1(dz2), ?5(dxzdyz), ?2(dx2?y2), and.[40]As shown in Figs.1(b)and 1(c),no dominant?1hot spot tunneling feature was observed in the reciprocal lattice vector-resolved transmission spectrum. The hotspots in Figs.1(b)and 1(c)are not at the center but close to the corner. The transmission coefficient of the hot spots of Fig.1(b)is 1.33,corresponding to=(?0.41π/a,?0.47π/b)and=(0.41π/a,0.47π/b). The transmission coefficient of the hot spots of Fig.1(c)is 0.26,corresponding to=(?0.13π/a,0.23 π/b)and=(0.13π/a,?0.23π/b). As shown in Fig.S2(a)in the supplementary material, the transmission eigenstate of the majority spin states in the PC has four nodes,which shows an obvious d-electron feature.As shown in Fig.3(a),the dxz,dyz,dx2?y2,and dxystates of the single-layer MnSe2span across the Fermi level. The symmetry of these four d states belongs to(?5,?2,or),which has horizontal momentum. Due to the horizontal momentum of these d-state electrons,of the hot spots was not zero. The transmission spectrum in Fig.1(c)has a fairly average transmission. The transmission characteristics of the hot spots have the characteristics of the d-state electrons,which had horizontal momentum.It can be seen from Fig. S2(b)in the supplementary material that the transmission eigenstate of the minority spin channel in PC was similar to a mixture of the s-states and d-states of Ru and the d-states of Mn. This could explain why the transmission of the transmission spectrum in Fig.1(c)is fairly average.It is a mixture of transmissions of multiple electronic states with different symmetries.Compared to traditional MTJs,the total conductance of our calculated MTJs was larger by several orders of magnitude.[41]

    Fig.1. (a)The configuration of Ru/MnSe2/h-BN/MnSe2/Ru MTJs.=(ka,kb)dependent transmission spectra of MTJs based on MnSe2 for the(b)majority spin channel and(c)minority spin channel in PC,and(d)the majority spin channel and(e)minority spin channel in APC.The blue circles mark the hottest spots in each figure.

    The transmission spectrum of VSe2/h-BN/VSe2MTJs is shown in Fig.2. The hot spots in Fig.2(a)are=(0.45 π/a,0.33 π/b)and=(?0.45π/a,?0.33π/b).The transmission coefficient of the hottest spots in Fig.2(a)is 1.20.The hot spots in Fig.2(b)are=(0.02π/a,?0.38π/b)and=(?0.02π/a,0.38π/b). The transmission coefficient of the hottest spots in Fig.2(b)is 0.79. A weak transmission of the states in ?1symmetry was observed.In Fig.2(b),the tunneling feature of multiple states with different symmetry is observed.The transmission spectrum shows obvious tunneling features,with ?1conductance being observed in Fig.2(b).However,the hot spots in Fig.2(b)are near the sides. As shown in Fig.S2(c)in the supplementary material,the transmission eigenstate of the majority spin channel in PC also has apparent d-electron feature.In Fig.S2(d)in the supplementary material,the transmission eigenstate of the minority spin channel in PC is similar to a mixture of the s states of Ir,the p states of Se,and the d states of V.This could explain the transmission characteristics of the multiple symmetries in the transmission spectrum in Fig.2(b).As shown in Fig.2,the magnitude of the transmission in the PC was also one order of magnitude larger than the transmission in APC,which indicates an obvious TMR effect.

    Fig.2.The=(ka,kb)resolved transmission spectra of the Ir/VSe2/h-BN/VSe2/Ir MTJs for the(a)majority spin channel and(b)minority spin channel in PC,and the(c)majority spin channel and(d)minority spin channel in APC.The blue circles mark the hottest spots in each figure.

    The spin-dependent conductance and the TMR of the MTJs based on VSe2and MnSe2in an equilibrium state are listed in Table 1.From our results in Table 1,we have summarized two methods to increase the TMR of our calculated MTJs.The first method is to select a metal whose work function matches XSe2as an electrode.The work functions of the monolayer MnSe2and the monolayer VSe2calculated by the hybrid functional method are 5.05 eV and 4.99 eV,respectively.In order to ensure that the magnetic properties of the XSe2are not affected,only the metal electrodes are strained when building the MTJs structure.The strains on the Ir and Ru electrode when forming the M-XSe2interface are listed in Table S1 in the supplementary material.Table 2 displays the work functions(Wm)for the Ir and Ru clean metal when forming the M-XSe2interface.The calculation of the work functions of the clean metals in Table 2 considered the strain.Due to the different strains applied to the metal electrode,the work function of the metal forming the interface with different ferromagnets is also different.As shown in Tables 1 and 2,as the difference between the work function of the metal electrode and the work function of the ferromagnetic becomes smaller,the TMR increases.The difference in the work function between the electrode material and the ferromagnet leads to a contact potential difference.The diagram of the band alignment of the M-XSe2interface is shown in Fig.S1 in the supplementary material.As shown in Tables 1 and 2,the contact potential difference between the electrode and the ferromagnet has a negative effect on the device performance. Therefore,selecting a metal whose work function that matches the work function of XSe2could improve the performance of the device.Another method is to increase the number of layers of h-BN as the barrier layer finitely.When the number of layers of h-BN increases,the conductance is reduced and the TMR increases.We obtain a TMR value of 725.07%when we use a 3.3 ?A bilayer h-BN as a barrier.The tunneling process could be simplified into a qualitative model of a free-electron incident on a square barrier of height Vband thickness d.The transmission could be expressed as T ~exp(?2κd).[38,40]The attenuation rate of Bloch state κ can be defined as[38,40]

    Table 1.Conductance of the parallel(GP)and antiparallel(GAP)configurations of XSe2 based MTJs.The TMR values of these devices are listed in the last column.

    Table 2.Work functions(Wm)for Ir and Ru clean metal when forming the M-XSe2(X=Mn,V;M=Ir,Ru)interface.The strain when forming the interface has been considered.

    As the partial density of states(PDOS)shown in Fig.3,the monolayer MnSe2and VSe2are both metals.Monolayer MnSe2and monolayer VSe2both have d-states that go through the Fermi level.As shown in Figs.3(c)and 3(d),thestates go through the Fermi level in the majority PDOS and minority PDOS.This could explain the presence of the transmission characteristics with ?1symmetry in Fig.2(b).Furthermore,it can be seen from the spin-resolved PDOS that the MnSe2exhibits a larger spin polarization than the VSe2.The results of our DFT+U calculations show that the magnetic moment per unit cell is 3.91μBfor MnSe2and 1.00μBfor VSe2,which is consistent with previous studies.[39]It can be seen from the results in Table 1 that the larger spin polarization of the MnSe2allows the MnSe2-based MTJs to have a larger TMR than the VSe2-based MTJs.

    Fig.3.PDOS of the MnSe2 monolayer for the(a)majority spin states and(b)minority spin states.The Fermi level is set for 0 eV.PDOS of the VSe2 monolayer for the(c)majority spin states and(d)minority spin states.The Fermi level was set for 0 eV.

    As shown in Fig.4,the non-equilibrium transport properties of the MTJs based on MnSe2and VSe2are calculated by applying a positive bias.In both MTJs,the majority-spin current is larger than the minority-spin current with the increasing bias in the PC.Moreover,in both MTJs,the majority-spin and minority-spin currents changed only slightly with increasing bias in the APC.As the bias voltage increases,the TMR of both MTJs has a small decrease.At the 50 mV bias,the MnSe2-based MTJs still have a TMR of 385%.Additionally,the VSe2-based MTJs have a TMR of 170%at the 50 mV bias.Our results show that these two MTJs could still work effectively under a finite bias.Previous experimental advances have confirmed that monolayer MnSe2and VSe2have roomtemperature ferromagnetism.[26,27]Therefore,it is expected that the TMR of these MTJs can be maintained at room temperature.

    To reveal the band diagram of the interface along the transport direction(c direction),the projected local density of states(PLDOS)was calculated.The area calculated in Fig.5 is equivalent to the central area in Fig.1(a).The region of PLDOS calculated in Fig.5 corresponds to the central region in Fig.1.As shown in Fig.5,the tunneling barrier originating from h-BN can be seen as a dark area at the center of each figure.The single-layer h-BN blocks the overlap of the wave functions of the single-layer MnSe2on both sides.The Fermi level goes through the valence band in Fig.5(a),which is consistent with the metallic properties of monolayer MnSe2.

    As shown in Fig.5(a),the Fermi level spans across the majority-spin states of MnSe2in PC,which indicates a better transmission of the majority-spin states.This means that this device still has an obvious TMR effect.For APC in Figs.5(c)and 5(d),an obvious dependence of the spin polarization of MnSe2can be seen in the spin-resolved PLDOS.

    Fig.4. The left column shows the non-equilibrium transport properties of Ru/MnSe2/h-BN/MnSe2/Ru MTJs. The right column shows the nonequilibrium transport properties of Ru/VSe2/h-BN/VSe2/Ru MTJs.The I–V curves of MnSe2 based MTJs in the(a)PC and(c)APC,the I–V curves of the VSe2-based MTJs in the(b)PC and(d)APC.The TMR of the(e)MnSe2-based MTJs and(f)VSe2-based MTJs.

    Fig.5.Projected local density of states along the transport direction(c direction)of the Ru/MnSe2/h-BN/MnSe2/Ru MTJs for the(a)majority spin states and(b)minority spin states in PC,and the(c)majority spin states and(d)minority spin states in APC.The Fermi level is indicated by a white dashed line.

    4.Conclusion and perspectives

    In summary,using ab initio calculation,we have studied MTJs based on 2D MnSe2and VSe2with room temperature ferromagnetism. The transmission spectra of majority spin channel and minority spin channel in PC and APC were calculated.We analyzed the transmission characteristics of the transmission spectrum through the electronic structure and orbital composition symmetry of ferromagnetic materials.Based on the results in our paper,we summarized two ways to improve the TMR of our devices:(i)select a metal whose work function matches XSe2as an electrode;(ii)increasing the thickness of the barrier within a range of 3.3 ?A.We use bilayer h-BN instead of monolayer h-BN as a tunneling barrier. By using bilayer h-BN as tunneling barrier,the TMR of single-layer MnSe2-based MTJs reaches 725.07%.We further studied the non-equilibrium transport properties of the device by applying positive bias.The results demonstrated that our device still maintained a large TMR under bias.Overall,our study demonstrated that 2D XSe2based MTJs with roomtemperature ferromagnetism can still maintain a considerable TMR.Therefore,these MTJs would have potential applications in spintronics.

    猜你喜歡
    龍飛陳龍
    情書(shū)
    奇妙的大自然
    Orthonormality of Volkov Solutions and the Sufficient Condition?
    翼龍飛飛飛
    張強(qiáng)、肖龍飛招貼作品
    茶,有點(diǎn)苦
    準(zhǔn)確審題正確列式精確驗(yàn)證
    教師·下(2017年10期)2017-12-10 12:35:13
    《機(jī)械工程測(cè)試技術(shù)》教學(xué)方法初探
    賀聰、胡軼群、張釗浩、陳龍作品
    Large-eddy simulation of the flow past both finite and infinite circular cylinders at Re =3900*
    午夜福利视频1000在线观看| 18禁黄网站禁片午夜丰满| 99在线人妻在线中文字幕| 日本 av在线| 欧美日韩精品成人综合77777| 日韩人妻高清精品专区| 全区人妻精品视频| 悠悠久久av| 午夜福利欧美成人| 乱人视频在线观看| 午夜爱爱视频在线播放| 国产探花在线观看一区二区| 国产一区二区三区视频了| 国产高清激情床上av| 18禁在线播放成人免费| 国产视频内射| 赤兔流量卡办理| 日本黄色视频三级网站网址| 久久精品国产亚洲av香蕉五月| 深爱激情五月婷婷| 久久99热6这里只有精品| 免费一级毛片在线播放高清视频| 国产高潮美女av| 国产精品久久久久久精品电影| 男女之事视频高清在线观看| 如何舔出高潮| 两性午夜刺激爽爽歪歪视频在线观看| 无遮挡黄片免费观看| 女生性感内裤真人,穿戴方法视频| 高清毛片免费观看视频网站| 在线播放国产精品三级| 波野结衣二区三区在线| www.色视频.com| а√天堂www在线а√下载| 国内精品久久久久久久电影| 亚洲国产日韩欧美精品在线观看| 人人妻,人人澡人人爽秒播| 亚洲av成人av| 99riav亚洲国产免费| 亚洲男人的天堂狠狠| 日韩国内少妇激情av| av天堂在线播放| 男女边吃奶边做爰视频| 美女 人体艺术 gogo| 免费观看精品视频网站| 国产精品一区二区性色av| 丰满人妻一区二区三区视频av| 中亚洲国语对白在线视频| 女的被弄到高潮叫床怎么办 | 乱人视频在线观看| 男人狂女人下面高潮的视频| 欧美激情久久久久久爽电影| 久久婷婷人人爽人人干人人爱| 99久久无色码亚洲精品果冻| 性欧美人与动物交配| 欧美高清成人免费视频www| 久久久久久九九精品二区国产| 天堂动漫精品| 亚洲av免费高清在线观看| 国产大屁股一区二区在线视频| 亚洲av二区三区四区| 国产不卡一卡二| 舔av片在线| 免费人成视频x8x8入口观看| АⅤ资源中文在线天堂| 色综合婷婷激情| 白带黄色成豆腐渣| 此物有八面人人有两片| 91av网一区二区| 日本五十路高清| 大型黄色视频在线免费观看| 成人永久免费在线观看视频| 久久精品国产亚洲av天美| 51国产日韩欧美| 日本 欧美在线| or卡值多少钱| 九九久久精品国产亚洲av麻豆| 97碰自拍视频| 亚洲人成网站在线播放欧美日韩| 国产亚洲精品综合一区在线观看| 国内久久婷婷六月综合欲色啪| 少妇人妻精品综合一区二区 | 人妻制服诱惑在线中文字幕| 国产精品综合久久久久久久免费| 国产三级在线视频| 美女黄网站色视频| 欧美一区二区亚洲| 亚洲人与动物交配视频| 赤兔流量卡办理| 国产av在哪里看| 在线观看美女被高潮喷水网站| 又爽又黄无遮挡网站| 欧美人与善性xxx| 国产真实伦视频高清在线观看 | 麻豆成人av在线观看| 国产精品一及| 成人性生交大片免费视频hd| 搞女人的毛片| 国产免费av片在线观看野外av| www.www免费av| 国内精品久久久久精免费| 精品人妻偷拍中文字幕| 午夜亚洲福利在线播放| 老师上课跳d突然被开到最大视频| 全区人妻精品视频| 嫩草影院精品99| 亚洲一区高清亚洲精品| 国产视频一区二区在线看| 日韩欧美一区二区三区在线观看| 国产一区二区亚洲精品在线观看| 最近中文字幕高清免费大全6 | 日本三级黄在线观看| 欧美精品啪啪一区二区三区| 日韩欧美精品v在线| 国产精品av视频在线免费观看| 欧美黑人欧美精品刺激| 夜夜爽天天搞| 中文字幕免费在线视频6| 小蜜桃在线观看免费完整版高清| 国产探花极品一区二区| 搡老熟女国产l中国老女人| 亚洲国产欧洲综合997久久,| 欧美成人一区二区免费高清观看| 色视频www国产| 久久久久久久亚洲中文字幕| 尾随美女入室| 此物有八面人人有两片| 国产精品人妻久久久影院| 女生性感内裤真人,穿戴方法视频| 69人妻影院| 18禁裸乳无遮挡免费网站照片| 在线免费十八禁| 麻豆久久精品国产亚洲av| 亚洲精品亚洲一区二区| 久久婷婷人人爽人人干人人爱| 我要搜黄色片| 禁无遮挡网站| 成人av在线播放网站| 别揉我奶头 嗯啊视频| 99热这里只有是精品50| 在线a可以看的网站| 亚洲精品国产成人久久av| 91麻豆精品激情在线观看国产| 男女边吃奶边做爰视频| 中国美女看黄片| 亚洲熟妇中文字幕五十中出| 亚洲av一区综合| bbb黄色大片| 国产色爽女视频免费观看| 国产乱人伦免费视频| 国产午夜精品久久久久久一区二区三区 | 深爱激情五月婷婷| 欧美xxxx性猛交bbbb| 亚洲av电影不卡..在线观看| 少妇的逼水好多| 免费av不卡在线播放| 亚洲18禁久久av| 热99re8久久精品国产| 成人高潮视频无遮挡免费网站| 精品一区二区免费观看| 97超级碰碰碰精品色视频在线观看| 免费看光身美女| 日日撸夜夜添| bbb黄色大片| 欧美日韩瑟瑟在线播放| 国产91精品成人一区二区三区| 久久久国产成人免费| 日韩在线高清观看一区二区三区 | 日本撒尿小便嘘嘘汇集6| 日韩精品中文字幕看吧| 亚洲av免费在线观看| 国产成人av教育| 日韩国内少妇激情av| 色吧在线观看| 国产精品久久久久久久久免| 1000部很黄的大片| 91久久精品国产一区二区成人| 国产 一区 欧美 日韩| 国内少妇人妻偷人精品xxx网站| 校园人妻丝袜中文字幕| 欧美另类亚洲清纯唯美| 国产精品一区二区性色av| 18禁在线播放成人免费| 国产色婷婷99| 国内揄拍国产精品人妻在线| x7x7x7水蜜桃| 亚洲成人免费电影在线观看| 超碰av人人做人人爽久久| 日韩欧美国产在线观看| 人人妻,人人澡人人爽秒播| 国产精品久久久久久av不卡| 波多野结衣巨乳人妻| 3wmmmm亚洲av在线观看| 午夜激情欧美在线| 欧美三级亚洲精品| 欧美激情在线99| 亚洲av成人精品一区久久| 欧美日本亚洲视频在线播放| 男人和女人高潮做爰伦理| 欧美日韩国产亚洲二区| 长腿黑丝高跟| 国产精品永久免费网站| 22中文网久久字幕| 嫁个100分男人电影在线观看| 亚洲成av人片在线播放无| 黄色女人牲交| 女人被狂操c到高潮| 亚洲电影在线观看av| 深爱激情五月婷婷| 啦啦啦韩国在线观看视频| 一级a爱片免费观看的视频| 毛片女人毛片| 亚洲经典国产精华液单| 舔av片在线| 国产又黄又爽又无遮挡在线| 少妇被粗大猛烈的视频| 日本撒尿小便嘘嘘汇集6| 女同久久另类99精品国产91| 日韩欧美免费精品| 啦啦啦韩国在线观看视频| 国产一区二区在线观看日韩| 精品人妻熟女av久视频| 欧美日韩综合久久久久久 | a在线观看视频网站| 一级a爱片免费观看的视频| 天美传媒精品一区二区| 中出人妻视频一区二区| 亚洲成av人片在线播放无| 色在线成人网| 亚洲av第一区精品v没综合| 成人亚洲精品av一区二区| av在线亚洲专区| 国产男靠女视频免费网站| 88av欧美| 给我免费播放毛片高清在线观看| 天堂网av新在线| 1000部很黄的大片| 国产一区二区激情短视频| 午夜激情欧美在线| 韩国av一区二区三区四区| 国产精品无大码| а√天堂www在线а√下载| 亚洲av不卡在线观看| h日本视频在线播放| 亚洲av.av天堂| 国产亚洲av嫩草精品影院| 欧美一级a爱片免费观看看| 精品一区二区三区人妻视频| 亚洲自偷自拍三级| 蜜桃久久精品国产亚洲av| 久久欧美精品欧美久久欧美| 国产亚洲av嫩草精品影院| 欧美日韩瑟瑟在线播放| 国内毛片毛片毛片毛片毛片| 中文字幕av在线有码专区| www.色视频.com| 国产视频内射| 亚洲精品亚洲一区二区| 在线免费十八禁| 欧美最新免费一区二区三区| 观看美女的网站| 可以在线观看毛片的网站| 男女下面进入的视频免费午夜| 亚洲人与动物交配视频| 亚洲成人久久性| 夜夜爽天天搞| 久久久久免费精品人妻一区二区| 变态另类丝袜制服| 男女那种视频在线观看| 国产伦精品一区二区三区视频9| aaaaa片日本免费| 特级一级黄色大片| 永久网站在线| 人妻丰满熟妇av一区二区三区| 久久精品国产亚洲av涩爱 | 久久久久九九精品影院| 99久久精品一区二区三区| 亚洲精品一卡2卡三卡4卡5卡| 欧美bdsm另类| 欧美在线一区亚洲| 亚洲国产精品久久男人天堂| 一区二区三区激情视频| 国产欧美日韩精品亚洲av| bbb黄色大片| 久久精品国产亚洲av涩爱 | 看黄色毛片网站| 日日啪夜夜撸| 伦理电影大哥的女人| 波野结衣二区三区在线| 长腿黑丝高跟| bbb黄色大片| 国产黄片美女视频| 亚洲成人中文字幕在线播放| 丰满人妻一区二区三区视频av| 亚洲av中文av极速乱 | 欧美xxxx黑人xx丫x性爽| 午夜久久久久精精品| 不卡一级毛片| 国产伦人伦偷精品视频| 又黄又爽又刺激的免费视频.| 九九在线视频观看精品| 88av欧美| 精品人妻熟女av久视频| 色综合色国产| 色哟哟·www| 校园春色视频在线观看| 精品久久久久久久人妻蜜臀av| 色在线成人网| 久久久色成人| 亚洲欧美日韩东京热| 国产欧美日韩精品亚洲av| 精品久久久久久成人av| 亚洲精品亚洲一区二区| a在线观看视频网站| 成人永久免费在线观看视频| 日日撸夜夜添| 国产视频内射| 日本成人三级电影网站| 久久中文看片网| 欧美成人一区二区免费高清观看| 免费一级毛片在线播放高清视频| 国内揄拍国产精品人妻在线| 美女cb高潮喷水在线观看| 国产午夜精品论理片| 五月玫瑰六月丁香| 国产亚洲欧美98| h日本视频在线播放| 九九久久精品国产亚洲av麻豆| 狂野欧美白嫩少妇大欣赏| .国产精品久久| 淫秽高清视频在线观看| 欧美高清性xxxxhd video| 国产午夜福利久久久久久| 日韩强制内射视频| 人妻久久中文字幕网| 在线观看av片永久免费下载| 色精品久久人妻99蜜桃| 精品一区二区三区av网在线观看| 两个人的视频大全免费| 国内毛片毛片毛片毛片毛片| 精品99又大又爽又粗少妇毛片 | 国产高清有码在线观看视频| 久久精品国产鲁丝片午夜精品 | 久99久视频精品免费| 在线观看66精品国产| 亚洲av一区综合| 中文字幕久久专区| 久久这里只有精品中国| 久久久久性生活片| 国产一区二区三区视频了| 欧美激情在线99| 日韩在线高清观看一区二区三区 | 成人av在线播放网站| 日本成人三级电影网站| 亚洲性夜色夜夜综合| 中文字幕人妻熟人妻熟丝袜美| 亚洲精品一区av在线观看| 日本欧美国产在线视频| 内射极品少妇av片p| 床上黄色一级片| 精品午夜福利视频在线观看一区| 午夜福利高清视频| 一本久久中文字幕| 亚洲性久久影院| 琪琪午夜伦伦电影理论片6080| 成年女人毛片免费观看观看9| 国产午夜福利久久久久久| 日本 欧美在线| 黄色配什么色好看| 欧美一区二区亚洲| av在线老鸭窝| 男女做爰动态图高潮gif福利片| aaaaa片日本免费| 永久网站在线| 最近最新免费中文字幕在线| 国产精品野战在线观看| 国产伦精品一区二区三区视频9| 可以在线观看的亚洲视频| 欧美激情国产日韩精品一区| 亚洲自偷自拍三级| 蜜桃久久精品国产亚洲av| 日韩欧美国产一区二区入口| 高清毛片免费观看视频网站| 欧美激情国产日韩精品一区| 国产一区二区激情短视频| 99热这里只有精品一区| 日本黄大片高清| 听说在线观看完整版免费高清| 久久精品国产鲁丝片午夜精品 | 国产黄色小视频在线观看| 亚洲久久久久久中文字幕| 午夜福利在线观看免费完整高清在 | 国产亚洲欧美98| 午夜福利在线观看免费完整高清在 | 国内精品久久久久精免费| 久久精品国产自在天天线| 美女 人体艺术 gogo| 成年女人看的毛片在线观看| 欧美激情在线99| 少妇的逼水好多| 亚洲av美国av| 亚洲avbb在线观看| 亚洲av中文av极速乱 | 色哟哟哟哟哟哟| 免费人成视频x8x8入口观看| 中文字幕av在线有码专区| 亚洲自偷自拍三级| 一进一出好大好爽视频| 日日啪夜夜撸| 最近中文字幕高清免费大全6 | 九色国产91popny在线| 免费av不卡在线播放| 日韩精品有码人妻一区| 久9热在线精品视频| 两性午夜刺激爽爽歪歪视频在线观看| 国产国拍精品亚洲av在线观看| 人妻久久中文字幕网| 日韩精品青青久久久久久| 日本一二三区视频观看| 搞女人的毛片| 欧美日韩中文字幕国产精品一区二区三区| 亚洲第一电影网av| 午夜福利18| 麻豆国产av国片精品| 免费无遮挡裸体视频| 国产精品女同一区二区软件 | 亚洲精品色激情综合| 99热6这里只有精品| 久久香蕉精品热| 日本a在线网址| 麻豆一二三区av精品| 在线免费观看的www视频| 亚洲国产精品久久男人天堂| 亚洲乱码一区二区免费版| 最近在线观看免费完整版| 色综合色国产| 久久久久久久久久黄片| 亚洲国产精品成人综合色| 一区二区三区四区激情视频 | 国内少妇人妻偷人精品xxx网站| 国产精品久久久久久精品电影| 精品不卡国产一区二区三区| 久久久精品欧美日韩精品| 成人一区二区视频在线观看| 久久精品国产亚洲av香蕉五月| 免费在线观看成人毛片| 女同久久另类99精品国产91| 啪啪无遮挡十八禁网站| 熟妇人妻久久中文字幕3abv| 国产精品爽爽va在线观看网站| 精品久久久噜噜| 国产亚洲91精品色在线| 欧美一级a爱片免费观看看| 精品乱码久久久久久99久播| 国产精品人妻久久久久久| 黄片wwwwww| 51国产日韩欧美| 亚洲一区二区三区色噜噜| 久久久久国内视频| 国产免费男女视频| 综合色av麻豆| 精品久久久久久久久久免费视频| 国内少妇人妻偷人精品xxx网站| 男人的好看免费观看在线视频| 国产免费男女视频| 成年女人永久免费观看视频| 九色国产91popny在线| 五月伊人婷婷丁香| 婷婷丁香在线五月| 18禁黄网站禁片免费观看直播| 一级av片app| av国产免费在线观看| 成人二区视频| 国产av在哪里看| 热99re8久久精品国产| 又粗又爽又猛毛片免费看| 亚洲人与动物交配视频| 亚洲专区中文字幕在线| 国产人妻一区二区三区在| 国产午夜福利久久久久久| a在线观看视频网站| 亚洲av二区三区四区| 亚洲综合色惰| 制服丝袜大香蕉在线| 亚洲在线观看片| 日韩精品有码人妻一区| 精品人妻熟女av久视频| 免费观看在线日韩| 成人无遮挡网站| 伦理电影大哥的女人| 校园人妻丝袜中文字幕| 成人综合一区亚洲| 日日撸夜夜添| 一本精品99久久精品77| 久久这里只有精品中国| 亚洲美女搞黄在线观看 | 日韩精品青青久久久久久| 能在线免费观看的黄片| 日韩欧美 国产精品| 亚洲av免费高清在线观看| av.在线天堂| 999久久久精品免费观看国产| 久久亚洲真实| 成年版毛片免费区| 欧美黑人巨大hd| 婷婷精品国产亚洲av| 性色avwww在线观看| 亚洲 国产 在线| 中文字幕免费在线视频6| 亚洲av成人av| 欧美精品啪啪一区二区三区| 1024手机看黄色片| 日本色播在线视频| 亚洲av成人精品一区久久| 最近视频中文字幕2019在线8| 成年版毛片免费区| 可以在线观看的亚洲视频| 少妇被粗大猛烈的视频| 日韩大尺度精品在线看网址| 国产伦人伦偷精品视频| 不卡一级毛片| 国产伦精品一区二区三区视频9| 九色国产91popny在线| 国产精品自产拍在线观看55亚洲| 特级一级黄色大片| 午夜亚洲福利在线播放| 又黄又爽又免费观看的视频| 中亚洲国语对白在线视频| 久久香蕉精品热| 亚洲国产色片| 欧美又色又爽又黄视频| 久久久国产成人精品二区| 99国产极品粉嫩在线观看| 久久精品国产99精品国产亚洲性色| 精华霜和精华液先用哪个| 干丝袜人妻中文字幕| 亚洲成人精品中文字幕电影| 亚洲欧美精品综合久久99| 色噜噜av男人的天堂激情| 又爽又黄a免费视频| 欧美黑人欧美精品刺激| 精品一区二区三区av网在线观看| 亚洲自偷自拍三级| 亚洲三级黄色毛片| 久久精品影院6| 国产伦精品一区二区三区四那| 国产国拍精品亚洲av在线观看| 精品一区二区三区av网在线观看| 亚州av有码| 成人综合一区亚洲| 九色成人免费人妻av| 可以在线观看毛片的网站| 国产一区二区亚洲精品在线观看| 麻豆一二三区av精品| 中国美女看黄片| 变态另类成人亚洲欧美熟女| 嫩草影院入口| 欧美日韩综合久久久久久 | 乱码一卡2卡4卡精品| 丰满人妻一区二区三区视频av| 亚洲人成网站高清观看| 亚洲18禁久久av| 窝窝影院91人妻| 露出奶头的视频| 亚洲中文日韩欧美视频| 亚洲性夜色夜夜综合| 老司机深夜福利视频在线观看| 欧美zozozo另类| av福利片在线观看| 男人和女人高潮做爰伦理| 欧美+亚洲+日韩+国产| 天堂√8在线中文| 亚洲人与动物交配视频| 伊人久久精品亚洲午夜| 国产成人影院久久av| 97碰自拍视频| 亚洲avbb在线观看| 十八禁网站免费在线| 亚洲中文日韩欧美视频| 少妇猛男粗大的猛烈进出视频 | 啪啪无遮挡十八禁网站| 国产老妇女一区| 国产真实乱freesex| 色在线成人网| 黄色丝袜av网址大全| 国国产精品蜜臀av免费| 看免费成人av毛片| 午夜精品在线福利| 日本免费一区二区三区高清不卡| 91麻豆av在线| 免费高清视频大片| 日韩在线高清观看一区二区三区 | av黄色大香蕉| 国国产精品蜜臀av免费| 国产免费男女视频| 99久久无色码亚洲精品果冻| 国产白丝娇喘喷水9色精品| 亚洲av一区综合| 日本成人三级电影网站| 成人av在线播放网站| 此物有八面人人有两片| 91精品国产九色| 久久久成人免费电影| 成人美女网站在线观看视频| 久久精品综合一区二区三区| 亚洲va日本ⅴa欧美va伊人久久| www.www免费av| 日韩人妻高清精品专区| 老司机福利观看| 国产精品人妻久久久影院| 日韩在线高清观看一区二区三区 | 乱码一卡2卡4卡精品| 亚洲av日韩精品久久久久久密| 亚洲欧美日韩东京热| 亚洲最大成人手机在线|