• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Simulation of a helicon plasma source in a magnetoplasma rocket engine

    2022-08-01 11:33:50ZhenyuYANG楊振宇WeiFAN范威JianguoWEI魏建國(guó)andXianweiHAN韓先偉
    Plasma Science and Technology 2022年7期
    關(guān)鍵詞:魏建國(guó)

    Zhenyu YANG(楊振宇),Wei FAN(范威),Jianguo WEI(魏建國(guó))and Xianwei HAN(韓先偉)

    Shaanxi Key Laboratory of Plasma Physics and Applied Technology,Xi’an 710100,People’s Republic of China

    Abstract The helicon plasma source,which generates high thrust and high impulse,is of vital importance for magnetoplasma rocket engines.In this work,a multi-component,two-dimensional,axisymmetric fluid model coupled with an electromagnetic field was developed to model the helicon discharge.The simulation results demonstrate that:(i)the discharge mode changes twice—each conversion is accompanied by a plasma density jump and an electron temperature peak in the discharge;(ii)when the input current increases,the plasma density increases,and ionization occurs faster;(iii)the background magnetic field clearly enhances the discharge;(iv)the plasma density may be smaller if the discharge has not entered the wave mode.

    Keywords:space propulsion,MPRE,helicon plasma source,discharge mode conversion

    1.Introduction

    Unlike other radio-frequency(RF)plasma sources,helicon plasma sources depend on the excitation of bounded whistle waves to generate high-density plasmas at low pressures and RF powers[1].Due to the effective absorption of RF power,the plasma density in a helicon source is as much as an order of magnitude higher than that in other plasma generators at a given power.Because of this advantage,helicon sources are widely used in semiconductor processing and space propulsion[2–4].

    The magnetoplasma rocket engine(MPRE)originates from the concept of the variable specific impulse magnetoplasma engine(VASIMR),which is a type of electromagnetic thruster.The MPRE consists of three stages,which are shown in figure 1.The helicon source is the first stage,where the working medium is ionized;the second stage uses ion cyclotron resonance heating(ICRH)to heat the ions by hundreds of eV using RF waves;and the third stage is a magnetic nozzle,where the heated plasma naturally accelerates in the expanding magnetic field and leaves the device,producing thrust[5].As a result of the use of these techniques,MPRE has the characteristics of high thrust,high specific impulse,and high efficiency and can be used in deep space exploration and other missions[6].According to the operating principles of the MPRE,the helicon plasma source is the chamber where a high-density plasma is created,so it is the basis of the thrust generated by the MPRE.

    Ever since Boswell first reported the high densities produced by helicon discharges in 1970[7],helicon plasma sources have been extensively studied,both experimentally and theoretically.Research mainly focused on the confirmation of the wave mode excited in the plasma and the mechanism responsible for the high power absorption efficiency.At first,Landau damping was thought to be the mechanism of power absorption,as proposed by F F Chen[8].However,subsequent experiments showed that Landau-accelerated electrons are too sparse to explain the ionization efficiency and the Landau damping hypothesis was ruled out by F F Chen and D D Blackwell[9,10].There are two wave branches in the solution of the helicon dispersion relation[11]:one is the helicon wave and the other is called the Trivelpiece–Gould wave(TG wave)[12].Research showed that the power absorption can be more appropriately explained by the strong damping of the TG wave[13–16].Another unique phenomenon in helicon discharges is that the plasma density jumps at a certain power,accompanied by a change of discharge mode[17,18].F F Chen thought this was due to the nonmonotonic variation of the plasma impedance[19],while S H Kin used the concept of the mode conversion surface(MCS)to explain the mode conversion[20].In the field of helicon discharge simulation,D Arnush studied the coupling of helicon waves and TG waves using the HELIC software[21],and X Yang analyzed the phenomenon of the density peak in the weak magnetic field using the COMSOL software[22].

    The characteristics of helicon discharge in MPRE determine the plasma flux,which is of vital importance to the thrust and specific impulse.Analyses of the physical processes of helicon discharge are instructive for MPRE development.However,it is impossible to make direct measurements of the plasma and electromagnetic field in the discharge chamber due to the limitation of the engine structure.Therefore,numerical simulation has become an effective method for studying helicon discharges.

    In this work,a multi-component,two-dimensional,axisymmetric fluid model coupled with an electromagnetic field was developed to simulate the helicon discharge.The simulation was performed using different input currents and background magnetic fields to analyze the process of discharge mode conversion and the density jump.This paper is organized as follows:in section 2,the governing equations of the model are given;the simulation model setup is described in section 3;in section 4,the results are presented and discussed;and in section 5,this study is concluded.

    2.Governing equations

    The simulation model includes the motions of electrons,ions,and atoms and the interactions of the electrostatic field and the electromagnetic field.In this section,we discuss the governing equations of the electromagnetic field,electrons,ions,neutral atoms,and the electrostatic field in the cylindrical coordinate system(r,θ,z).

    2.1.Electromagnetic field

    The electromagnetic field is obtained through the solution of the Maxwell equations(1),(2)together with current equation(3).

    where the subscript rf refers to the fields which are excited by the RF input;H is the magnetic field intensity;B is the magnetic induction intensity;E is the electric field;D is the electric displacement;J is the plasma current density;e,ne,andmeare the elementary charge,the electron density,and the electron mass,respectively;νenis the collision frequency between electrons and neutral atoms;and B0is the background magnetic field along thezaxis.In magnetized plasma,the solutions of equations(1)–(3)are divided into two independent branches:the transverse magnetic(TM)mode and the transverse electric(TE)mode,the equations of which are shown in(4)and(5).

    where the subscript rf is omitted for simplicity.After the electric field and the current density field have been obtained,the power density deposited in the plasma is calculated using equation(6).

    2.2.Electrons

    The drift–diffusion hypothesis is used to describe the electron motion[23].Equation(7)is the continuity equation and equation(8)is the energy equation.

    where Γeis the electron flux;nnis the number density of neutral atoms;KionandKexcare the ionization rate and the excitation rate,respectively;Teis the electron temperature;qeis the energy flux,εionand εexcare the threshold energies of ionization and excitation,respectively;and Esis the electrostatic field.The electron flux and energy flux are given by the following equations.

    in which μeis the electron mobility,Deis the diffusion coefficient,μe=e/meνen,andDe=kBTe/meνen.In this model,the ionization and excitation collisions of electrons are considered,and the reaction rate is calculated usingKj=vthσj,wherevthand σjare the thermal velocity of electrons and the collision section of different kinds of collision,j.In addition,νen=vthσeffnn,where σeffis the effective collision section between electrons and atoms.In the MPRE,with a working medium of Ar,the collision sections obtained from Morgan’s database are weighted by a Maxwell distribution and the reaction rates of different electron temperatures are shown in figure 2.In the simulation,σeffis set to 1.0×10-19m-2[22],andKionandKexcare set according to the local electron temperature.

    2.3.Heavy particles

    The ionic model consists of the continuity equation,the momentum equation,and the energy equation,as shown below:

    whereni,mi,vi,andTiare the ionic density,mass,drift velocity,and temperature,respectively.Here,it is assumed that the ionization only generates Ar+,and ion collisions are neglected.

    As a result of the low pressure in the discharge chamber and the low temperature of the atoms,the atomic temperature of the model is assumed to be constant and the viscosity is omitted.Therefore,the atomic model only includes the continuity equation(14)and the momentum equation(15).

    Here,mn,vn,andTnare the atomic mass,velocity,and temperature,respectively.

    2.4.Electrostatic field

    The semi-implicit Poisson equation is solved to obtain the electrostatic field[23].

    whereVis the potential,and Δtis the time step.In this equation,in contrast to the Poisson equation,the divergence of the charged particle flux is added to predict the potential of the next step,which has proven effective when the time step size is increased.The electric field is the negative gradient of the potential Es=-?V.

    3.Simulation model setup

    The numerical methods and the initialization of the computation model are introduced in this section.

    3.1.Numerical methods

    The alternating direction implicit finite difference time domain(ADI-FDTD)method is adopted to solve equations(3)–(5),in which the update of the electromagnetic field per time step is divided into two separate steps and the implicit direction is alternated[24].In ADI-FDTD,the time step can break through the limitation of the Courant–Friedrichs–Lewy(CFL)condition and thereby reduce the computational cost.The space discretizations of the TM mode and the TE mode are shown in figure 3,in which the components of the current density are all placed at grid points.In the time direction,discretization is implicitly performed in thezdirection in first half-step and subsequently in therdirection.

    The electron density and temperature are discretized by the central difference,and a staggered grid is adopted,as shown in figure 4.Equations(7)and(8)are time integrated by the implicit scheme.

    The equations of the heavy particles are solved by the fluxcorrected transport(FCT)algorithm[25],which has been proven to be an accurate and easy-to-use algorithm for the solution of nonlinear and time-dependent continuity equations of the type occurring in fluid dynamics,plasma dynamics,and magneto hydrodynamics.The time integration is completed with a splitstep approach,in which the integrations of thezandrdirections are alternated.The details of the FCT algorithm and the test code can be seen in[25].The Poisson equation(16)is solved by the five-point difference scheme.

    3.2.Initialization

    Figure 5 shows the computational domain.The whole domain is an axisymmetric cylinder with a radius ofrendand a length ofzend-zstart.The plasma is in a cylindrical chamber whose radius isrpand whose length iszp2-zp1;outside the plasma is vacuum.The helicon discharge antenna is a single ring which is placed at(zc1,rc1),and the ICRH antenna is placed at(zc2,rc2).The input current density is calculated using equation(17).The ICRH is beyond the scope of this work,but will be discussed in the future.

    Figure 1.Schematic of MPRE.

    Figure 2.Reaction rates of different electron temperatures:(a)ionization,(b)excitation.

    Figure 3.The space discretization of the electromagnetic field:(a)TM mode,(b)TE mode.

    Figure 4.The space discretization of the electron equations.

    Figure 5.Schematic of the computational domain.

    where Δzand Δrare the grid sizes in thezandrdirections,respectively,andfrfis the input frequency,which is set to 13.56 MHz.The geometric parameters are shown in table 1.

    For the electromagnetic field,the MUR condition[26]is adopted atrend,while the perfect conductor condition is adopted atzstartandzend.A Dirichlet boundary is adopted at the wall for the electron density,and a Neumann boundary is adopted for the electron temperature.The boundary condition given in equation(18)is adopted for the heavy particles.The potential at the boundary is set to zero.A symmetric boundary is adopted for all variables at the axis.

    Table 1.Geometric parameters of the simulation model.

    Figure 6 shows the profile of the background magnetic field,with the single-loop helicon antenna merged in a uniform magnetic field and a magnetic induction intensity of 0.1 T.At the initial moment,ne=ni=1.0×1016m-3,Te=2 eV,Ti=Tn=300 K,and the atomic density is set according to the discharge pressure.The program is coded in Fortran,the numerical data is stored for every RF cycle,and the computation time is set to 1000 RF cycles.

    4.Results and discussion

    4.1.Discharge mode conversion

    Figure 7 shows that there are three distinct modes of operation in the helicon discharge:the capacitive mode(E mode),the inductive mode(H mode),and the wave mode(W mode).The W mode can be divided into several modes of different orders,known as W1,W2,W3….The discharge undergoes conversions from E to H and from H to W1,and the conversions to the higher-order wave modes are accompanied by plasma density jumps.In the simulation,there is no capacitive mode,since the wall voltage is set to 0 V;as a result,only the H mode and the wave modes of different orders appear in the discharge process.

    First,the background pressure is set to 1.24 Pa,and the input current is 700 A.Figure 8 shows the maximum electron density and electron temperature during the discharge.It can be seen that the electron density gradually increases under the influence of the RF input and reaches 1.45×1020m-3,which is much larger than the typical values for other kinds of plasma source.In addition,the electron temperature is about 3 eV,which is consistent with the general situation in cold plasma.Second,figure 8(a)shows that there are two obvious inflection points in the electron density profile,where the electron density increases dramatically and the magnitude jumps to a higher order in a few RF cycles at the inflection points.It can be inferred that the first inflection point corresponds to the moment when the discharge mode converts from H to W1and the second occurs at the time of the conversion from W1to W2.Figure 8(b)shows that each conversion corresponds to an electron temperature peak,and the ionization rate also increases significantly with electron temperature,causing a sudden increase in density.

    In the study of helicon discharges,the deposited wave power is the main research interest.Figure 9 shows the distribution of deposited power density in the plasma at different moments,whereTis the number of RF cycles in the simulation.At the 20th cycle,with the discharge in H mode,the deposited power is concentrated at a point close to the antenna and is similar to that of an inductively coupled plasma(ICP).At the 32nd cycle,with the discharge in the W1mode,the deposited power is concentrated in a thin layer near the periphery.In figure 9(c),the deposited power appears to detach from the periphery,and it gradually moves inward in figure 9(d).At the 47th cycle,the deposited power is mainly concentrated near the axis and the magnitude reaches 108W m-3.The penetration of the deposited power during mode conversion makes the electron temperature increase dramatically;the ionization rate then increases,and the plasma density jumps to a higher order of magnitude.

    Figure 6.The profile of the background magnetic field along the axis.

    Figure 7.Mode conversion of the helicon discharge[27].

    The concept of the MCS can explain the jump in the deposited power during mode conversion[20].There are two wave branches in the solution of the helicon dispersion relation:one is the helicon wave and the other is the TG wave.The helicon wave is fast and weakly damped while the TG wave is slow and strongly damped.Thus,the helicon wave can enter the plasma column and heat the plasma core,but the TG wave is concentrated in a thin layer near the plasma edge,and the wave energy is deposited in this layer,which can be seen in figure 9(b).When the plasma density is low,these two branches are separated from each other.When the plasma density increases to the MCS,these two kinds of wave couple with each other,which means the wave can penetrate the plasma and be strongly damped,so the deposited power penetrates the plasma core,as shown in figures 9(c)–(d).In figure 9(e),the waves are able to heat the plasma core,causing the electron temperature to peak.

    To show the conversion of the electromagnetic wave,the electric field amplitudes of three components in therdirection atz=zc1are shown in figure 10;the results are processed using spline interpolation.The figure indicates thatEzis basically zero at three moments,Eθchanges a little,reaching a maximum at the plasma edge and becoming zero at the axis,and it is the change ofErthat causes the mode conversion.At the 20th cycle,Eris almost 0,onlyEθis present in the plasma column,and the external magnetic field has little influence on the electromagnetic field structure,which is basically same as that of an ICP.In figure 10(b),Eroscillates strongly near the edge and decays to zero at one or two wavelengths,matching the characteristics of a TG wave[13],and the TG wave plays the major role in the W1mode.WhenT=43,multiple wave nodes and antinodes are present in the radial direction,which implies that the wave number becomes smaller and the wave becomes faster.In addition,the amplitude increases by an order of magnitude.These two features confirm that the wave has penetrated the plasma,and that helicon wave heating accounts for the main part of the deposited power in the W2mode.In figure 10(d),Erreaches its maximum near the axis,and the electromagnetic field is able to heat the plasma core.

    4.2.Discharges at different input currents

    Keeping the other input parameters unchanged,the input current was set to 300 A,500 A,700 A,and 900 A.Figure 11 shows the maximum electron density during discharges at different input currents.In general,the plasma density increases with the input current.When the input current increases from 300 to 900 A,the density increases from 3.09×1019to 1.72×1020m-3,which can meet the requirement for the engine to generate high thrust.

    Figure 12 shows the evolution of the maximum electron density and the temperature during discharges at input currents of 300 A and 700 A.The figure shows that the plasma evolutions are similar during discharges at different input currents.There are two obvious inflection points in the density profile and two peaks in the temperature profile,corresponding to the inflection points in the profiles at different input currents.However,the discharge is much slower with an input current of 300 A.When the input current is 700 A,the discharge mode converts from H to W1at about the 30th RF cycle and converts from W1to W2at about the 45th RF cycle.When the input current is 300 A,there is a long process of electron multiplication;the discharge mode does not change until the 300th RF cycle,and it converts to the W2mode at about the 500th RF cycle.In addition,the temperature peaks are also smaller.

    Figure 8.Maximum electron density and electron temperature during discharge:(a)maximum electron density,(b)maximum electron temperature.

    Figure 9.Distribution of deposited power density at different moments.(a) T=20,(b) T=32,(c) T=43,(d) T=44,and(e) T=47.

    It is worth noting that the electron density is basically the same when the mode converts,even at different input currents.The discharge mode first converts when the density is about 2×1016m-3and it converts for the second time when the density is about(2–3)×1018m-3.If the background magnetic field of the helicon discharge remains constant,the plasma density at the MCS remains unchanged.The power deposited in the plasma increases with the input current,so the ionization rate of Ar also becomes larger,which means that the plasma can reach the MCS earlier.This is why the discharge mode converts earlier for a higher input current.

    4.3.Discharges in different magnetic fields

    We discuss the results of using different magnetic fields with a series of input currents by taking magnetic field values of 0.01 T and 0 T(ICP).The electron densities for different magnetic fields and input currents are shown in figure 13.If the input current is too small,it is found that the ionization is extremely slow.This is due to the restriction of radial transport by the magnetic field when the magnetic induction strength is 0.1 T,and it takes a very long time for the discharge to reach a steady state;therefore cases involving small input currents were not examined.

    In helicon discharge experiments,as the input power generally increases,the mode of operation changes,and the luminous intensity of the plasma increases significantly,which indicates that the plasma density has jumped to a higher order of magnitude[28].Density jumps also appear in the simulation.Figure 13 shows that the electron density jumps twice as the input current increases forB=0.01 T,first at about 20 A and then at about 40 A.The evolutions of electron density and temperature at different input currents whenB=0.01 T are plotted in figure 14.In figure 14(b),the electron temperatures are 2.58 eV and 3.23 eV at the 1000th cycle,whenIrf=20 A and 50 A,respectively.It was seen in many completed simulations that the electron temperature peaks only appear when the electron temperature is relatively high.At the 1000th cycle,the electron temperature is very close to that of the steady state;however,the electron peak has not appeared.The discharge mode does not change,even if the simulation continues,so a simulation time of 1000 RF cycles is sufficient.

    Figure 10.Amplitudes of the electric field components in the r direction at z=zc1.(a) T=20,(b) T=32,(c) T=43,and(d) T=47.

    Figure 11.Maximum electron densities of different input currents.

    Figure 12.Maximum electron density and electron temperature during discharge:(a)electron density,(b)electron temperature.

    Figure 13.Electron densities for different magnetic fields and input currents.

    Figure 14.Electron density and temperature evolutions at different input currents when B=0.01 T:(a)electron density,(b)electron temperature.

    The evolution of the plasma when the input current is 50 A is similar to that shown in figure 7.The second temperature peak is followed by a series of small peaks,indicating that the helicon mode is fluctuating,but in general,the electron temperature decreases over time and finally becomes steady.However,the other two cases in figure 14 are very different.When the input current is 20 A,there is only one wide temperature peak and the density profile has only one inflection point.When the input current is decreased to 10 A,the profiles are approximately convex and the plasma density gradually decreases with time.These results show that the mode conversion is accompanied by a density jump and a temperature peak,which can be signs that prove the discharge mode has changed.The above results show that the unique phenomena of mode conversions and density jumps in helicon plasma sources can be seen in simulations,which verifies that the model is an effective tool for the study of helicon discharges.

    The enhancement of the magnetic field due to helicon discharge is also shown in figure 13.For example,if the input current is 700 A,the plasma densities are 1.45×1020m-3,4.09×1019m-3,and 8.56×1018m-3for discharges ofB=0.1 T,B=0.01 T,and an ICP,respectively.The plasma densities are 16.94 and 4.78 times higher than that of the ICP.However,it should be noted that if the discharge does not converted to the W mode,the density may be smaller than in the case without a magnetic field.The effect of the magnetic field also agrees with experimental results[28].

    5.Conclusions

    In this paper,a multi-component,two-dimensional,axisymmetric fluid model coupled with an electromagnetic field was developed to model helicon discharges.This model includes the motions of electrons,ions,and atoms and the interactions with the electrostatic field and the electromagnetic field.Discharges were simulated at different input currents and for different background magnetic fields.The unique phenomenon characteristic of helicon plasma sources can be seen in the simulation results,which verifies that this model is an effective tool for the study of helicon discharges.

    First,the input current is set to 700 A and the magnetic field is set to 0.1 T.With continuous ionization,the waves are able to penetrate the plasma after the plasma density reaches the MCS.As a result,the electromagnetic field is able to heat the plasma core,the deposited power increases dramatically,and inflection points and temperature peaks appear.

    The input current is then changed while keeping the magnetic field constant.The results show that the plasma density and the ionization rate decrease with the input current and the moment when the discharge mode converts is postponed.

    Finally,the discharge is simulated at 0 T,0.01 T,and 0.1 T with a series of input currents.It is found that the discharge mode conversion is always accompanied by a plasma density jump and a temperature peak.Therefore,the density jump can be used a sign which indicates the conversion of the discharge mode.In addition,the magnetic field strongly enhances the discharge,and the plasma density is an order of magnitude higher than that in an ICP.However,the plasma density may be smaller if the discharge has not entered the wave mode.

    Acknowledgments

    This work is supported by the Shaanxi Key Laboratory of Plasma Physics and Applied Technology.

    ORCID iDs

    猜你喜歡
    魏建國(guó)
    ESR-PINNs: Physics-informed neural networks with expansion-shrinkage resampling selection strategies
    “未來(lái)5年,中國(guó)將領(lǐng)跑全球高品質(zhì)消費(fèi)”
    Study of double-chamber air arc plasma torch and the application in solid-waste disposal
    只有中國(guó)能提供消費(fèi)大市場(chǎng)以及完整的供應(yīng)鏈”
    男子堅(jiān)守小站三十三年 陪伴母親“守著”父親
    華聲文萃(2019年11期)2019-09-10 07:22:44
    男子堅(jiān)守小站33年 陪伴母親“守著”父親
    魏建國(guó)作品
    免费av毛片视频| 亚洲精品影视一区二区三区av| 我的女老师完整版在线观看| 国产极品天堂在线| 欧美区成人在线视频| 日韩一区二区视频免费看| 免费黄网站久久成人精品| 日本一二三区视频观看| 搡老妇女老女人老熟妇| 久久久久久国产a免费观看| 日韩不卡一区二区三区视频在线| 欧美三级亚洲精品| 亚洲色图av天堂| 日韩视频在线欧美| 免费看日本二区| 亚洲国产精品成人久久小说| 国语对白做爰xxxⅹ性视频网站| 嫩草影院入口| 日韩av在线大香蕉| 免费av毛片视频| 欧美日韩在线观看h| 免费高清在线观看视频在线观看| 中文欧美无线码| 精品国产一区二区三区久久久樱花 | 大陆偷拍与自拍| 免费少妇av软件| 免费黄网站久久成人精品| 超碰97精品在线观看| 三级国产精品片| 国产精品伦人一区二区| 最近的中文字幕免费完整| 好男人在线观看高清免费视频| 女人十人毛片免费观看3o分钟| 丝袜美腿在线中文| 国产成人91sexporn| 婷婷色综合www| 一级毛片 在线播放| 国产高潮美女av| 天天一区二区日本电影三级| 少妇的逼水好多| 日韩视频在线欧美| 天堂av国产一区二区熟女人妻| 99久久精品一区二区三区| 成人欧美大片| 丝袜喷水一区| 久久久a久久爽久久v久久| 久久99热6这里只有精品| 非洲黑人性xxxx精品又粗又长| 午夜免费激情av| 午夜福利视频精品| 久久精品久久精品一区二区三区| 在线观看美女被高潮喷水网站| 免费电影在线观看免费观看| 免费播放大片免费观看视频在线观看| 久久精品国产自在天天线| 亚洲欧美精品专区久久| 精品一区二区三区人妻视频| 国产老妇女一区| 国产一级毛片七仙女欲春2| 欧美日韩在线观看h| 美女国产视频在线观看| 日本猛色少妇xxxxx猛交久久| 色综合亚洲欧美另类图片| 国产亚洲午夜精品一区二区久久 | 国产国拍精品亚洲av在线观看| 一级毛片黄色毛片免费观看视频| 观看免费一级毛片| 亚洲内射少妇av| 久久久久久久久久人人人人人人| 久久久久网色| 精品一区二区三区人妻视频| 精品少妇黑人巨大在线播放| av专区在线播放| 午夜免费观看性视频| 波多野结衣巨乳人妻| 三级经典国产精品| 波野结衣二区三区在线| 成人亚洲精品一区在线观看 | av免费观看日本| 国产一区二区三区av在线| 91aial.com中文字幕在线观看| 久久99蜜桃精品久久| 亚洲成人精品中文字幕电影| 亚洲精品,欧美精品| 亚洲精品日韩在线中文字幕| 男女边摸边吃奶| freevideosex欧美| 男人舔奶头视频| 亚洲欧美一区二区三区黑人 | 中文乱码字字幕精品一区二区三区 | 午夜老司机福利剧场| 99九九线精品视频在线观看视频| 国产视频首页在线观看| 精品久久国产蜜桃| 亚洲国产欧美人成| 欧美精品国产亚洲| 婷婷六月久久综合丁香| 亚洲欧美成人综合另类久久久| www.色视频.com| 国产国拍精品亚洲av在线观看| 亚洲国产欧美在线一区| 最新中文字幕久久久久| 久久精品国产自在天天线| 中文欧美无线码| 国产黄频视频在线观看| 亚洲自偷自拍三级| 亚洲精品乱久久久久久| 亚洲精品成人久久久久久| 91午夜精品亚洲一区二区三区| 插逼视频在线观看| 高清视频免费观看一区二区 | 色吧在线观看| 亚洲美女视频黄频| 日韩中字成人| 日韩伦理黄色片| 97人妻精品一区二区三区麻豆| 亚洲欧美日韩无卡精品| 日韩欧美精品v在线| 男女啪啪激烈高潮av片| 91久久精品电影网| av网站免费在线观看视频 | 男人舔奶头视频| 三级国产精品欧美在线观看| av在线蜜桃| 午夜福利网站1000一区二区三区| 国产免费福利视频在线观看| 1000部很黄的大片| 久久久亚洲精品成人影院| 男的添女的下面高潮视频| 国产精品国产三级专区第一集| 天天躁夜夜躁狠狠久久av| 日韩欧美精品v在线| 国产精品无大码| 五月伊人婷婷丁香| 少妇丰满av| 精品久久久久久久久亚洲| 久久久久久伊人网av| 精品午夜福利在线看| 国产国拍精品亚洲av在线观看| 亚洲内射少妇av| 亚洲精品国产成人久久av| 少妇裸体淫交视频免费看高清| 少妇高潮的动态图| 一个人看的www免费观看视频| 看十八女毛片水多多多| 国产毛片a区久久久久| 美女脱内裤让男人舔精品视频| 人体艺术视频欧美日本| 欧美精品一区二区大全| 国产黄色免费在线视频| 黄片wwwwww| 亚洲美女视频黄频| 99热网站在线观看| 高清日韩中文字幕在线| 我的女老师完整版在线观看| 国产一区二区亚洲精品在线观看| 一个人免费在线观看电影| 欧美性猛交╳xxx乱大交人| 精华霜和精华液先用哪个| 欧美精品一区二区大全| 两个人的视频大全免费| 久久久久久久久中文| 成人午夜精彩视频在线观看| 欧美 日韩 精品 国产| 亚洲人成网站在线播| 精品亚洲乱码少妇综合久久| 久热久热在线精品观看| 美女高潮的动态| 少妇熟女欧美另类| 欧美丝袜亚洲另类| 99热6这里只有精品| 午夜免费激情av| 美女cb高潮喷水在线观看| 精品久久久久久久末码| 亚洲av一区综合| 欧美一区二区亚洲| 天美传媒精品一区二区| 18禁在线播放成人免费| 欧美一区二区亚洲| 青春草亚洲视频在线观看| 一级毛片 在线播放| 精品国产三级普通话版| 免费看a级黄色片| 免费高清在线观看视频在线观看| 日日啪夜夜撸| 蜜臀久久99精品久久宅男| 国产亚洲5aaaaa淫片| 欧美日韩综合久久久久久| 国产白丝娇喘喷水9色精品| 欧美最新免费一区二区三区| 大陆偷拍与自拍| 国产高清不卡午夜福利| 国产av码专区亚洲av| 国产av码专区亚洲av| 成人毛片60女人毛片免费| 日韩av在线免费看完整版不卡| 亚洲成人中文字幕在线播放| 高清日韩中文字幕在线| 欧美精品国产亚洲| 国产av国产精品国产| 国产在视频线精品| 能在线免费观看的黄片| 99热这里只有精品一区| 日本熟妇午夜| 22中文网久久字幕| 午夜福利网站1000一区二区三区| 天天躁夜夜躁狠狠久久av| av免费观看日本| 久久精品综合一区二区三区| 久久人人爽人人爽人人片va| 乱人视频在线观看| 成人无遮挡网站| 精品欧美国产一区二区三| 人妻少妇偷人精品九色| 久久久久性生活片| 亚洲av在线观看美女高潮| 老师上课跳d突然被开到最大视频| 免费观看精品视频网站| 岛国毛片在线播放| 黄色日韩在线| 一区二区三区高清视频在线| 永久免费av网站大全| 国产精品人妻久久久影院| 美女黄网站色视频| 国产精品一区二区三区四区久久| 亚洲内射少妇av| 丝袜美腿在线中文| 日日摸夜夜添夜夜爱| 丰满少妇做爰视频| 麻豆av噜噜一区二区三区| 一级爰片在线观看| 伊人久久精品亚洲午夜| 国内精品美女久久久久久| 自拍偷自拍亚洲精品老妇| 七月丁香在线播放| 国产综合精华液| 中文乱码字字幕精品一区二区三区 | 性插视频无遮挡在线免费观看| 2022亚洲国产成人精品| 亚洲经典国产精华液单| 国产爱豆传媒在线观看| 久久精品夜夜夜夜夜久久蜜豆| 97在线视频观看| 亚洲国产最新在线播放| 亚洲一区高清亚洲精品| 亚洲天堂国产精品一区在线| 十八禁网站网址无遮挡 | 欧美日本视频| 亚洲天堂国产精品一区在线| 国产大屁股一区二区在线视频| 天堂影院成人在线观看| 国产亚洲精品av在线| 日本免费在线观看一区| 边亲边吃奶的免费视频| 亚洲成人中文字幕在线播放| 欧美另类一区| av在线天堂中文字幕| 日本欧美国产在线视频| 欧美丝袜亚洲另类| 真实男女啪啪啪动态图| 日本熟妇午夜| 自拍偷自拍亚洲精品老妇| 国产成人精品婷婷| 免费观看无遮挡的男女| 三级毛片av免费| 老女人水多毛片| 一个人看视频在线观看www免费| 国产女主播在线喷水免费视频网站 | 亚洲国产高清在线一区二区三| 日本与韩国留学比较| 日本猛色少妇xxxxx猛交久久| 在线观看免费高清a一片| 久久精品国产亚洲网站| 丝袜喷水一区| 国产成人freesex在线| 永久免费av网站大全| 少妇丰满av| 在线观看美女被高潮喷水网站| 五月天丁香电影| 天堂影院成人在线观看| 亚洲欧美日韩东京热| 日本与韩国留学比较| 亚洲18禁久久av| 男女视频在线观看网站免费| 91精品国产九色| 成人午夜精彩视频在线观看| 亚洲国产高清在线一区二区三| 男女下面进入的视频免费午夜| 一级a做视频免费观看| 亚洲国产最新在线播放| 欧美丝袜亚洲另类| 秋霞伦理黄片| 国产成人精品久久久久久| 亚洲怡红院男人天堂| 69人妻影院| 最近的中文字幕免费完整| 伦精品一区二区三区| 国产精品福利在线免费观看| 免费av毛片视频| 丝袜美腿在线中文| 三级国产精品片| 可以在线观看毛片的网站| 精品国产一区二区三区久久久樱花 | 国产伦精品一区二区三区四那| 国产av码专区亚洲av| 在线观看一区二区三区| 日本爱情动作片www.在线观看| 最近的中文字幕免费完整| 99热这里只有是精品50| 天天一区二区日本电影三级| 日本与韩国留学比较| 国产av不卡久久| 韩国av在线不卡| 免费av不卡在线播放| 国产精品爽爽va在线观看网站| 成年版毛片免费区| 国产毛片a区久久久久| 亚洲精品成人久久久久久| 免费观看av网站的网址| 高清日韩中文字幕在线| 午夜福利视频精品| 狠狠精品人妻久久久久久综合| 日韩国内少妇激情av| 日产精品乱码卡一卡2卡三| 日本wwww免费看| 人人妻人人澡人人爽人人夜夜 | 爱豆传媒免费全集在线观看| 国产亚洲91精品色在线| 22中文网久久字幕| 久久精品人妻少妇| av一本久久久久| 韩国av在线不卡| 久久久精品免费免费高清| 欧美日韩综合久久久久久| 亚洲国产av新网站| 日日干狠狠操夜夜爽| 免费在线观看成人毛片| 日韩一区二区视频免费看| 十八禁网站网址无遮挡 | 国产黄片美女视频| 国产不卡一卡二| 欧美另类一区| 男人爽女人下面视频在线观看| 久久久a久久爽久久v久久| 少妇高潮的动态图| 久久久久精品久久久久真实原创| 91在线精品国自产拍蜜月| 久久草成人影院| 最近最新中文字幕大全电影3| 成人亚洲欧美一区二区av| 欧美日韩精品成人综合77777| 少妇裸体淫交视频免费看高清| 啦啦啦啦在线视频资源| 亚洲最大成人中文| 2021天堂中文幕一二区在线观| 男人舔奶头视频| 嫩草影院精品99| 天天躁日日操中文字幕| 极品教师在线视频| 免费大片黄手机在线观看| 久久精品夜夜夜夜夜久久蜜豆| 国产精品女同一区二区软件| 日本欧美国产在线视频| 欧美97在线视频| av在线蜜桃| 国产高清国产精品国产三级 | 亚洲欧美一区二区三区黑人 | 免费黄网站久久成人精品| 国产成人a区在线观看| 国产精品久久久久久久电影| 美女大奶头视频| 日日干狠狠操夜夜爽| 免费黄网站久久成人精品| 女人久久www免费人成看片| 午夜福利在线在线| 成人特级av手机在线观看| 啦啦啦啦在线视频资源| h日本视频在线播放| 美女国产视频在线观看| 亚洲四区av| 日本免费a在线| 别揉我奶头 嗯啊视频| 国产成人精品久久久久久| 色哟哟·www| 欧美3d第一页| 亚洲经典国产精华液单| 日韩欧美三级三区| 国产老妇伦熟女老妇高清| 波多野结衣巨乳人妻| 日本色播在线视频| 一区二区三区免费毛片| 中文在线观看免费www的网站| 麻豆久久精品国产亚洲av| 一级毛片电影观看| 特大巨黑吊av在线直播| h日本视频在线播放| 国产亚洲91精品色在线| 人妻系列 视频| 国产伦在线观看视频一区| 日韩精品有码人妻一区| av国产久精品久网站免费入址| 日韩视频在线欧美| 久久久亚洲精品成人影院| 舔av片在线| 女的被弄到高潮叫床怎么办| 美女脱内裤让男人舔精品视频| 国产精品日韩av在线免费观看| 97精品久久久久久久久久精品| 在线天堂最新版资源| 噜噜噜噜噜久久久久久91| 成人鲁丝片一二三区免费| 岛国毛片在线播放| 亚洲自偷自拍三级| 三级毛片av免费| 大香蕉久久网| 我的女老师完整版在线观看| 国产片特级美女逼逼视频| 中文资源天堂在线| 久久精品久久久久久噜噜老黄| 国模一区二区三区四区视频| 如何舔出高潮| 熟女电影av网| 九色成人免费人妻av| 色视频www国产| 国产高清不卡午夜福利| 麻豆国产97在线/欧美| 美女高潮的动态| 三级男女做爰猛烈吃奶摸视频| 一级片'在线观看视频| 国产69精品久久久久777片| 不卡视频在线观看欧美| 免费av毛片视频| 日韩av在线大香蕉| 大又大粗又爽又黄少妇毛片口| 中文资源天堂在线| 日本午夜av视频| 丰满少妇做爰视频| 亚洲人成网站在线观看播放| 黄片无遮挡物在线观看| 一区二区三区四区激情视频| 老女人水多毛片| 精品久久久久久久久亚洲| 久久久色成人| 免费看光身美女| 国产成年人精品一区二区| 少妇熟女欧美另类| 国产伦理片在线播放av一区| 亚洲怡红院男人天堂| 国产在视频线精品| 欧美高清成人免费视频www| 欧美bdsm另类| 一本一本综合久久| 精品少妇黑人巨大在线播放| 中文精品一卡2卡3卡4更新| 国产精品伦人一区二区| 亚洲国产高清在线一区二区三| 久久久久久国产a免费观看| 精品99又大又爽又粗少妇毛片| 人妻夜夜爽99麻豆av| 亚洲精品色激情综合| 免费观看无遮挡的男女| 十八禁国产超污无遮挡网站| 亚洲精品,欧美精品| 日本一二三区视频观看| 国产伦一二天堂av在线观看| 亚洲一级一片aⅴ在线观看| 99热6这里只有精品| 三级男女做爰猛烈吃奶摸视频| or卡值多少钱| 中文在线观看免费www的网站| 国产av在哪里看| 高清欧美精品videossex| 亚洲欧美成人精品一区二区| 看非洲黑人一级黄片| 国产淫片久久久久久久久| 色综合色国产| 国国产精品蜜臀av免费| 亚洲图色成人| 亚洲精品,欧美精品| 亚洲综合精品二区| 日日摸夜夜添夜夜添av毛片| 五月玫瑰六月丁香| 午夜福利成人在线免费观看| 久久久亚洲精品成人影院| videossex国产| 欧美+日韩+精品| 国产精品久久久久久精品电影| 成年免费大片在线观看| 免费观看在线日韩| 91久久精品国产一区二区三区| 日韩欧美国产在线观看| 日本与韩国留学比较| 老司机影院成人| 夜夜看夜夜爽夜夜摸| 青青草视频在线视频观看| 免费观看精品视频网站| 草草在线视频免费看| 免费黄色在线免费观看| 肉色欧美久久久久久久蜜桃 | 国产精品一区二区三区四区久久| 干丝袜人妻中文字幕| 边亲边吃奶的免费视频| 舔av片在线| 国产淫语在线视频| 久久久久久伊人网av| 女人被狂操c到高潮| 亚洲精品乱码久久久久久按摩| 久久久久九九精品影院| 看免费成人av毛片| 久久久久久国产a免费观看| 午夜久久久久精精品| 亚洲成人精品中文字幕电影| av女优亚洲男人天堂| 国产av码专区亚洲av| 亚洲av一区综合| 久久久久久久久中文| 亚洲国产欧美在线一区| 99久久人妻综合| av国产免费在线观看| 99热6这里只有精品| 身体一侧抽搐| 最后的刺客免费高清国语| 国产伦在线观看视频一区| 色综合站精品国产| av在线老鸭窝| 亚洲精品乱码久久久久久按摩| 国模一区二区三区四区视频| 国产一区二区三区综合在线观看 | 日韩人妻高清精品专区| 婷婷色综合www| 网址你懂的国产日韩在线| 国产综合精华液| 久久亚洲国产成人精品v| 久久久成人免费电影| 久久久久久久国产电影| 亚洲乱码一区二区免费版| 禁无遮挡网站| 尾随美女入室| 男女国产视频网站| 午夜福利网站1000一区二区三区| 亚洲欧美清纯卡通| 最近中文字幕2019免费版| 国产精品久久久久久av不卡| 国产白丝娇喘喷水9色精品| 日日干狠狠操夜夜爽| 麻豆成人av视频| 国产精品女同一区二区软件| 尾随美女入室| 天堂√8在线中文| 国产日韩欧美在线精品| 亚洲国产av新网站| 九九爱精品视频在线观看| 亚洲成人中文字幕在线播放| 欧美3d第一页| 精品人妻视频免费看| 成人二区视频| 国内少妇人妻偷人精品xxx网站| 国产免费视频播放在线视频 | 97超视频在线观看视频| 亚洲精品乱码久久久v下载方式| 男人舔女人下体高潮全视频| 亚洲精品国产av蜜桃| 26uuu在线亚洲综合色| 女人被狂操c到高潮| 免费看a级黄色片| 麻豆精品久久久久久蜜桃| 日韩av在线免费看完整版不卡| 水蜜桃什么品种好| 91久久精品电影网| 午夜精品在线福利| 寂寞人妻少妇视频99o| 婷婷色综合www| 精品不卡国产一区二区三区| 美女内射精品一级片tv| www.av在线官网国产| av在线播放精品| 最近最新中文字幕大全电影3| 日本wwww免费看| 色尼玛亚洲综合影院| 91av网一区二区| 精品一区二区三区视频在线| 日本-黄色视频高清免费观看| 高清欧美精品videossex| 你懂的网址亚洲精品在线观看| 丰满少妇做爰视频| 欧美日韩综合久久久久久| 午夜老司机福利剧场| 人体艺术视频欧美日本| 最后的刺客免费高清国语| 人体艺术视频欧美日本| 国语对白做爰xxxⅹ性视频网站| 九九在线视频观看精品| 男插女下体视频免费在线播放| 欧美三级亚洲精品| 久久国内精品自在自线图片| 大话2 男鬼变身卡| 好男人在线观看高清免费视频| 麻豆久久精品国产亚洲av| 亚洲国产精品成人久久小说| 国内少妇人妻偷人精品xxx网站| 亚洲国产欧美人成| 国产激情偷乱视频一区二区| 国国产精品蜜臀av免费| 中文字幕av在线有码专区| 国产精品女同一区二区软件| 欧美激情国产日韩精品一区| 国产高清有码在线观看视频| 国内精品一区二区在线观看| 毛片一级片免费看久久久久| 国产黄片美女视频| 一本久久精品| 国内精品美女久久久久久| 能在线免费观看的黄片| 亚洲精品乱码久久久久久按摩| 天堂俺去俺来也www色官网 |