• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Simulation of a helicon plasma source in a magnetoplasma rocket engine

    2022-08-01 11:33:50ZhenyuYANG楊振宇WeiFAN范威JianguoWEI魏建國(guó)andXianweiHAN韓先偉
    Plasma Science and Technology 2022年7期
    關(guān)鍵詞:魏建國(guó)

    Zhenyu YANG(楊振宇),Wei FAN(范威),Jianguo WEI(魏建國(guó))and Xianwei HAN(韓先偉)

    Shaanxi Key Laboratory of Plasma Physics and Applied Technology,Xi’an 710100,People’s Republic of China

    Abstract The helicon plasma source,which generates high thrust and high impulse,is of vital importance for magnetoplasma rocket engines.In this work,a multi-component,two-dimensional,axisymmetric fluid model coupled with an electromagnetic field was developed to model the helicon discharge.The simulation results demonstrate that:(i)the discharge mode changes twice—each conversion is accompanied by a plasma density jump and an electron temperature peak in the discharge;(ii)when the input current increases,the plasma density increases,and ionization occurs faster;(iii)the background magnetic field clearly enhances the discharge;(iv)the plasma density may be smaller if the discharge has not entered the wave mode.

    Keywords:space propulsion,MPRE,helicon plasma source,discharge mode conversion

    1.Introduction

    Unlike other radio-frequency(RF)plasma sources,helicon plasma sources depend on the excitation of bounded whistle waves to generate high-density plasmas at low pressures and RF powers[1].Due to the effective absorption of RF power,the plasma density in a helicon source is as much as an order of magnitude higher than that in other plasma generators at a given power.Because of this advantage,helicon sources are widely used in semiconductor processing and space propulsion[2–4].

    The magnetoplasma rocket engine(MPRE)originates from the concept of the variable specific impulse magnetoplasma engine(VASIMR),which is a type of electromagnetic thruster.The MPRE consists of three stages,which are shown in figure 1.The helicon source is the first stage,where the working medium is ionized;the second stage uses ion cyclotron resonance heating(ICRH)to heat the ions by hundreds of eV using RF waves;and the third stage is a magnetic nozzle,where the heated plasma naturally accelerates in the expanding magnetic field and leaves the device,producing thrust[5].As a result of the use of these techniques,MPRE has the characteristics of high thrust,high specific impulse,and high efficiency and can be used in deep space exploration and other missions[6].According to the operating principles of the MPRE,the helicon plasma source is the chamber where a high-density plasma is created,so it is the basis of the thrust generated by the MPRE.

    Ever since Boswell first reported the high densities produced by helicon discharges in 1970[7],helicon plasma sources have been extensively studied,both experimentally and theoretically.Research mainly focused on the confirmation of the wave mode excited in the plasma and the mechanism responsible for the high power absorption efficiency.At first,Landau damping was thought to be the mechanism of power absorption,as proposed by F F Chen[8].However,subsequent experiments showed that Landau-accelerated electrons are too sparse to explain the ionization efficiency and the Landau damping hypothesis was ruled out by F F Chen and D D Blackwell[9,10].There are two wave branches in the solution of the helicon dispersion relation[11]:one is the helicon wave and the other is called the Trivelpiece–Gould wave(TG wave)[12].Research showed that the power absorption can be more appropriately explained by the strong damping of the TG wave[13–16].Another unique phenomenon in helicon discharges is that the plasma density jumps at a certain power,accompanied by a change of discharge mode[17,18].F F Chen thought this was due to the nonmonotonic variation of the plasma impedance[19],while S H Kin used the concept of the mode conversion surface(MCS)to explain the mode conversion[20].In the field of helicon discharge simulation,D Arnush studied the coupling of helicon waves and TG waves using the HELIC software[21],and X Yang analyzed the phenomenon of the density peak in the weak magnetic field using the COMSOL software[22].

    The characteristics of helicon discharge in MPRE determine the plasma flux,which is of vital importance to the thrust and specific impulse.Analyses of the physical processes of helicon discharge are instructive for MPRE development.However,it is impossible to make direct measurements of the plasma and electromagnetic field in the discharge chamber due to the limitation of the engine structure.Therefore,numerical simulation has become an effective method for studying helicon discharges.

    In this work,a multi-component,two-dimensional,axisymmetric fluid model coupled with an electromagnetic field was developed to simulate the helicon discharge.The simulation was performed using different input currents and background magnetic fields to analyze the process of discharge mode conversion and the density jump.This paper is organized as follows:in section 2,the governing equations of the model are given;the simulation model setup is described in section 3;in section 4,the results are presented and discussed;and in section 5,this study is concluded.

    2.Governing equations

    The simulation model includes the motions of electrons,ions,and atoms and the interactions of the electrostatic field and the electromagnetic field.In this section,we discuss the governing equations of the electromagnetic field,electrons,ions,neutral atoms,and the electrostatic field in the cylindrical coordinate system(r,θ,z).

    2.1.Electromagnetic field

    The electromagnetic field is obtained through the solution of the Maxwell equations(1),(2)together with current equation(3).

    where the subscript rf refers to the fields which are excited by the RF input;H is the magnetic field intensity;B is the magnetic induction intensity;E is the electric field;D is the electric displacement;J is the plasma current density;e,ne,andmeare the elementary charge,the electron density,and the electron mass,respectively;νenis the collision frequency between electrons and neutral atoms;and B0is the background magnetic field along thezaxis.In magnetized plasma,the solutions of equations(1)–(3)are divided into two independent branches:the transverse magnetic(TM)mode and the transverse electric(TE)mode,the equations of which are shown in(4)and(5).

    where the subscript rf is omitted for simplicity.After the electric field and the current density field have been obtained,the power density deposited in the plasma is calculated using equation(6).

    2.2.Electrons

    The drift–diffusion hypothesis is used to describe the electron motion[23].Equation(7)is the continuity equation and equation(8)is the energy equation.

    where Γeis the electron flux;nnis the number density of neutral atoms;KionandKexcare the ionization rate and the excitation rate,respectively;Teis the electron temperature;qeis the energy flux,εionand εexcare the threshold energies of ionization and excitation,respectively;and Esis the electrostatic field.The electron flux and energy flux are given by the following equations.

    in which μeis the electron mobility,Deis the diffusion coefficient,μe=e/meνen,andDe=kBTe/meνen.In this model,the ionization and excitation collisions of electrons are considered,and the reaction rate is calculated usingKj=vthσj,wherevthand σjare the thermal velocity of electrons and the collision section of different kinds of collision,j.In addition,νen=vthσeffnn,where σeffis the effective collision section between electrons and atoms.In the MPRE,with a working medium of Ar,the collision sections obtained from Morgan’s database are weighted by a Maxwell distribution and the reaction rates of different electron temperatures are shown in figure 2.In the simulation,σeffis set to 1.0×10-19m-2[22],andKionandKexcare set according to the local electron temperature.

    2.3.Heavy particles

    The ionic model consists of the continuity equation,the momentum equation,and the energy equation,as shown below:

    whereni,mi,vi,andTiare the ionic density,mass,drift velocity,and temperature,respectively.Here,it is assumed that the ionization only generates Ar+,and ion collisions are neglected.

    As a result of the low pressure in the discharge chamber and the low temperature of the atoms,the atomic temperature of the model is assumed to be constant and the viscosity is omitted.Therefore,the atomic model only includes the continuity equation(14)and the momentum equation(15).

    Here,mn,vn,andTnare the atomic mass,velocity,and temperature,respectively.

    2.4.Electrostatic field

    The semi-implicit Poisson equation is solved to obtain the electrostatic field[23].

    whereVis the potential,and Δtis the time step.In this equation,in contrast to the Poisson equation,the divergence of the charged particle flux is added to predict the potential of the next step,which has proven effective when the time step size is increased.The electric field is the negative gradient of the potential Es=-?V.

    3.Simulation model setup

    The numerical methods and the initialization of the computation model are introduced in this section.

    3.1.Numerical methods

    The alternating direction implicit finite difference time domain(ADI-FDTD)method is adopted to solve equations(3)–(5),in which the update of the electromagnetic field per time step is divided into two separate steps and the implicit direction is alternated[24].In ADI-FDTD,the time step can break through the limitation of the Courant–Friedrichs–Lewy(CFL)condition and thereby reduce the computational cost.The space discretizations of the TM mode and the TE mode are shown in figure 3,in which the components of the current density are all placed at grid points.In the time direction,discretization is implicitly performed in thezdirection in first half-step and subsequently in therdirection.

    The electron density and temperature are discretized by the central difference,and a staggered grid is adopted,as shown in figure 4.Equations(7)and(8)are time integrated by the implicit scheme.

    The equations of the heavy particles are solved by the fluxcorrected transport(FCT)algorithm[25],which has been proven to be an accurate and easy-to-use algorithm for the solution of nonlinear and time-dependent continuity equations of the type occurring in fluid dynamics,plasma dynamics,and magneto hydrodynamics.The time integration is completed with a splitstep approach,in which the integrations of thezandrdirections are alternated.The details of the FCT algorithm and the test code can be seen in[25].The Poisson equation(16)is solved by the five-point difference scheme.

    3.2.Initialization

    Figure 5 shows the computational domain.The whole domain is an axisymmetric cylinder with a radius ofrendand a length ofzend-zstart.The plasma is in a cylindrical chamber whose radius isrpand whose length iszp2-zp1;outside the plasma is vacuum.The helicon discharge antenna is a single ring which is placed at(zc1,rc1),and the ICRH antenna is placed at(zc2,rc2).The input current density is calculated using equation(17).The ICRH is beyond the scope of this work,but will be discussed in the future.

    Figure 1.Schematic of MPRE.

    Figure 2.Reaction rates of different electron temperatures:(a)ionization,(b)excitation.

    Figure 3.The space discretization of the electromagnetic field:(a)TM mode,(b)TE mode.

    Figure 4.The space discretization of the electron equations.

    Figure 5.Schematic of the computational domain.

    where Δzand Δrare the grid sizes in thezandrdirections,respectively,andfrfis the input frequency,which is set to 13.56 MHz.The geometric parameters are shown in table 1.

    For the electromagnetic field,the MUR condition[26]is adopted atrend,while the perfect conductor condition is adopted atzstartandzend.A Dirichlet boundary is adopted at the wall for the electron density,and a Neumann boundary is adopted for the electron temperature.The boundary condition given in equation(18)is adopted for the heavy particles.The potential at the boundary is set to zero.A symmetric boundary is adopted for all variables at the axis.

    Table 1.Geometric parameters of the simulation model.

    Figure 6 shows the profile of the background magnetic field,with the single-loop helicon antenna merged in a uniform magnetic field and a magnetic induction intensity of 0.1 T.At the initial moment,ne=ni=1.0×1016m-3,Te=2 eV,Ti=Tn=300 K,and the atomic density is set according to the discharge pressure.The program is coded in Fortran,the numerical data is stored for every RF cycle,and the computation time is set to 1000 RF cycles.

    4.Results and discussion

    4.1.Discharge mode conversion

    Figure 7 shows that there are three distinct modes of operation in the helicon discharge:the capacitive mode(E mode),the inductive mode(H mode),and the wave mode(W mode).The W mode can be divided into several modes of different orders,known as W1,W2,W3….The discharge undergoes conversions from E to H and from H to W1,and the conversions to the higher-order wave modes are accompanied by plasma density jumps.In the simulation,there is no capacitive mode,since the wall voltage is set to 0 V;as a result,only the H mode and the wave modes of different orders appear in the discharge process.

    First,the background pressure is set to 1.24 Pa,and the input current is 700 A.Figure 8 shows the maximum electron density and electron temperature during the discharge.It can be seen that the electron density gradually increases under the influence of the RF input and reaches 1.45×1020m-3,which is much larger than the typical values for other kinds of plasma source.In addition,the electron temperature is about 3 eV,which is consistent with the general situation in cold plasma.Second,figure 8(a)shows that there are two obvious inflection points in the electron density profile,where the electron density increases dramatically and the magnitude jumps to a higher order in a few RF cycles at the inflection points.It can be inferred that the first inflection point corresponds to the moment when the discharge mode converts from H to W1and the second occurs at the time of the conversion from W1to W2.Figure 8(b)shows that each conversion corresponds to an electron temperature peak,and the ionization rate also increases significantly with electron temperature,causing a sudden increase in density.

    In the study of helicon discharges,the deposited wave power is the main research interest.Figure 9 shows the distribution of deposited power density in the plasma at different moments,whereTis the number of RF cycles in the simulation.At the 20th cycle,with the discharge in H mode,the deposited power is concentrated at a point close to the antenna and is similar to that of an inductively coupled plasma(ICP).At the 32nd cycle,with the discharge in the W1mode,the deposited power is concentrated in a thin layer near the periphery.In figure 9(c),the deposited power appears to detach from the periphery,and it gradually moves inward in figure 9(d).At the 47th cycle,the deposited power is mainly concentrated near the axis and the magnitude reaches 108W m-3.The penetration of the deposited power during mode conversion makes the electron temperature increase dramatically;the ionization rate then increases,and the plasma density jumps to a higher order of magnitude.

    Figure 6.The profile of the background magnetic field along the axis.

    Figure 7.Mode conversion of the helicon discharge[27].

    The concept of the MCS can explain the jump in the deposited power during mode conversion[20].There are two wave branches in the solution of the helicon dispersion relation:one is the helicon wave and the other is the TG wave.The helicon wave is fast and weakly damped while the TG wave is slow and strongly damped.Thus,the helicon wave can enter the plasma column and heat the plasma core,but the TG wave is concentrated in a thin layer near the plasma edge,and the wave energy is deposited in this layer,which can be seen in figure 9(b).When the plasma density is low,these two branches are separated from each other.When the plasma density increases to the MCS,these two kinds of wave couple with each other,which means the wave can penetrate the plasma and be strongly damped,so the deposited power penetrates the plasma core,as shown in figures 9(c)–(d).In figure 9(e),the waves are able to heat the plasma core,causing the electron temperature to peak.

    To show the conversion of the electromagnetic wave,the electric field amplitudes of three components in therdirection atz=zc1are shown in figure 10;the results are processed using spline interpolation.The figure indicates thatEzis basically zero at three moments,Eθchanges a little,reaching a maximum at the plasma edge and becoming zero at the axis,and it is the change ofErthat causes the mode conversion.At the 20th cycle,Eris almost 0,onlyEθis present in the plasma column,and the external magnetic field has little influence on the electromagnetic field structure,which is basically same as that of an ICP.In figure 10(b),Eroscillates strongly near the edge and decays to zero at one or two wavelengths,matching the characteristics of a TG wave[13],and the TG wave plays the major role in the W1mode.WhenT=43,multiple wave nodes and antinodes are present in the radial direction,which implies that the wave number becomes smaller and the wave becomes faster.In addition,the amplitude increases by an order of magnitude.These two features confirm that the wave has penetrated the plasma,and that helicon wave heating accounts for the main part of the deposited power in the W2mode.In figure 10(d),Erreaches its maximum near the axis,and the electromagnetic field is able to heat the plasma core.

    4.2.Discharges at different input currents

    Keeping the other input parameters unchanged,the input current was set to 300 A,500 A,700 A,and 900 A.Figure 11 shows the maximum electron density during discharges at different input currents.In general,the plasma density increases with the input current.When the input current increases from 300 to 900 A,the density increases from 3.09×1019to 1.72×1020m-3,which can meet the requirement for the engine to generate high thrust.

    Figure 12 shows the evolution of the maximum electron density and the temperature during discharges at input currents of 300 A and 700 A.The figure shows that the plasma evolutions are similar during discharges at different input currents.There are two obvious inflection points in the density profile and two peaks in the temperature profile,corresponding to the inflection points in the profiles at different input currents.However,the discharge is much slower with an input current of 300 A.When the input current is 700 A,the discharge mode converts from H to W1at about the 30th RF cycle and converts from W1to W2at about the 45th RF cycle.When the input current is 300 A,there is a long process of electron multiplication;the discharge mode does not change until the 300th RF cycle,and it converts to the W2mode at about the 500th RF cycle.In addition,the temperature peaks are also smaller.

    Figure 8.Maximum electron density and electron temperature during discharge:(a)maximum electron density,(b)maximum electron temperature.

    Figure 9.Distribution of deposited power density at different moments.(a) T=20,(b) T=32,(c) T=43,(d) T=44,and(e) T=47.

    It is worth noting that the electron density is basically the same when the mode converts,even at different input currents.The discharge mode first converts when the density is about 2×1016m-3and it converts for the second time when the density is about(2–3)×1018m-3.If the background magnetic field of the helicon discharge remains constant,the plasma density at the MCS remains unchanged.The power deposited in the plasma increases with the input current,so the ionization rate of Ar also becomes larger,which means that the plasma can reach the MCS earlier.This is why the discharge mode converts earlier for a higher input current.

    4.3.Discharges in different magnetic fields

    We discuss the results of using different magnetic fields with a series of input currents by taking magnetic field values of 0.01 T and 0 T(ICP).The electron densities for different magnetic fields and input currents are shown in figure 13.If the input current is too small,it is found that the ionization is extremely slow.This is due to the restriction of radial transport by the magnetic field when the magnetic induction strength is 0.1 T,and it takes a very long time for the discharge to reach a steady state;therefore cases involving small input currents were not examined.

    In helicon discharge experiments,as the input power generally increases,the mode of operation changes,and the luminous intensity of the plasma increases significantly,which indicates that the plasma density has jumped to a higher order of magnitude[28].Density jumps also appear in the simulation.Figure 13 shows that the electron density jumps twice as the input current increases forB=0.01 T,first at about 20 A and then at about 40 A.The evolutions of electron density and temperature at different input currents whenB=0.01 T are plotted in figure 14.In figure 14(b),the electron temperatures are 2.58 eV and 3.23 eV at the 1000th cycle,whenIrf=20 A and 50 A,respectively.It was seen in many completed simulations that the electron temperature peaks only appear when the electron temperature is relatively high.At the 1000th cycle,the electron temperature is very close to that of the steady state;however,the electron peak has not appeared.The discharge mode does not change,even if the simulation continues,so a simulation time of 1000 RF cycles is sufficient.

    Figure 10.Amplitudes of the electric field components in the r direction at z=zc1.(a) T=20,(b) T=32,(c) T=43,and(d) T=47.

    Figure 11.Maximum electron densities of different input currents.

    Figure 12.Maximum electron density and electron temperature during discharge:(a)electron density,(b)electron temperature.

    Figure 13.Electron densities for different magnetic fields and input currents.

    Figure 14.Electron density and temperature evolutions at different input currents when B=0.01 T:(a)electron density,(b)electron temperature.

    The evolution of the plasma when the input current is 50 A is similar to that shown in figure 7.The second temperature peak is followed by a series of small peaks,indicating that the helicon mode is fluctuating,but in general,the electron temperature decreases over time and finally becomes steady.However,the other two cases in figure 14 are very different.When the input current is 20 A,there is only one wide temperature peak and the density profile has only one inflection point.When the input current is decreased to 10 A,the profiles are approximately convex and the plasma density gradually decreases with time.These results show that the mode conversion is accompanied by a density jump and a temperature peak,which can be signs that prove the discharge mode has changed.The above results show that the unique phenomena of mode conversions and density jumps in helicon plasma sources can be seen in simulations,which verifies that the model is an effective tool for the study of helicon discharges.

    The enhancement of the magnetic field due to helicon discharge is also shown in figure 13.For example,if the input current is 700 A,the plasma densities are 1.45×1020m-3,4.09×1019m-3,and 8.56×1018m-3for discharges ofB=0.1 T,B=0.01 T,and an ICP,respectively.The plasma densities are 16.94 and 4.78 times higher than that of the ICP.However,it should be noted that if the discharge does not converted to the W mode,the density may be smaller than in the case without a magnetic field.The effect of the magnetic field also agrees with experimental results[28].

    5.Conclusions

    In this paper,a multi-component,two-dimensional,axisymmetric fluid model coupled with an electromagnetic field was developed to model helicon discharges.This model includes the motions of electrons,ions,and atoms and the interactions with the electrostatic field and the electromagnetic field.Discharges were simulated at different input currents and for different background magnetic fields.The unique phenomenon characteristic of helicon plasma sources can be seen in the simulation results,which verifies that this model is an effective tool for the study of helicon discharges.

    First,the input current is set to 700 A and the magnetic field is set to 0.1 T.With continuous ionization,the waves are able to penetrate the plasma after the plasma density reaches the MCS.As a result,the electromagnetic field is able to heat the plasma core,the deposited power increases dramatically,and inflection points and temperature peaks appear.

    The input current is then changed while keeping the magnetic field constant.The results show that the plasma density and the ionization rate decrease with the input current and the moment when the discharge mode converts is postponed.

    Finally,the discharge is simulated at 0 T,0.01 T,and 0.1 T with a series of input currents.It is found that the discharge mode conversion is always accompanied by a plasma density jump and a temperature peak.Therefore,the density jump can be used a sign which indicates the conversion of the discharge mode.In addition,the magnetic field strongly enhances the discharge,and the plasma density is an order of magnitude higher than that in an ICP.However,the plasma density may be smaller if the discharge has not entered the wave mode.

    Acknowledgments

    This work is supported by the Shaanxi Key Laboratory of Plasma Physics and Applied Technology.

    ORCID iDs

    猜你喜歡
    魏建國(guó)
    ESR-PINNs: Physics-informed neural networks with expansion-shrinkage resampling selection strategies
    “未來(lái)5年,中國(guó)將領(lǐng)跑全球高品質(zhì)消費(fèi)”
    Study of double-chamber air arc plasma torch and the application in solid-waste disposal
    只有中國(guó)能提供消費(fèi)大市場(chǎng)以及完整的供應(yīng)鏈”
    男子堅(jiān)守小站三十三年 陪伴母親“守著”父親
    華聲文萃(2019年11期)2019-09-10 07:22:44
    男子堅(jiān)守小站33年 陪伴母親“守著”父親
    魏建國(guó)作品
    久热久热在线精品观看| 伦理电影大哥的女人| 精品国产一区二区三区四区第35| 亚洲美女搞黄在线观看| 涩涩av久久男人的天堂| 精品酒店卫生间| 黄片无遮挡物在线观看| 久久ye,这里只有精品| 熟女少妇亚洲综合色aaa.| 国产亚洲最大av| 精品久久久精品久久久| 18+在线观看网站| 国产熟女欧美一区二区| 亚洲国产av新网站| 亚洲,一卡二卡三卡| 在线观看www视频免费| 80岁老熟妇乱子伦牲交| 日产精品乱码卡一卡2卡三| 亚洲内射少妇av| 高清不卡的av网站| 老熟女久久久| 亚洲成人av在线免费| 精品国产乱码久久久久久小说| 久久久久久久久免费视频了| 韩国高清视频一区二区三区| 日韩,欧美,国产一区二区三区| av网站免费在线观看视频| 日本wwww免费看| 久久97久久精品| 亚洲av综合色区一区| 亚洲精华国产精华液的使用体验| 亚洲熟女精品中文字幕| 黄色毛片三级朝国网站| 亚洲国产精品国产精品| 一级毛片黄色毛片免费观看视频| 亚洲国产欧美在线一区| 亚洲欧美精品综合一区二区三区 | 日本黄色日本黄色录像| 久久精品久久久久久噜噜老黄| 日本爱情动作片www.在线观看| 青春草国产在线视频| av视频免费观看在线观看| 国产成人精品无人区| 又大又黄又爽视频免费| 丰满少妇做爰视频| 国产日韩欧美亚洲二区| 男女下面插进去视频免费观看| 日韩中文字幕视频在线看片| 春色校园在线视频观看| 在线观看免费视频网站a站| 国产女主播在线喷水免费视频网站| 国产一区亚洲一区在线观看| 高清欧美精品videossex| 国产深夜福利视频在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 久久久久久人妻| av在线app专区| 考比视频在线观看| 国产在线免费精品| 欧美精品一区二区大全| 成人国产麻豆网| 亚洲av.av天堂| 国产又色又爽无遮挡免| 国产午夜精品一二区理论片| 伦精品一区二区三区| 国产精品免费大片| 久久精品国产综合久久久| 自线自在国产av| 成人免费观看视频高清| 国产97色在线日韩免费| 9热在线视频观看99| 久久婷婷青草| 制服诱惑二区| 性色avwww在线观看| 丁香六月天网| 日韩一本色道免费dvd| 丰满乱子伦码专区| 欧美日韩亚洲高清精品| 精品国产一区二区三区久久久樱花| 国产成人91sexporn| 欧美日韩国产mv在线观看视频| 国产精品久久久久久精品古装| 久久狼人影院| 人人妻人人澡人人爽人人夜夜| 高清黄色对白视频在线免费看| 日韩大片免费观看网站| 久久97久久精品| 亚洲国产欧美日韩在线播放| 国产淫语在线视频| 在线天堂中文资源库| freevideosex欧美| 少妇的丰满在线观看| 色播在线永久视频| 欧美 日韩 精品 国产| 热99久久久久精品小说推荐| 亚洲欧美精品自产自拍| 午夜福利在线免费观看网站| 亚洲久久久国产精品| 性高湖久久久久久久久免费观看| 交换朋友夫妻互换小说| 精品国产一区二区久久| 久久午夜综合久久蜜桃| 热re99久久精品国产66热6| 人人妻人人爽人人添夜夜欢视频| 搡女人真爽免费视频火全软件| 日日爽夜夜爽网站| 王馨瑶露胸无遮挡在线观看| 国产极品粉嫩免费观看在线| 亚洲av.av天堂| 黑人欧美特级aaaaaa片| av不卡在线播放| 国产一级毛片在线| 日韩在线高清观看一区二区三区| 永久免费av网站大全| 夫妻午夜视频| 香蕉精品网在线| 90打野战视频偷拍视频| 男女边吃奶边做爰视频| 久久精品久久久久久久性| 久久久久精品人妻al黑| 妹子高潮喷水视频| 色网站视频免费| 十分钟在线观看高清视频www| 亚洲一区中文字幕在线| 精品人妻熟女毛片av久久网站| 99热国产这里只有精品6| 国产精品二区激情视频| 天天操日日干夜夜撸| 日本猛色少妇xxxxx猛交久久| 人妻少妇偷人精品九色| 精品酒店卫生间| 中国三级夫妇交换| 日韩一区二区三区影片| 欧美最新免费一区二区三区| 亚洲精品国产色婷婷电影| 妹子高潮喷水视频| 午夜福利在线观看免费完整高清在| 国产男女内射视频| 飞空精品影院首页| 欧美精品人与动牲交sv欧美| 日日摸夜夜添夜夜爱| 国产成人欧美| 欧美人与善性xxx| 免费高清在线观看视频在线观看| 亚洲美女视频黄频| 成人漫画全彩无遮挡| 国产片特级美女逼逼视频| 97在线人人人人妻| 久久久久久久久久久免费av| av福利片在线| www日本在线高清视频| 青春草视频在线免费观看| 亚洲精品,欧美精品| 卡戴珊不雅视频在线播放| 免费黄频网站在线观看国产| 1024视频免费在线观看| 啦啦啦在线观看免费高清www| 亚洲精品av麻豆狂野| 制服诱惑二区| 久久久国产一区二区| av卡一久久| 一区二区三区激情视频| 人妻 亚洲 视频| 边亲边吃奶的免费视频| 高清不卡的av网站| 热99久久久久精品小说推荐| 亚洲熟女精品中文字幕| 看十八女毛片水多多多| 99热网站在线观看| 三级国产精品片| 精品酒店卫生间| 精品午夜福利在线看| 午夜福利视频精品| 国产不卡av网站在线观看| 五月伊人婷婷丁香| 99久久精品国产国产毛片| 免费看不卡的av| 欧美日韩精品成人综合77777| av电影中文网址| 国产又色又爽无遮挡免| 成人国语在线视频| 欧美日韩亚洲高清精品| 老汉色av国产亚洲站长工具| 少妇的丰满在线观看| 国产日韩欧美视频二区| 欧美日韩综合久久久久久| 高清av免费在线| 妹子高潮喷水视频| 男的添女的下面高潮视频| 观看美女的网站| 国产野战对白在线观看| 日本色播在线视频| 亚洲欧美中文字幕日韩二区| 亚洲欧美成人精品一区二区| 欧美激情极品国产一区二区三区| 少妇熟女欧美另类| videos熟女内射| 色94色欧美一区二区| 两性夫妻黄色片| 免费av中文字幕在线| 亚洲国产色片| 久久婷婷青草| 伊人亚洲综合成人网| 亚洲欧洲日产国产| 久久精品国产亚洲av高清一级| 亚洲精品乱久久久久久| 女的被弄到高潮叫床怎么办| 精品人妻偷拍中文字幕| 久久国产亚洲av麻豆专区| 午夜福利乱码中文字幕| 一本—道久久a久久精品蜜桃钙片| 精品少妇一区二区三区视频日本电影 | 欧美日本中文国产一区发布| 午夜福利视频在线观看免费| 精品国产一区二区三区四区第35| 午夜福利在线观看免费完整高清在| 日韩中文字幕视频在线看片| 春色校园在线视频观看| 免费少妇av软件| 中文天堂在线官网| 美女福利国产在线| 精品少妇黑人巨大在线播放| 97在线视频观看| 久久精品国产鲁丝片午夜精品| 麻豆av在线久日| 精品国产国语对白av| kizo精华| 久久久国产一区二区| 成年av动漫网址| 亚洲av国产av综合av卡| 亚洲国产色片| 免费观看在线日韩| 国产成人a∨麻豆精品| 国产av一区二区精品久久| 亚洲av成人精品一二三区| 亚洲欧美精品综合一区二区三区 | 婷婷色综合www| 久久av网站| 在线观看三级黄色| 97在线人人人人妻| 波多野结衣一区麻豆| 女性被躁到高潮视频| 性高湖久久久久久久久免费观看| 午夜免费鲁丝| 美女中出高潮动态图| 视频区图区小说| 一边摸一边做爽爽视频免费| 日韩欧美一区视频在线观看| 99热网站在线观看| 九九爱精品视频在线观看| 汤姆久久久久久久影院中文字幕| 亚洲国产精品成人久久小说| 香蕉丝袜av| 青青草视频在线视频观看| 亚洲国产看品久久| 成人国语在线视频| 老熟女久久久| 国产极品粉嫩免费观看在线| 丰满饥渴人妻一区二区三| 国产免费福利视频在线观看| 一本久久精品| 日韩熟女老妇一区二区性免费视频| 欧美另类一区| 美女午夜性视频免费| 26uuu在线亚洲综合色| 久久精品夜色国产| av网站免费在线观看视频| 亚洲精品av麻豆狂野| 亚洲人成网站在线观看播放| 午夜激情久久久久久久| 丝袜喷水一区| 在线观看免费日韩欧美大片| 观看美女的网站| 亚洲成人一二三区av| 亚洲在久久综合| 午夜av观看不卡| 国精品久久久久久国模美| 有码 亚洲区| 建设人人有责人人尽责人人享有的| 久久久久国产网址| 黑人欧美特级aaaaaa片| 久久这里有精品视频免费| 色吧在线观看| 国产在线一区二区三区精| 国产一区二区三区av在线| 人妻少妇偷人精品九色| 永久免费av网站大全| 日韩欧美精品免费久久| videosex国产| 啦啦啦视频在线资源免费观看| 国产又色又爽无遮挡免| 丰满乱子伦码专区| 午夜福利一区二区在线看| 亚洲精品乱久久久久久| 丁香六月天网| 成人国产av品久久久| 欧美成人午夜精品| 伦精品一区二区三区| 亚洲精品,欧美精品| 亚洲精品av麻豆狂野| 久久这里有精品视频免费| 亚洲成国产人片在线观看| 狠狠精品人妻久久久久久综合| 亚洲av国产av综合av卡| 免费黄色在线免费观看| 亚洲第一区二区三区不卡| 少妇猛男粗大的猛烈进出视频| 欧美激情 高清一区二区三区| 午夜久久久在线观看| 欧美av亚洲av综合av国产av | 日韩av不卡免费在线播放| 久久99热这里只频精品6学生| 精品亚洲成a人片在线观看| 18在线观看网站| 免费观看无遮挡的男女| 免费黄频网站在线观看国产| 亚洲一区二区三区欧美精品| 我的亚洲天堂| 香蕉精品网在线| 制服丝袜香蕉在线| 久久ye,这里只有精品| 国产亚洲av片在线观看秒播厂| 香蕉丝袜av| 丰满乱子伦码专区| 三级国产精品片| 久久女婷五月综合色啪小说| tube8黄色片| 最近最新中文字幕大全免费视频 | 成年动漫av网址| 亚洲精品,欧美精品| 一级毛片我不卡| 热99久久久久精品小说推荐| 国产国语露脸激情在线看| 下体分泌物呈黄色| 亚洲中文av在线| 爱豆传媒免费全集在线观看| 少妇 在线观看| 国产在线免费精品| 中文字幕色久视频| 精品少妇一区二区三区视频日本电影 | 美国免费a级毛片| 国产一区二区三区综合在线观看| 亚洲精品久久午夜乱码| 日韩,欧美,国产一区二区三区| 中文字幕色久视频| 免费日韩欧美在线观看| 人妻人人澡人人爽人人| 日韩视频在线欧美| 丝袜人妻中文字幕| 久久 成人 亚洲| 精品亚洲乱码少妇综合久久| 国产av码专区亚洲av| 免费不卡的大黄色大毛片视频在线观看| 国产精品国产三级国产专区5o| 色94色欧美一区二区| √禁漫天堂资源中文www| 欧美 日韩 精品 国产| 夫妻性生交免费视频一级片| a级片在线免费高清观看视频| 久久久精品国产亚洲av高清涩受| 日日啪夜夜爽| 日日撸夜夜添| 在线观看人妻少妇| 各种免费的搞黄视频| 精品亚洲成a人片在线观看| 亚洲av男天堂| 日本欧美视频一区| 国产精品免费大片| 国产精品国产av在线观看| www.熟女人妻精品国产| 宅男免费午夜| 综合色丁香网| 岛国毛片在线播放| 国产免费一区二区三区四区乱码| 99国产综合亚洲精品| 丰满少妇做爰视频| 大话2 男鬼变身卡| 午夜激情av网站| 男的添女的下面高潮视频| 国产精品99久久99久久久不卡 | 日本色播在线视频| 九九爱精品视频在线观看| 日韩不卡一区二区三区视频在线| 欧美日韩亚洲高清精品| 日本wwww免费看| 国产在线一区二区三区精| 日本vs欧美在线观看视频| 女人高潮潮喷娇喘18禁视频| 中文字幕色久视频| 久久这里有精品视频免费| 黑人猛操日本美女一级片| 久久毛片免费看一区二区三区| 欧美另类一区| 伦精品一区二区三区| 日本爱情动作片www.在线观看| 99热全是精品| 国产精品国产三级专区第一集| 建设人人有责人人尽责人人享有的| 青草久久国产| 亚洲国产成人一精品久久久| 美女国产视频在线观看| 一级爰片在线观看| 欧美少妇被猛烈插入视频| 亚洲视频免费观看视频| 日本爱情动作片www.在线观看| 欧美激情极品国产一区二区三区| 9191精品国产免费久久| 美女脱内裤让男人舔精品视频| 国产在视频线精品| 交换朋友夫妻互换小说| 亚洲三区欧美一区| 永久免费av网站大全| 国产精品99久久99久久久不卡 | 国产精品一区二区在线不卡| 精品少妇黑人巨大在线播放| 大片免费播放器 马上看| 国产精品av久久久久免费| 2021少妇久久久久久久久久久| 亚洲精品aⅴ在线观看| 少妇 在线观看| 成人手机av| 国产成人欧美| 99热网站在线观看| 日韩精品免费视频一区二区三区| 国产精品一区二区在线不卡| www.av在线官网国产| 大片免费播放器 马上看| 欧美激情高清一区二区三区 | 人妻少妇偷人精品九色| 国产精品国产三级专区第一集| 蜜桃国产av成人99| 日韩一卡2卡3卡4卡2021年| 丝袜喷水一区| 精品一区在线观看国产| 久久鲁丝午夜福利片| 久久韩国三级中文字幕| 制服丝袜香蕉在线| 人妻系列 视频| 制服诱惑二区| 亚洲少妇的诱惑av| 国产精品三级大全| 中文字幕人妻丝袜一区二区 | av线在线观看网站| 又粗又硬又长又爽又黄的视频| 国产午夜精品一二区理论片| 久久精品久久精品一区二区三区| 大陆偷拍与自拍| 国产片特级美女逼逼视频| 1024视频免费在线观看| 女人被躁到高潮嗷嗷叫费观| 国产精品亚洲av一区麻豆 | 91午夜精品亚洲一区二区三区| 天堂俺去俺来也www色官网| 中文字幕人妻熟女乱码| av在线老鸭窝| 国产高清国产精品国产三级| 亚洲中文av在线| 亚洲精品国产av成人精品| 纵有疾风起免费观看全集完整版| 亚洲精品在线美女| 美女国产视频在线观看| 久久久精品免费免费高清| 观看美女的网站| 多毛熟女@视频| 亚洲少妇的诱惑av| 国产人伦9x9x在线观看 | 久久99蜜桃精品久久| 精品少妇一区二区三区视频日本电影 | 久久这里有精品视频免费| 久久久久精品久久久久真实原创| 日韩av免费高清视频| 美女视频免费永久观看网站| 婷婷色麻豆天堂久久| 少妇人妻精品综合一区二区| av.在线天堂| 啦啦啦视频在线资源免费观看| 亚洲视频免费观看视频| xxx大片免费视频| 女人高潮潮喷娇喘18禁视频| 久久精品国产自在天天线| 国产亚洲一区二区精品| 亚洲av中文av极速乱| 午夜激情av网站| 欧美精品一区二区大全| 久久久久国产精品人妻一区二区| 99香蕉大伊视频| 极品少妇高潮喷水抽搐| 黑人猛操日本美女一级片| 日韩,欧美,国产一区二区三区| 日韩免费高清中文字幕av| 亚洲精品视频女| 欧美 日韩 精品 国产| 各种免费的搞黄视频| 亚洲视频免费观看视频| 99久久综合免费| 人人妻人人爽人人添夜夜欢视频| 国语对白做爰xxxⅹ性视频网站| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 成人18禁高潮啪啪吃奶动态图| 赤兔流量卡办理| 免费黄频网站在线观看国产| 在线观看三级黄色| 精品人妻在线不人妻| 丰满迷人的少妇在线观看| 不卡视频在线观看欧美| 卡戴珊不雅视频在线播放| 久久久久久久久久人人人人人人| av卡一久久| 国产男女超爽视频在线观看| 美女福利国产在线| 人体艺术视频欧美日本| 夜夜骑夜夜射夜夜干| 狠狠婷婷综合久久久久久88av| 久久午夜福利片| 午夜福利在线观看免费完整高清在| a级毛片黄视频| 国产成人精品久久二区二区91 | 日本爱情动作片www.在线观看| 国产免费现黄频在线看| 日韩欧美精品免费久久| 久久国产精品大桥未久av| 咕卡用的链子| 久久人妻熟女aⅴ| 国产精品免费视频内射| 国产精品一国产av| 男人舔女人的私密视频| 最黄视频免费看| av不卡在线播放| 亚洲成人av在线免费| 一二三四中文在线观看免费高清| 香蕉丝袜av| 日本爱情动作片www.在线观看| 国产精品.久久久| 免费在线观看视频国产中文字幕亚洲 | 一级毛片黄色毛片免费观看视频| 日本欧美国产在线视频| 成人毛片60女人毛片免费| av不卡在线播放| 午夜福利在线观看免费完整高清在| 咕卡用的链子| 天堂中文最新版在线下载| 少妇熟女欧美另类| 天堂中文最新版在线下载| 狂野欧美激情性bbbbbb| 日本色播在线视频| 亚洲av在线观看美女高潮| 国产成人精品婷婷| 午夜福利,免费看| 亚洲色图综合在线观看| 久久久久久久久久久免费av| av卡一久久| 国产成人精品久久久久久| 侵犯人妻中文字幕一二三四区| 如日韩欧美国产精品一区二区三区| 女的被弄到高潮叫床怎么办| 成人国产麻豆网| 久久久久久久大尺度免费视频| 人人妻人人澡人人看| 久久精品国产鲁丝片午夜精品| 可以免费在线观看a视频的电影网站 | 亚洲美女搞黄在线观看| 精品久久蜜臀av无| 国产精品不卡视频一区二区| 啦啦啦视频在线资源免费观看| 黑丝袜美女国产一区| 在现免费观看毛片| av在线观看视频网站免费| 18禁观看日本| 免费播放大片免费观看视频在线观看| 久久精品国产亚洲av天美| 美女脱内裤让男人舔精品视频| a级毛片黄视频| 美女大奶头黄色视频| 国产亚洲一区二区精品| 亚洲欧美成人综合另类久久久| 国产精品麻豆人妻色哟哟久久| 欧美bdsm另类| 精品亚洲乱码少妇综合久久| 午夜激情久久久久久久| 午夜福利一区二区在线看| 高清不卡的av网站| 在线看a的网站| 一级黄片播放器| 国产 一区精品| av线在线观看网站| 国产精品三级大全| tube8黄色片| 大片电影免费在线观看免费| 午夜福利,免费看| 丝袜美足系列| 免费观看在线日韩| 亚洲国产色片| 两性夫妻黄色片| 午夜福利视频在线观看免费| 国产人伦9x9x在线观看 | 亚洲婷婷狠狠爱综合网| 黄频高清免费视频| 国产 精品1| 一区在线观看完整版| 免费黄频网站在线观看国产| √禁漫天堂资源中文www| 91精品三级在线观看| 午夜日韩欧美国产| 男女免费视频国产| 日韩中文字幕欧美一区二区 | 黄色 视频免费看| av福利片在线| kizo精华| 中文字幕精品免费在线观看视频| av福利片在线| 宅男免费午夜| 亚洲国产精品成人久久小说| 一区二区av电影网| 亚洲成av片中文字幕在线观看 | 丝袜美腿诱惑在线|