• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    基于石英MEMS技術(shù)的光纖法布里-珀羅高溫壓力傳感器

    2022-07-27 08:46:52李加順賈平崗王軍劉佳安國文熊繼軍
    光子學(xué)報 2022年6期
    關(guān)鍵詞:省部劉佳中北大學(xué)

    李加順,賈平崗,王軍,劉佳,安國文,熊繼軍

    (中北大學(xué)儀器與電子學(xué)院動態(tài)測試技術(shù)省部共建國家重點(diǎn)實驗室,太原 030051)

    0 Introduction

    Dynamic pressure measurements under high-temperature and other harsh environments,such as the pressure monitoring in aerospace engines[1-3],on-line health monitoring and control of molten salt reactors and gas-cooled reactors in nuclear applications[4],in-cylinder pressure monitoring in the automotive internal combustion engines[5],have a wide range of application requirements.At present,the sensors used for dynamic pressure measurement include electronic pressure sensors,such as piezoelectric[6],piezoresistive[7]and capacitive pressure sensors[5].However,the pressure sensors are often exposed to harsh environments such as high temperature and corrosion in the above application areas.And these sensors are highly dependent on temperature or close proximity electronics,limiting their high-temperature capabilities[8].In order to effectively protect electronic pressure sensors used in harsh environments,the engineering solutions,such as impulse lines,have been used to isolate sensors sensitive to heat and corrosion[4].But the impulse lines can also dampen the pressure signals,which will make it difficult to achieve in situ dynamic pressure monitoring,and increase the likelihood of blockages or bubbles impacting pressure measurements[9].

    Compared with electronic pressure sensors,fiber-optic pressure sensors have attracted widespread attention due to their high-temperature resistance,high sensitivity,anti-electromagnetic interference,corrosion resistance,simple structure,and small size[10-13].At present,most of the reported fiber-optic pressure sensors are used for static pressure measurement and various types of fiber-optic Fabry-Perot(FP)pressure sensors have been fabricated using the MEMS[14-20],chemical corrosion[21],arc-discharge[12-22],laser processing techniques[11,23,24].Among them,the pressure sensors fabricated by chemical corrosion,arc discharge and laser processing technology are usually produced in a single piece,which results in poor consistency between sensors.By contrast,the MEMS technique can be applied in mass production and the materials used to fabricate fiberoptic pressure sensors by MEMS technology mainly include silicon[14-17],Pyrex glass[14-16],sapphire[18,19],etc.Due to the limitation of temperature resistance of the material itself,the pressure sensors made by silicon-glass bonding will have a lower operating temperature.And if different materials are used to fabricate the fiber-optic sensor or use adhesive to realize the connection between the sensor head and optical fiber,the mismatch of the Coefficients of Thermal Expansion(CTE)between different materials will easily reduce the sensor stability and result in large temperature cross-sensitivity in the high temperature environment.For instance,JIA Pinggang et al.[14]presented a high-temperature fiber-optic FP pressure sensor fabricated by anodically bonding the Pyrex glass wafer and silicon wafer and realized static pressure measurement at 350 °C.LI Wangwang et al.[18]demonstrated a fiber-optic high temperature pressure sensor based on sapphire direct bonding and experimental results demonstrate the sensing capabilities for static pressures,but the temperature coefficient of sapphire sensor is relatively large,approximately 1.25 nm/°C.

    In this paper,we propose a MEMS-based all-silica fiber-optic Fabry-Perot dynamic pressure sensor used the silica wafer with ultralow CTE and softening point as high as about 1 750 °C.The sensor heads are batchfabricated with silica wafers using MEMS technique and three-layer silica direct bonding technology,which ensures consistency in the sensor heads and cost effectiveness and have the desired pressure measurement range and sensitivity by flexibly designing the related parameters.The all-silica adhesive-free integration between the sensor head and the optical fiber is achieved using CO2laser fusion.The sensor exhibits an ultralow thermal drift and good thermal stability owing to the low CTE of silica and the all-silica adhesive-free design,which can effectively avoid the sensor damage induced by the CTE mismatch of different materials at high temperatures and increase the lifetime of the sensor in high temperature environments.Moreover,the proposed sensor was subjected to a static pressure measurement at a high temperature of 800 °C and a 2 kHz dynamic pressure test at a normal temperature to verify the performance of the sensor.

    1 Sensor working principle

    The proposed all-silica pressure sensor comprises a sensor head,Hollow Silica Tube(HST),and goldcoated Multimode Fiber(MMF),as shown in Fig.1(a).Among them,the sensor heads formed by a silica diaphragm,a silica cavity,and a silica pedestal are batch-fabricated with silica wafers using the MEMS technique and the three-layer silica direct bonding technology.The gold-coated MMF is inserted into the HST and aligned with the silica cavity and the silica sensing diaphragm of the all-silica pressure sensor.Thus,a lowfinesse FP cavity is formed between the diaphragm and the bottom surface of the silica cavity.The low-finesse FP interference spectrum responds to the changes in the cavity induced by the external pressure.The sensor head,HST,and gold-coated MMF are fused using the CO2laser.Therefore,the proposed pressure sensor has an all-silica adhesive-free structure.

    Fig.1 All-silica fiber-optic FP pressure sensor

    Fig.1(b)shows a working mechanism of the all-silica pressure sensor.The gold-coated MMF is a lead-in fiber in the proposed sensor.The inner surface(R1)of the silica diaphragm and the bottom surface(R2)of the silica cavity from a low-finesse FP cavity.The distance between the bottom surface and the polished inner surface of the silica diaphragm is delimited as FP cavity length(L).When incident light passes through the FP cavity,multi-beam interference occurs between the two interfaces of the FP cavity.Owing to the low reflectivity(approximately 0.04)of R1 and R2,the reflection spectrum can be estimated as a two-beam interferometer model.The FP cavity length is a function of the detected parameters and can thus be extracted.The reflection spectrum of the FP interferometer is considered as an intensity modulation signal originating from the optical phase difference between the two reflections,as shown in Fig.1(c).The intensity of the reflection spectrum can be expressed as[25]

    whereIis the intensity of the interference spectrum,I1andI2are intensities of the two reflections(R1 and R2),nis the refractive index of the medium in the FP cavity,Lis the FP cavity length,λis the wavelength of light,and π is the additional phase of the half-wave loss.

    The silica diaphragm is used as the sensing element in the all-silica pressure sensor.Under the effect of external pressure,the round silica diaphragm undergoes deformation,leading to a change in the FP cavity length.According to the elastic deformation theory for round diaphragms,the center deflection of the diaphragm can be expressed as[26]

    whereμis the Poisson's ratio of the diaphragm material,Eis the Young's modulus,Pis the external pressure,his the thickness of the diaphragm,andris the effective diaphragm radius.According to the theory of small deflection,the maximum deformation of the silica diaphragm usually does not exceed 30% of the diaphragm thickness.So,the pressure sensor has a linear deformation limitation that is determined by the thickness of the diaphragm,which can be described as

    The frequency response of the pressure sensitive diaphragm is an important issue in dynamic pressure measurement.The diaphragm is defined as a free vibrating circular plate clamped rigidly at the edge then its natural frequency can be expressed as[26]

    whereamnis a constant related to the vibrating modes of the diaphragm,ωis mass density of the diaphragm material.For the lowest natural frequency(a00=10.21)and based on the properties of fused silica,the frequency response of the diaphragm can be calculated as[27]

    wheref00is in Hz.To ensure proper operation of the sensor,the natural resonant frequency of the diaphragm should be at least three to five times the highest working frequency.Due to the limitations of the test conditions,the maximum measurement frequency of the proposed all-silica pressure sensor is 2 kHz,so the natural frequency of the diaphragm should be above 10 kHz.

    The sensitivity,pressure measurement range,and diaphragm natural frequency of the all-silica pressure sensor are determined by the effective radius and thickness of the silica diaphragm.The sensitivity of the sensor increases as increasing the effective radius and decreasing the thickness of the diaphragm.However,the large effective radius and small thickness of diaphragm could result in smaller pressure measurement range and frequency response of the sensor.It is,therefore,necessary to comprehensively consider the overall size,sensitivity,pressure measurement range,and frequency response when designing the sensor.We can obtain the desired sensor size,pressure measurement range,sensitivity,and frequency response of the all-silica dynamic pressure sensor by flexibly designing the diaphragm radius and thickness of diaphragm.The diaphragm effective diameter,thickness,theoretical pressure measurement range,sensitivity and frequency response of the proposed all-silica dynamic pressure sensor are 2.55 mm,200 μm,72 MPa,829.6 nm/MPa,and 337 kHz,respectively.

    2 Sensor processing technology

    The MEMS fabrication process of the FP cavity,as illustrated in Fig.2.First,the prepared 2-inch silica wafer was cleaned by the chemical wet cleaning method,as shown in Fig.2(a).Then spin-coat LOR photoresist and AZ5214 photoresist on the cleaned silica wafer,as shown in Fig.2(b).Next,the coated silica wafer was put into the photolithography machine to realize reverse exposure and immersed in 3 038 developer solution for 1 minute.The thickness of the photoresist measured after development is about 2.5 μm,as shown in Fig.2(c).Further,50 nm Ti and 1.2 μm Al were evaporated on the developed silica wafer by electron beam evaporation equipment,as shown in Fig.2(d).Subsequently,the silica wafer was soaked in acetone solution for 2 hours.Since the thickness of the photoresist was about 2.5 μm,the evaporated metal was about 1.2 μm,and the photoresist was easily soluble in acetone,so the area with photoresist was peeled off from the silica wafer and realizing the patterning of the silica wafer using metal as a mask layer,as shown in Fig.2(e).

    Further,the silica wafer was put into the NLD-570 etching machine for batch etching of the FP cavity.Since there was no accurate silica etching rate,the cavity depth was measured with a step profiler after 10 minutes of etching,and it was found that the etching rate of silica was about 0.5 μm/min.Therefore,the etching time was set to 30 minutes,the diameter of the etching FP cavity was about 2.55 mm,and the depth was about 15 μm,as shown in Fig.2(f).Finally,the remaining Ti and Al metal mask layers after etching were removed with Ti etching solution and Al etching solution to obtain a silica wafer etched with a FP cavity array,as shown in Fig.2(g).

    Fig.2 FP cavity MEMS etching process flow chart

    The all-silica fiber-optic FP dynamic pressure sensor comprises a silica sensor head,an HST,and a goldcoated MMF.Among them,the sensor head is composed of a silica sensitive diaphragm,a silica cavity,and a silica pedestal.The proposed sensor heads are batch-fabricated via the MEMS technique and the three-layer silica direct bonding technology.As illustrated in Fig.3,the fabrication process of the all-silica pressure sensor includes three primary steps: silica wafer high-temperature direct bonding,silica wafer precision micromachining,and optical fiber integration.

    During the fabrication process,a double-side polished 2-inch silica wafer with a thickness of 2 mm and 0.2 mm are employed for the pedestal and diaphragm,respectively.First,the 2-inch silica wafer employed for the pedestal with through-hole arrays fabricated by the Computer Numerical Control(CNC)technology,the 2-inch silica wafer with the microcavity arrays etched by MEMS technique,the 2-inch silica wafer employed for the diaphragm were directly bonded by three-layer silica direct bonding technology(the bonding temperature was about 850°C,and the bonding pressure was about 6.5 MPa),as shown in Fig.3(a).The diameter of the cylindrical through-hole is 1.1 mm.The groove and the cavity are coaxial,and the distance between two adjacent groove elements is 5 mm.Thereafter,the cylindrical protrusion array was fabricated on another surface of the pedestal wafer by using the CNC technology,as shown in Fig.3(d).The diameter and height of the cylindrical protrusion are 2 mm and 1 mm,respectively,and the protrusion was coaxial with the through-hole.Next,the all-silica sensor heads were separated from the bonded wafer using laser ablation,as shown in Fig.3(b)and Fig.3(e).

    Fig.3 Fabrication process of the all-silica pressure sensor based on the silica wafer

    Finally,the sensor head is assembled with the HST and MMF by using the CO2laser.The diameter and height of the all-silica sensor unit are 4.6 mm and 2.4 mm,respectively.The end of the gold-coated MMF was cleaved flat and inserted into the HST.The gold-coated MMF and HST were fused using CO2laser welding technology.Similarly,the protruding structure and the HST were fused using the CO2laser fusion splicer.Thus,the fabrication of the all-silica fiber-optic FP dynamic pressure sensor was completed,as shown in Fig.3(c)and Fig.3(f).

    3 Experimental results and discussions

    To investigate the high-temperature static pressure performance of the all-silica pressure sensor,a test system was set up,as shown in Fig.4.The system includes a high temperature and pressure testing platform,a demodulator,and a Personal Computer(PC).Among them,the testing platform compromises a pressure and temperature control system,a high-temperature pressure tank,and an argon cylinder.In the testing platform,temperature and pressure can be independently controlled.The pressure control system controls the pressure in the pressure tank by adjusting the air intake valve and the air outlet valve,and the temperature control system controls the temperature in the pressure tank by adjusting the heating power of the heating wires.The maximum temperature and pressure of the testing platform are 800 ℃and 1 MPa,respectively.The demodulator is connected to the all-silica pressure sensor via a fiber optical connector and the FP cavity length can be demodulated by the cavity length demodulation algorithm.

    Fig.4 Experimental setup of high-temperature static pressure test

    The all-silica FP pressure sensor was evaluated under temperatures ranging from room temperature(23 ℃)to 800 ℃,with increments of 100 ℃.At each temperature step,the all-silica pressure sensor was tested from approximately 0 MPa to 1 MPa,with increments of 200 kPa.When performing the pressure test,the pressure was kept constant for 2 min at each pressure point in order to record the cavity length more accurately.Fig.5(a)shows the cavity length of the all-silica pressure sensor with respect to the pressure at temperatures from 23 ℃to 800 ℃.It can be concluded that the FP cavity length of the all-silica pressure sensor varies linearly with the pressure at each temperature,and the nonlinearity at 800 ℃is 1.13%.

    Fig.5 High-temperature static pressure experimental results of the proposed all-silica fiber-optic pressure sensor

    Meanwhile,it can be seen from Fig.5(a)that the starting point position and slope of each fitting line are different at different temperatures.The difference in the starting point position of the fitting line is caused by the temperature drift of the sensor's FP cavity length resulted from the thermal expansion of the silica material.The initial cavity length and temperature are fitted with cubic curves and the R-square value is 0.97,as shown in the blue curve in Fig.5(b).It can be seen from the Fig.5(b)that the initial cavity length of the sensor gradually increases with the temperature increases,and the all-silica fiber-optic pressure sensor has an ultralow temperature drift coefficient of about 0.069 nm/℃.The sensitivity and temperature are fitted with cubic curves and the R-square value is 0.98,as shown in the red curve in Fig.5(b).The red curve shows that the pressure sensitivity decreases with an increase in temperature;this is caused by the intrinsic variation in the Young's modulus of silica at different temperatures.In addition,the all-silica pressure sensor has a pressure sensitivity of 801.84 nm/MPa at room temperature(23 ℃),which is similar to the theoretically calculated results.

    To investigate repeatability and stability,the all-silica fiber-optic pressure sensor was evaluated from approximately 0 MPa to 1 MPa at increments of 200 kPa with the temperature of 23 ℃,400 ℃,and 800 ℃,as shown in Fig.6(a).During the experiment,one pressure increasing and decreasing test was defined as one pressure cycle,and three pressure cycle tests were carried out at each temperature.Based on the increasing and decreasing pressure conditions at 23 ℃,400 ℃,and 800 ℃,it is found that the all-silica fiber-optic pressure sensor shows good repeatability at different temperatures,good pressure-measuring performance at high temperatures,and the maximum repeatability error is 1.6%.To further test the stability of the all-silica fiberoptic pressure sensor in a high-temperature environment,the FP cavity length were tested under 800 ℃and 1 MPa and the test time was 60 min.The demodulated values of the sensor's FP cavity length were recorded with increments of 2 min.The results of stability test are shown in Fig.6(b).Obviously,the all-silica fiber-optic pressure sensor has good stability and the maximum fluctuation in the FP cavity length is approximately 11 nm,which was calculated by the maximum and minimum value of the recorded cavity lengths.This may be caused by the unstable pressure in the pressure tank and the system errors of the equipment.

    Fig.6 Repeatability and stability experimental results of the proposed all-silica fiber-optic pressure sensor

    To measure the dynamic characteristics of the all-silica fiber-optic FP dynamic pressure sensor,the roomtemperature dynamic pressure test was carried out on the all-silica fiber-optic FP dynamic pressure sensor and the standard piezoelectric sensor (CYG401F,Kunshan Shuangqiao Sensor Measurement and Control Technology Co.,Ltd,China)at the same time on the sinusoidal pressure generator(LAISEN LS-ZX7M,Suzhou Dina Precision Equipment Co.,Ltd,China).The all-silica fiber-optic dynamic pressure sensor and the standard piezoelectric sensor were installed opposite to each other on the sinusoidal pressure generator,so that they had the same dynamic pressure environment,and the output dynamic pressure frequency of the sinusoidal pressure generator was set to be about 2 kHz.The dynamic pressure test result of standard piezoelectric sensor is shown in the blue waveform in Fig.7(a).The dynamic pressure test result demodulated by the dynamic cavity length demodulation algorithm[28]of the all-silica fiber-optic dynamic pressure sensor is shown in the red waveform in Fig.7(a).The pressure waveform measured by the all-silica fiber-optic FP dynamic pressure sensor and the standard piezoelectric sensor are very similar in amplitude and phase.The frequency response of the all-silica fiber-optic FP dynamic pressure sensor is in good agreement with the standard piezoelectric sensor,as shown in Fig.7(b),which indicates that the proposed all-silica fiber-optic FP dynamic pressure sensor has good dynamic response characteristics.

    Fig.7 Room-temperature dynamic pressure experimental results of the proposed all-silica fiber-optic pressure sensor

    4 Conclusion

    In this paper,we have realized the high-consistency and batch-production of the all-silica fiber-optic FP dynamic pressure sensor heads with ultralow temperature coefficient using the MEMS technique and the threelayer silica direct bonding technology,which significantly reduced the variations in the sensor heads and the processing costs.The all-silica adhesive-free integration of sensor head and gold-coated MMF was realized by the CO2laser,which improves the stability of the sensor and allows the sensor to have an ultralow temperature coefficient (about 0.069 nm/℃) in high temperature environments.High-temperature static pressure experimental results show that the proposed all-silica fiber-optic pressure sensor can function under the temperature range from 23 ℃to 800 ℃with the nonlinearity of approximately 1.13% at 800 ℃and exhibited good linear response to pressure at high temperatures.Room-temperature dynamic pressure experimental results show that the proposed all-silica fiber-optic pressure sensor can function under the 2 kHz dynamic pressure environment and exhibited good dynamic pressure response characteristics.Furthermore,the frequency response of the all-silica fiber-optic pressure sensor is in good agreement with the standard piezoelectric sensor.We believe that the proposed all-silica fiber-optic FP dynamic pressure sensor will find broader and more promising applications in dynamic pressure measurement fields at high temperature and extreme environments due to its low cost,small size,batch-production,and ultralow temperature coefficient.

    猜你喜歡
    省部劉佳中北大學(xué)
    《中北大學(xué)學(xué)報(社會科學(xué)版)》征稿啟事
    A PENALTY FUNCTION METHOD FOR THE PRINCIPAL-AGENT PROBLEM WITH AN INFINITE NUMBER OF INCENTIVE-COMPATIBILITY CONSTRAINTS UNDER MORAL HAZARD?
    中北大學(xué)信創(chuàng)產(chǎn)業(yè)學(xué)院入選首批現(xiàn)代產(chǎn)業(yè)學(xué)院
    重型機(jī)械裝備省部共建協(xié)同創(chuàng)新中心簡介
    陜西中藥資源產(chǎn)業(yè)化省部共建協(xié)同創(chuàng)新中心
    黑龍江省人民政府辦公廳關(guān)于印發(fā)黑龍江省合理膳食行動省部合作項目實施方案的通知
    《中北大學(xué)學(xué)報(自然科學(xué)版)》征稿簡則
    有機(jī)相化學(xué)鍍鋁法制備Al/石墨烯復(fù)合材料粉末
    4個涉煤省部共建協(xié)同創(chuàng)新中心獲認(rèn)定
    中國煤炭(2019年10期)2019-01-19 08:52:17
    Principles and Teaching Application of Suggestopedia’s 6 Technical Characteristics
    99久久久亚洲精品蜜臀av| 丰满的人妻完整版| 我要看日韩黄色一级片| 很黄的视频免费| 国产精品一区二区免费欧美| 成年版毛片免费区| 一a级毛片在线观看| 露出奶头的视频| 日本一二三区视频观看| 老女人水多毛片| 看十八女毛片水多多多| 精品人妻视频免费看| 色哟哟·www| 欧美成人一区二区免费高清观看| 中出人妻视频一区二区| 欧美激情国产日韩精品一区| av在线观看视频网站免费| 亚洲国产欧美人成| 国产成人aa在线观看| 国产大屁股一区二区在线视频| 成年版毛片免费区| 国产蜜桃级精品一区二区三区| 免费看美女性在线毛片视频| 国产69精品久久久久777片| 99久久精品一区二区三区| 欧美日韩黄片免| 丰满的人妻完整版| 一区二区三区免费毛片| 蜜桃久久精品国产亚洲av| 欧美人与善性xxx| 国产亚洲精品av在线| 日本黄大片高清| 久久精品久久久久久噜噜老黄 | 国产成人a区在线观看| 国产精品乱码一区二三区的特点| 国产av在哪里看| 欧美黑人欧美精品刺激| 久久午夜福利片| 欧美丝袜亚洲另类 | a级毛片a级免费在线| 亚洲av免费高清在线观看| 性欧美人与动物交配| 久久人妻av系列| 欧美激情国产日韩精品一区| 亚洲欧美日韩无卡精品| 日本免费a在线| 无人区码免费观看不卡| 精品国内亚洲2022精品成人| 久久香蕉精品热| 一区福利在线观看| 制服丝袜大香蕉在线| 国产美女午夜福利| 亚洲av中文字字幕乱码综合| 久久精品人妻少妇| 久久久久久大精品| 97超级碰碰碰精品色视频在线观看| 精品国内亚洲2022精品成人| 99久久久亚洲精品蜜臀av| 日韩欧美一区二区三区在线观看| 一个人免费在线观看电影| av女优亚洲男人天堂| 国产av一区在线观看免费| 欧美精品啪啪一区二区三区| 精品一区二区免费观看| 一本一本综合久久| 国产色婷婷99| 国产高潮美女av| 亚洲精品色激情综合| 亚洲黑人精品在线| 国产v大片淫在线免费观看| 尾随美女入室| 欧美日韩精品成人综合77777| 日本精品一区二区三区蜜桃| 麻豆国产av国片精品| 天堂影院成人在线观看| 人妻制服诱惑在线中文字幕| 一级a爱片免费观看的视频| 色综合站精品国产| 一本一本综合久久| 级片在线观看| 99视频精品全部免费 在线| 搡女人真爽免费视频火全软件 | 俄罗斯特黄特色一大片| 欧美丝袜亚洲另类 | 美女xxoo啪啪120秒动态图| aaaaa片日本免费| 色综合婷婷激情| ponron亚洲| 国产国拍精品亚洲av在线观看| 久9热在线精品视频| 亚洲在线自拍视频| 免费观看在线日韩| 国产欧美日韩精品亚洲av| 国产亚洲精品久久久com| 国产色爽女视频免费观看| 波野结衣二区三区在线| 成人国产麻豆网| 日日干狠狠操夜夜爽| 女人被狂操c到高潮| 欧美高清成人免费视频www| 亚洲成人久久性| 国产成年人精品一区二区| 男插女下体视频免费在线播放| 中文在线观看免费www的网站| 少妇高潮的动态图| 香蕉av资源在线| 午夜福利在线观看吧| 精品日产1卡2卡| 日韩国内少妇激情av| 深夜a级毛片| 国内毛片毛片毛片毛片毛片| 亚洲男人的天堂狠狠| .国产精品久久| 一进一出好大好爽视频| bbb黄色大片| 亚洲成av人片在线播放无| 在线观看av片永久免费下载| 日本a在线网址| 色av中文字幕| 成人特级黄色片久久久久久久| 久久久久久久久大av| 99久久无色码亚洲精品果冻| 别揉我奶头 嗯啊视频| 国产精品98久久久久久宅男小说| 久久这里只有精品中国| 春色校园在线视频观看| 男人狂女人下面高潮的视频| 欧美高清性xxxxhd video| 国产精品久久久久久久久免| 久久久精品大字幕| 欧洲精品卡2卡3卡4卡5卡区| videossex国产| 精品久久久久久久久av| 国产蜜桃级精品一区二区三区| 五月伊人婷婷丁香| 村上凉子中文字幕在线| 久久久久久九九精品二区国产| 午夜福利在线观看免费完整高清在 | 欧美日韩亚洲国产一区二区在线观看| 一边摸一边抽搐一进一小说| 男人舔女人下体高潮全视频| 国产一级毛片七仙女欲春2| 欧美精品啪啪一区二区三区| 成人综合一区亚洲| 国内精品久久久久久久电影| 欧美最新免费一区二区三区| 熟妇人妻久久中文字幕3abv| av在线老鸭窝| 淫秽高清视频在线观看| 中文资源天堂在线| 成人av在线播放网站| 久久久精品欧美日韩精品| 免费看a级黄色片| 国产三级在线视频| 高清日韩中文字幕在线| 91久久精品国产一区二区三区| 欧美一区二区亚洲| 三级毛片av免费| 看片在线看免费视频| 小说图片视频综合网站| 国产伦精品一区二区三区视频9| 免费大片18禁| 丝袜美腿在线中文| 欧美丝袜亚洲另类 | www日本黄色视频网| 深夜精品福利| 国产一区二区在线av高清观看| 国产女主播在线喷水免费视频网站 | 少妇高潮的动态图| 欧美激情久久久久久爽电影| 国产伦在线观看视频一区| 午夜福利在线观看免费完整高清在 | 日本一本二区三区精品| 国产色爽女视频免费观看| 亚洲在线自拍视频| 欧美日本视频| 又紧又爽又黄一区二区| 亚洲欧美日韩无卡精品| a级毛片a级免费在线| 亚洲av免费高清在线观看| 亚洲不卡免费看| 国产精品乱码一区二三区的特点| 国产精品久久久久久亚洲av鲁大| 精品乱码久久久久久99久播| 男女视频在线观看网站免费| 成年免费大片在线观看| 真人做人爱边吃奶动态| 老熟妇仑乱视频hdxx| 男女做爰动态图高潮gif福利片| 日韩欧美免费精品| 国产精品永久免费网站| 日韩精品青青久久久久久| 欧美性猛交╳xxx乱大交人| 国产单亲对白刺激| 日本-黄色视频高清免费观看| 久久人人爽人人爽人人片va| 亚洲男人的天堂狠狠| 成人特级黄色片久久久久久久| 精品久久国产蜜桃| 成熟少妇高潮喷水视频| ponron亚洲| 国产伦人伦偷精品视频| 老师上课跳d突然被开到最大视频| 欧美日韩黄片免| 国产亚洲91精品色在线| 精品久久久久久成人av| 日韩人妻高清精品专区| 一区二区三区免费毛片| 波多野结衣巨乳人妻| 国产不卡一卡二| 18禁裸乳无遮挡免费网站照片| 少妇的逼水好多| 婷婷色综合大香蕉| 精品一区二区三区视频在线| 国产午夜精品论理片| 色吧在线观看| 成人鲁丝片一二三区免费| 亚洲人成网站在线播放欧美日韩| 亚洲狠狠婷婷综合久久图片| 中文在线观看免费www的网站| 国产爱豆传媒在线观看| 午夜福利在线观看吧| 淫妇啪啪啪对白视频| 日本五十路高清| 国产黄色小视频在线观看| 乱码一卡2卡4卡精品| 久久热精品热| 中亚洲国语对白在线视频| 国产 一区 欧美 日韩| 亚洲精品亚洲一区二区| 91久久精品国产一区二区成人| av黄色大香蕉| 国产精品福利在线免费观看| 在现免费观看毛片| 在线观看舔阴道视频| 亚洲美女视频黄频| 非洲黑人性xxxx精品又粗又长| 国产精品国产高清国产av| 亚洲综合色惰| 又爽又黄无遮挡网站| 国产视频一区二区在线看| 久久久久久大精品| 大又大粗又爽又黄少妇毛片口| 村上凉子中文字幕在线| 简卡轻食公司| 永久网站在线| 精品久久久久久久末码| 内射极品少妇av片p| 日日撸夜夜添| 亚洲欧美激情综合另类| 免费观看在线日韩| 一边摸一边抽搐一进一小说| 一个人看视频在线观看www免费| 日韩欧美一区二区三区在线观看| 久久精品国产99精品国产亚洲性色| 午夜福利在线观看免费完整高清在 | 1000部很黄的大片| 日韩高清综合在线| 成人高潮视频无遮挡免费网站| 美女高潮喷水抽搐中文字幕| 91麻豆av在线| 老熟妇仑乱视频hdxx| av视频在线观看入口| 成人美女网站在线观看视频| 在线观看一区二区三区| 国内精品久久久久久久电影| 悠悠久久av| 亚洲欧美日韩卡通动漫| 欧美潮喷喷水| 色尼玛亚洲综合影院| 窝窝影院91人妻| 国产精品久久视频播放| 久9热在线精品视频| 人人妻人人看人人澡| www日本黄色视频网| 美女cb高潮喷水在线观看| 在线国产一区二区在线| 97人妻精品一区二区三区麻豆| 99国产精品一区二区蜜桃av| 国产大屁股一区二区在线视频| 亚洲成人久久性| 99热只有精品国产| 啪啪无遮挡十八禁网站| 校园春色视频在线观看| 日本撒尿小便嘘嘘汇集6| 国产亚洲精品av在线| 成人av一区二区三区在线看| 免费电影在线观看免费观看| 在线观看午夜福利视频| 看免费成人av毛片| 国产精品一区二区三区四区久久| 18禁黄网站禁片午夜丰满| 九九在线视频观看精品| 天堂动漫精品| 少妇人妻精品综合一区二区 | 亚洲国产精品成人综合色| 国内精品久久久久久久电影| 亚洲成人久久性| 亚洲av第一区精品v没综合| 久久精品国产99精品国产亚洲性色| 国产伦一二天堂av在线观看| 88av欧美| 美女 人体艺术 gogo| 夜夜看夜夜爽夜夜摸| 我要搜黄色片| 九九爱精品视频在线观看| 人人妻,人人澡人人爽秒播| 校园人妻丝袜中文字幕| 色av中文字幕| 夜夜看夜夜爽夜夜摸| 一夜夜www| 亚洲av中文字字幕乱码综合| 精品国产三级普通话版| 亚洲va在线va天堂va国产| 欧美精品啪啪一区二区三区| 国产精品日韩av在线免费观看| 国产日本99.免费观看| 熟女电影av网| 噜噜噜噜噜久久久久久91| 欧美色视频一区免费| 看十八女毛片水多多多| 3wmmmm亚洲av在线观看| 十八禁网站免费在线| 国产精品一区二区性色av| 此物有八面人人有两片| 亚洲成av人片在线播放无| 午夜精品一区二区三区免费看| 国产精品久久电影中文字幕| 麻豆一二三区av精品| 国产免费一级a男人的天堂| 色吧在线观看| 悠悠久久av| 国产高清不卡午夜福利| 亚洲在线观看片| 在线播放国产精品三级| 18+在线观看网站| 亚洲精华国产精华液的使用体验 | 人妻制服诱惑在线中文字幕| 日日啪夜夜撸| 欧美日韩中文字幕国产精品一区二区三区| 国产高清视频在线观看网站| 搡老妇女老女人老熟妇| 久久午夜亚洲精品久久| 欧美丝袜亚洲另类 | 十八禁国产超污无遮挡网站| xxxwww97欧美| 精品久久久久久久久久免费视频| 亚洲国产精品合色在线| 精品久久久久久,| 听说在线观看完整版免费高清| 99热这里只有是精品在线观看| 亚洲国产精品久久男人天堂| 在线播放国产精品三级| 色尼玛亚洲综合影院| 国产av一区在线观看免费| 变态另类成人亚洲欧美熟女| 午夜a级毛片| 日本 欧美在线| 成人一区二区视频在线观看| 亚洲国产精品sss在线观看| 欧美丝袜亚洲另类 | 欧美激情在线99| 免费看光身美女| 男女之事视频高清在线观看| 日韩精品中文字幕看吧| 99国产精品一区二区蜜桃av| 天堂网av新在线| 88av欧美| 啦啦啦韩国在线观看视频| 国产精品一区二区性色av| 黄色女人牲交| 国产91精品成人一区二区三区| av在线蜜桃| 三级男女做爰猛烈吃奶摸视频| 97碰自拍视频| 久久精品综合一区二区三区| 淫秽高清视频在线观看| 两个人视频免费观看高清| 在线免费观看不下载黄p国产 | 一卡2卡三卡四卡精品乱码亚洲| 亚洲午夜理论影院| 大又大粗又爽又黄少妇毛片口| 精品国内亚洲2022精品成人| 亚洲一区二区三区色噜噜| 99在线人妻在线中文字幕| 国产精华一区二区三区| 国产欧美日韩一区二区精品| 在线观看美女被高潮喷水网站| 免费搜索国产男女视频| 十八禁国产超污无遮挡网站| 精品久久久久久久久久免费视频| 国产白丝娇喘喷水9色精品| 亚洲精品日韩av片在线观看| 亚洲国产欧洲综合997久久,| 亚洲欧美清纯卡通| 窝窝影院91人妻| 久久久久久久久久久丰满 | 日韩av在线大香蕉| 99久久无色码亚洲精品果冻| 一级av片app| 少妇高潮的动态图| 一区二区三区激情视频| 免费观看在线日韩| 99视频精品全部免费 在线| 亚洲自拍偷在线| 精品免费久久久久久久清纯| 国产69精品久久久久777片| 99精品在免费线老司机午夜| 国产精品一区二区性色av| 欧美黑人巨大hd| 熟女人妻精品中文字幕| 精品人妻一区二区三区麻豆 | 99国产极品粉嫩在线观看| 变态另类成人亚洲欧美熟女| a级一级毛片免费在线观看| 欧美人与善性xxx| 99国产极品粉嫩在线观看| 成人国产麻豆网| 真人一进一出gif抽搐免费| 美女被艹到高潮喷水动态| 国产高潮美女av| 日韩精品青青久久久久久| 欧美日韩综合久久久久久 | 国产一区二区激情短视频| 午夜爱爱视频在线播放| 中文字幕av在线有码专区| 波野结衣二区三区在线| 久久这里只有精品中国| 99riav亚洲国产免费| 熟妇人妻久久中文字幕3abv| www日本黄色视频网| 国产精品久久视频播放| 少妇人妻精品综合一区二区 | 日本三级黄在线观看| 国产极品精品免费视频能看的| 国产av不卡久久| 国产精品综合久久久久久久免费| 亚洲性久久影院| 亚洲美女黄片视频| av在线观看视频网站免费| 俺也久久电影网| 我的老师免费观看完整版| 久久人人精品亚洲av| 黄色视频,在线免费观看| 露出奶头的视频| 国产淫片久久久久久久久| 美女高潮的动态| 亚洲三级黄色毛片| 又紧又爽又黄一区二区| 久久久精品欧美日韩精品| 搡老妇女老女人老熟妇| 琪琪午夜伦伦电影理论片6080| www日本黄色视频网| 制服丝袜大香蕉在线| 日本一二三区视频观看| 成人av在线播放网站| 99久久精品一区二区三区| 精品一区二区免费观看| 成年女人毛片免费观看观看9| 啦啦啦观看免费观看视频高清| av天堂在线播放| 一本久久中文字幕| 亚洲最大成人手机在线| 亚洲va在线va天堂va国产| 亚洲av成人精品一区久久| 午夜福利在线观看免费完整高清在 | 精品一区二区三区视频在线观看免费| 18禁黄网站禁片午夜丰满| 99热精品在线国产| 老熟妇乱子伦视频在线观看| 国内精品美女久久久久久| 国产高清视频在线观看网站| 欧美成人性av电影在线观看| 久久久国产成人精品二区| 欧美人与善性xxx| 97人妻精品一区二区三区麻豆| 亚洲欧美日韩卡通动漫| 十八禁国产超污无遮挡网站| 午夜福利视频1000在线观看| 不卡视频在线观看欧美| 琪琪午夜伦伦电影理论片6080| 日韩av在线大香蕉| 天堂av国产一区二区熟女人妻| 欧美日本视频| 欧美黑人欧美精品刺激| 午夜免费激情av| 久久人妻av系列| 国产 一区精品| 欧美日韩乱码在线| 免费人成视频x8x8入口观看| 午夜爱爱视频在线播放| 黄色配什么色好看| 亚洲熟妇中文字幕五十中出| www.www免费av| 尾随美女入室| www.色视频.com| 久久午夜亚洲精品久久| 91在线观看av| 欧美bdsm另类| 国产亚洲精品久久久com| 看黄色毛片网站| 国产免费一级a男人的天堂| 老熟妇仑乱视频hdxx| 成人三级黄色视频| 啪啪无遮挡十八禁网站| 免费在线观看日本一区| 国产成人一区二区在线| 亚洲精品在线观看二区| 日韩欧美精品v在线| 国产一区二区在线观看日韩| 免费看av在线观看网站| 亚洲国产精品成人综合色| 国产精品不卡视频一区二区| 精品一区二区免费观看| 亚洲欧美激情综合另类| 看十八女毛片水多多多| 一a级毛片在线观看| 久久午夜亚洲精品久久| 国产日本99.免费观看| 伦理电影大哥的女人| 久久亚洲真实| 亚洲av二区三区四区| 欧美日韩乱码在线| 中文字幕高清在线视频| 亚洲成人久久性| 毛片一级片免费看久久久久 | 欧美zozozo另类| 最新在线观看一区二区三区| 日韩中文字幕欧美一区二区| 91麻豆精品激情在线观看国产| 级片在线观看| 免费av不卡在线播放| 18禁在线播放成人免费| 国产v大片淫在线免费观看| 日韩 亚洲 欧美在线| 免费观看精品视频网站| av在线观看视频网站免费| 嫁个100分男人电影在线观看| 精品久久久久久久久久免费视频| 人人妻人人澡欧美一区二区| 乱人视频在线观看| 老司机深夜福利视频在线观看| 免费人成视频x8x8入口观看| 熟妇人妻久久中文字幕3abv| 久久人人爽人人爽人人片va| 少妇人妻精品综合一区二区 | 一进一出抽搐动态| 亚洲人成网站在线播放欧美日韩| 可以在线观看毛片的网站| 老司机深夜福利视频在线观看| 欧美日韩乱码在线| 午夜视频国产福利| 国产91精品成人一区二区三区| 嫁个100分男人电影在线观看| 亚洲va日本ⅴa欧美va伊人久久| 男女做爰动态图高潮gif福利片| 亚洲国产欧洲综合997久久,| 欧美色欧美亚洲另类二区| 国产麻豆成人av免费视频| 免费av不卡在线播放| 小说图片视频综合网站| 丝袜美腿在线中文| 熟女人妻精品中文字幕| 日本-黄色视频高清免费观看| 亚洲av第一区精品v没综合| netflix在线观看网站| 小蜜桃在线观看免费完整版高清| 亚洲国产高清在线一区二区三| 99国产精品一区二区蜜桃av| 日本一二三区视频观看| 亚洲成a人片在线一区二区| 亚洲国产精品合色在线| 三级国产精品欧美在线观看| 色播亚洲综合网| 精品一区二区三区av网在线观看| 婷婷亚洲欧美| 国产精品av视频在线免费观看| 国产视频内射| 成人av一区二区三区在线看| 国产不卡一卡二| 性色avwww在线观看| 午夜免费男女啪啪视频观看 | 午夜影院日韩av| 亚洲成人久久爱视频| 一卡2卡三卡四卡精品乱码亚洲| 久久精品国产亚洲av香蕉五月| 国内精品宾馆在线| 久久热精品热| 可以在线观看的亚洲视频| 搡老熟女国产l中国老女人| 欧美区成人在线视频| 少妇的逼好多水| 联通29元200g的流量卡| 国产伦精品一区二区三区视频9| 91久久精品国产一区二区成人| av在线老鸭窝| 丰满的人妻完整版| 亚洲成人久久爱视频| 精品人妻一区二区三区麻豆 | 变态另类丝袜制服| 欧美在线一区亚洲| 中文字幕人妻熟人妻熟丝袜美| 午夜福利在线在线| 制服丝袜大香蕉在线| 欧美日韩亚洲国产一区二区在线观看| 两个人的视频大全免费| 久9热在线精品视频| 99久久久亚洲精品蜜臀av| 非洲黑人性xxxx精品又粗又长| 亚洲成人久久性| bbb黄色大片| 国产色婷婷99| 丰满人妻一区二区三区视频av| 日本爱情动作片www.在线观看 | 色视频www国产|