• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Analysis of fluid vibration transfer path and parameter sensitivity of swash plate axial piston pump①

    2022-07-06 03:22:58ZHAOJianhua趙建華WANGXinweiLIUHangPEIYouzhiYANGYongWUZhaohuaWANGJinXINGLanchunDUGuojun
    High Technology Letters 2022年2期

    ZHAO Jianhua(趙建華), WANG Xinwei, LIU Hang, PEI Youzhi, YANG Yong,WU Zhaohua, WANG Jin, XING Lanchun, DU Guojun

    (?Shijiazhuang Haishan Industrial Development Co., Ltd., Shijiazhuang 050200, P.R.China)

    (??Fluid Power Transmission and Control Laboratory,Yanshan University, Qinhuangdao 066004, P.R.China)

    (???College of Civil Engineering and Mechanics,Yanshan University, Qinhuangdao 066004, P.R.China)

    Abstract Taking swash plate axial piston pump as the research object, the mechanism of fluid vibration and transfer rule are analyzed. The pump shell can be assumed as the ultimate recipient of vibration transmission, the path model and differential equations from the fluid to the shell are established.The parameters of the path model are determined by the simulation software, and the mathematical model is solved by the simulation software. And time/frequency domain analysis of vibration acceleration of shell is presented. Based on the different influence of various parameters in the transfer path model on transfer characteristics and vibrational recipients, the time-varying parameters are studied by using sensitivity analysis theory, and the influence of the structural parameters on the vibration characteristics of vibration subject is quantitatively analyzed.The research in the paper provides theoretical basis for vibration analysis and structure parameter optimization of axial piston pump.

    Key words:axial plunger pump, fluid vibration, transfer path, shell vibration, fault analysis

    0 Introduction

    Axial piston pump is the core element of hydraulic system, which provides continuous power for the whole hydraulic system and ensures the security and stability of the safe and stable operation of hydraulic system.Therefore, it is very important to monitor the flow rate,pressure, vibration and temperature of the piston pump, and it is necessary to study on generation of vibration, transfer law and the key parameter of performance indexes and health status in order to reveal the occurrence mechanism and influence law of the malfunction of the piston pump and improve the operation stability and longer working life of piston pump[1].

    The vibration of axial piston pump mainly includes fluid vibration and mechanical vibration[2], in which fluid vibration is caused by the inherent flow pulsation of piston pump and the vibration pressure shock, as well as the vibration is caused by flow backward in oil trapped area of port plate and pressure shock[3].

    Many scholars have done a lot of researches on the fluid vibration of piston pump. Ref.[4] established the mathematical model of the pressure in the piston chamber of the axial piston pump firstly. Ref.[5] calculated the pressure of plunger cavity by using the differential method. Ref.[6] analyzed the influence of the oil characteristics of the buffer trough on the flow pulsation of the axial piston pump and obtained the pressure, flow rate and flow pulsation of the piston cavity of the piston chamber of the axial piston pump under the condition of gas-liquid two-phase flow. Ref.[7] established a simulation model of pressure in the plunger cavity of axial piston pump and the system identification method was used to determine the values of the parameters in the model to improve the accuracy of the plunger cavity pressure simulation model. Refs[8-10]conducted vibration experiments on the axial piston pump, which proved that the main source of vibration of the plunger pump was the swash plate-variable mechanism, as well as flow reverse irrigation and pressure impact in oil-trapped areas of the oil distribution pan.

    Ref.[11] solved the problem of uncertain vibration transmission paths by analyzing the random response of vibration transmission path systems in the time domain. The new concept of path transmission was proposed and the problem of measuring the probability of vibration and noise transmission paths in the time/frequency domain was solved. Based on dynamic sensitivity analysis, an effective method to evaluate the effect of changes in parameters and nonlinear stiffness on the dynamic response of vibration receptor at each transfer path was proposed[12-14].

    These researches are of great significance in revealing the vibration mechanism of axial piston pumps.

    This paper takes front, middle and rear shell of axial piston pump as the final vibration receptors, and establishes the path model of pump fluid vibration transmission with the vibration transmission path method. The numerical simulation and finite element analysis are used to determine the model parameters and to solve the vibration mathematical model, and then the result shows that the main vibration receptor of the piston pump shell is the rear shell. The contribution of time-varying parameters to rear shell vibration is analyzed, and the first-order sensitivity time domain curve and sensitivity index of each parameter can be obtained. The research provides a new idea of revealing the vibration transmission regularity of axial piston pump and the vibration control of axial piston pump.

    1 Fluid vibration model of swash plate axial plunger pump

    1.1 Boundary conditions of fluid vibration transfer path

    A swash plate axial plunger pump is taken as the research object of the fluid vibration of the plunger pump, and some assumptions can be shown as follows.

    (1) The unbalance and eccentricity of the rotor are ignored.

    (2) The source of fluid vibration is the flow impact, pressure pulsation and flow backflow of the front shell.

    (3) The source of excitation force is the plunger cavity pressure, and the front, middle and rear shell are the final acceptors.

    (4) Cylinder and shaft are assumed as the whole rotating components.

    (5) The ball-hinge movement between plunger and slipper is ignored.

    (6) The rotation and swing motion of the plunger are ignored.

    (7) The quality of the connection element is equivalent to the vibration body, and the oil film between the contact surfaces is considered as rigid elastomer.

    (8) The axial damping of the bearing is ignored.

    1. 2 Physical model of fluid vibration transfer path

    There are three transfer paths in physical model of fluid vibration transfer path (Fig.1).

    Path 1 Plungercavity oil →Plunger slipper assembly →Swash plate →Cylindrical roller bearing →Rear shell.

    Path 2 Plunger cavity oil→Plunger slipper assembly→Swash plate→Variable mechanism→Middle shell.

    Path 3 Plunger cavity oil→Cylinder block and drive shaft→Front shell.

    Fig.1 Physical model of transfer path of fluid vibration shell of axial piston pump

    As shown in Fig.1,Fis the exciting force on the oil in the plunger cavity;xb,xm,xf,xvm,xsp,xp,xoandxcbare respectively the vibration displacement of the rear shell, middle shell, front shell, variable mechanism,swash plate, plunger slipper component,plunger cavity oil, cylinder block, drive shaft and valve plate under the action of excitation forceF;mb,mm,mf,mvm,msp,mp,moandmcbare the actual mass of the rear shell, middle shell, front shell, variable mechanism, swash plate, slipper, plunger, plunger cavity oil, cylinder block and drive shaft respectively;k1is axial stiffness between the rear shell and the middle shell;k2is stiffness between the middle shell and the front shell;k3is axial stiffness of cylindrical roller bearing;k4is axial stiffness of deep groove ball bearing;kb1is axial stiffness of cylindrical roller bearing;kb2is axial stiffness of deep groove ball bearing;kspis axial stiffness between the rear shell and the variable mechanism;ksbandcsbare stiffness and damping of oil film supported by slipper;kowandcoware stiffness and damping of the oil film ofwth plunger cavity;cvmis damping of oil film of variable mechanism;kmfandcmfare stiffness and damping of oil film of port plate pair support. There are nine plungers in the axial plunger pump in the paper.

    1.3 Mathematical model of fluid vibration

    The model of the fluid vibration transmission path of the axial piston pump is established by using analytical mechanics to determine the functional relationship between the components in the paper, and Lagrange function is shown as Eq.(1)[15].

    where,Tis work done by inertial forces,Uis work done by elastic forces,Dis work done by damping forces,qjis generalized coordinates,Ωis generalized force.

    The fluid vibration transfer path of axial plunger pump is established and the functional relationship between components is determined in order to get Lagrange equation of plunger pump as Eq.(2).

    where,Fn=F0·sin(2πn/60)t,nis rotate speed of axial plunger pump, when the pump speed is not the same,the frequency of excitation force will be different.

    2 Axial plunger pump determination of model parameter

    The assumptions are shown as follows.

    (1) Stiffness and damping are constant,nonlinear and time-varying characteristics are ignored.

    Fig.2 Finite element analysis of stiffness of deep groove ball bearing

    (2) The effects of roughness and friction force are ignored in the finite element modeling process.

    Finite element modeling analysis is shown as Fig.2.

    Referencing to Refs[15-17], through the above finite element analysis in Fig.2, combined with theoretical calculation and field measurement methods, the parameters are determined as shown in Table 1.

    Table 1 Parameters of axial piston pump

    3 Solution and analysis on transfer path model of vibration

    Due to the periodic and time-varying characteristics of the fluid vibration source, Runge-Kutta method[16]can be used to solve the vibration model.

    The vibration acceleration time/frequency domain diagram of the final receptor (front shell, middle shell, rear shell) of the transfer path system are presented as follows. The response curve in the time domain/frequency domain of accelerated vibration of the front shell under 5900 r/min and 19.6 MPa is shown in Fig.3.

    Accelerated vibration time/frequency domain response curve of middle shell under 5900 r/min and 19.6 MPa is shown in Fig.4.

    The accelerated vibration time domain/frequency domain response curve of the rear shell under 5900 r/min and 19.6 MPa is shown in Fig.5.

    According to Fig.3 -Fig.5, the time domain response of shell includes the transient state and the steady state. In the transient state stage, the amplitude of the shell is large and it can be arranged as rear shell>front shell >middle shell.

    Fig.3 Vibration response curve of front shell

    Fig.4 Vibration response curve of middle shell

    Fig.5 Vibration response curve of rear shell

    The initial maximum amplitude of front shell is about 5.7 m/s2, after that, the vibration amplitude decreases to about 0.2 m/s2; the initial maximum amplitude of middle shell is about 4.2 m/s2, after a period of stability, the vibration amplitude decreases to about 2.3 m/s2; the initial maximum amplitude of rear shell is about 12 m/s2, after a period of stability, the vibration amplitude decreases to about 5.3 m/s2; due to the influence of oil damping at the sliding shoe pair,plunger cavity and swash plate variable mechanism on the system, the vibration of the shell will gradually decrease and finally enter the steady-state response stage.At this time, the vibration is periodic.

    The fundamental frequency of the shell is 135 Hz,and all order harmonics are integral times of the fundamental frequency, which is consistent with the exciting frequency caused by fluid vibration of axial piston pump. The first order response frequency of vibration acceleration is 1350 Hz, the second order is 2430 Hz and the third order is 3375 Hz. The shell is easy to incur the strong resonance in the vicinity of 2430 Hz.

    Compared with Fig.3 -Fig.5, the front shell and bell cover are fixed, the vibration structure of the whole pump is cantilever beam structure, and its main vibration mode is vertical to the axial swing, and the vibration of the front shell and the middle shell are finally be superimposed on the rear shell. Moreover,when the pump is working, the rotating part around the main shaft rotates at high speed, and the vibration is transmitted from inside to outside along the pump shaft direction, which leads to the largest vibration amplitude of the rear shell compared with the front shell and the middle shell.

    4 Time domain response sensitivity analysis of fluid vibration system

    The vibration transfer path is the hub connecting the excitation source and causing the vibration of the receptor. However, the influence degree of the parameters such as damping and stiffness in the system is different. In order to reveal the influence factors of the parameters on the vibration response of the whole system more intuitively, it is necessary to analyze the sensitivity of the parameters in the current system[17]. In this section, the sensitivity analysis method is used to analyze the parameters in the system,and the influence of the change on the vibration response of each vibration receptor is studied, which provides guidance for the optimization of structural parameters of axial piston pump[18].

    4.1 State space description of vibration system

    The state space expression of fluid vibration system of axial piston pump is

    In which,aispdimensional state variable,yismdimension parameter vector,uis therinput vector independent ofa,tis time.

    The 16 state variables (velocity and displacement), 1 input (excitation force) and 12 structural parameters (stiffness and damping)are selected as the research objects, and each vector in the equation of state can be expressed as

    4.2 First order trajectory sensitivity equation

    Since the state variableyis a function related to the parameter vectoraand the input vectoru, Eq.(7)can be obtained by partial derivatives of the parameter vectoraon both side of Eq.(3).

    Taking the partial derivative of the functionf(y,u,a,t) with respect to the parameter vectora, the free term matrix is got.

    4.3 Solution of first order trajectory sensitivity

    According to the established first-order trajectory sensitivity model of the vibration system, the time-domain curve of first-order trajectory sensitivity of structural parameters to state variables can be obtained by using the simulation software. Owing to spatial confine,the rear shell with the most violent vibration is selected to analyze the vibration velocity sensitivity[19].

    Fig.6 shows the time-domain curve of the first-order trajectory sensitivity function of the vibration velocityy2of the rear shell to the parameterai.

    Fig.6 Time domain curve of first-order trajectory sensitivity function of vibration velocity

    It can be seen that the contribution of structural parameters to the vibration velocity response of the pump rear shell is obviously different,λ92,λ112,λ102,λ122are the sensitivity functions of the vibration velocity of the rear shell to the damping parameters, which are greater than other (stiffness parameters) sensitivity functions.

    When the parameters change with the same value,the influence of damping parameter is more significant than that of stiffness parameter. Due to the great difference between the damping parameters and stiffness parameters, if only comparing the amplitude of the above sensitivity function, one can not accurately judge the influence degree of each parameter on the vibration velocity of the shell, therefore it needs further analysis.

    4.4 Measurement index and solution of first order trajectory sensitivity

    The first order trajectory sensitivity curve describes the change process of the influence degree of each structural parameter on the state variables, but itcan not accurately determine the change trend of the vibration velocity of the shell when the parameters change by percentage. Therefore, based on the two sensitivity evaluation indexes defined in Ref.[20],this section obtains the first-order trajectory sensitivity measurement index for the changes of various structural parameters according to the vibration response of the pump rear shell.

    The relationship between the change of parameter vector △aand the change of state variable △yisi

    Sensitivity index 1 The percentage of the ratio of the state variable variation △yto its maximum valueymax,and the expression of the percentage is shown in Eq.(13).

    This percentage varies over time and its maximum value is expressed as

    According to Eq.(13) and Eq.(14), two bar charts of sensitivity measures are obtained when each parameter changes 1%, 2% and 3% respectively, as shown in Fig.7.

    The figure shows that the two sensitivity indexes change linearly with the change of each parameter. The influence of the parameters on the vibration velocityY2of the rear shell is as follows.

    The two sensitivity indexes of stiffnessa3and dampinga11of oil film of supporting oil film of port plate pair, stiffnessa5and dampinga9of oil film of supporting oil film of slippers,oil dampinga10of plunger chamber and dampinga12between the rear shell and the variable mechanism account for a small proportion compared with other parameters, among which, the influence of the stiffnessa5of the slippers support oil film on the vibration speed of the pump rear housing has minimal impact. The two sensitivity indexes of the axial stiffnessa1of the bolt group connection between the rear shell and the middle shell and the axial stiffnessa2between the middle shell and the front shell are obviously larger than other parameters, this is because the parameter value is relatively higher, among which, the sensitivity index of parametera1is the largest. In addition to these two parameters, the sensitivity indexes of the axial stiffnessa4between the rear shell and the variable mechanism, the stiffnessa6of the oil in the plunger chamber, the axial stiffnessa7of the cylindrical roller bearing and the axial stiffnessa8of the deep groove ball bearing are also larger. Therefore, in the process of fault diagnosis for a piston pump, the influence of these parameters on the system characteristics should be considered.

    Fig.7 Histogram of two sensitivity measures when each parameter changes △a

    5 Conclusions

    The physical model of fluid vibration transmission path is abstracted for axial piston pump, and the corresponding mathematical model of vibration are deduced by analytical mechanics, which can completely reflects the characteristics of fluid vibration of the pump.

    The model parameters are determined by the finite element method, and the mathematical model is programmed by the Runge-Kutta method to obtain the vibration response of the pump shell structure in the time/frequency domain, which lays a foundation for improving the accurate solution of the axial piston pump fluid vibration transmission path model.

    The parameter sensitivity analysis is used to analyze the contribution of time-varying parameters to the vibration of the rear shell, which has the strongest vibration. The first-order sensitivity time-domain curve of each parameter and the sensitivity index of each parameter varying by 1% are obtained, which reflects the influence of each parameter on the response of fluid vibration in the backshell.

    91在线观看av| 午夜亚洲福利在线播放| 国产淫片久久久久久久久 | 国产久久久一区二区三区| 在线播放无遮挡| 亚洲成人久久性| 日韩欧美国产在线观看| 国产在视频线在精品| 国产精品亚洲美女久久久| 国产成人影院久久av| 亚洲欧美日韩高清专用| 亚洲国产中文字幕在线视频| 韩国av一区二区三区四区| 999久久久精品免费观看国产| 国产不卡一卡二| 久久久精品欧美日韩精品| tocl精华| 亚洲国产中文字幕在线视频| 无限看片的www在线观看| 国产乱人视频| 男女床上黄色一级片免费看| 最近最新免费中文字幕在线| 99久久综合精品五月天人人| 午夜日韩欧美国产| 在线观看av片永久免费下载| 亚洲熟妇中文字幕五十中出| 岛国在线免费视频观看| 国产97色在线日韩免费| 真人做人爱边吃奶动态| 999久久久精品免费观看国产| 丰满人妻一区二区三区视频av | netflix在线观看网站| 三级国产精品欧美在线观看| 国产欧美日韩一区二区三| 日韩av在线大香蕉| 美女高潮的动态| 小蜜桃在线观看免费完整版高清| 成人av一区二区三区在线看| 国产精品免费一区二区三区在线| 亚洲精华国产精华精| 色综合欧美亚洲国产小说| 色综合婷婷激情| 12—13女人毛片做爰片一| 久久99热这里只有精品18| 国产免费av片在线观看野外av| 日本与韩国留学比较| 国产三级中文精品| 日本与韩国留学比较| 伊人久久大香线蕉亚洲五| 身体一侧抽搐| 久久99热这里只有精品18| 国产精品久久久久久人妻精品电影| av片东京热男人的天堂| 欧美日本视频| 欧美+亚洲+日韩+国产| 国产黄a三级三级三级人| tocl精华| 免费在线观看日本一区| 国产99白浆流出| 宅男免费午夜| 中国美女看黄片| 久久伊人香网站| 成人国产综合亚洲| eeuss影院久久| 日日干狠狠操夜夜爽| 成人鲁丝片一二三区免费| 无限看片的www在线观看| 婷婷精品国产亚洲av在线| 久久久久久国产a免费观看| 一级作爱视频免费观看| 国产在线精品亚洲第一网站| 国产视频一区二区在线看| 日韩精品中文字幕看吧| 欧美乱色亚洲激情| 日本成人三级电影网站| 日本与韩国留学比较| 国产精品精品国产色婷婷| 少妇人妻精品综合一区二区 | 麻豆一二三区av精品| 91字幕亚洲| 噜噜噜噜噜久久久久久91| 熟女人妻精品中文字幕| 丁香六月欧美| 在线观看av片永久免费下载| 淫秽高清视频在线观看| 黄色片一级片一级黄色片| av专区在线播放| 日韩欧美 国产精品| 亚洲熟妇中文字幕五十中出| 久久午夜亚洲精品久久| 久久久精品大字幕| 亚洲 欧美 日韩 在线 免费| 99热只有精品国产| 精品欧美国产一区二区三| 亚洲欧美日韩高清在线视频| 老汉色∧v一级毛片| 长腿黑丝高跟| 女警被强在线播放| 少妇的逼水好多| 久久欧美精品欧美久久欧美| 久久久久久大精品| 桃色一区二区三区在线观看| 91在线观看av| 亚洲成人中文字幕在线播放| 日韩av在线大香蕉| 亚洲男人的天堂狠狠| 一个人看的www免费观看视频| 午夜a级毛片| 欧美在线一区亚洲| 精品久久久久久成人av| 亚洲专区国产一区二区| 一进一出好大好爽视频| 国产精华一区二区三区| 久久国产精品人妻蜜桃| 精品国产亚洲在线| 国产黄a三级三级三级人| 18禁黄网站禁片午夜丰满| 午夜视频国产福利| 国产av在哪里看| 午夜亚洲福利在线播放| 国产97色在线日韩免费| 757午夜福利合集在线观看| 国内揄拍国产精品人妻在线| 免费看十八禁软件| 法律面前人人平等表现在哪些方面| 在线观看舔阴道视频| 国产真实伦视频高清在线观看 | 噜噜噜噜噜久久久久久91| 欧美中文日本在线观看视频| 网址你懂的国产日韩在线| 精品国产美女av久久久久小说| 性色avwww在线观看| 国产精品一区二区免费欧美| 免费在线观看影片大全网站| 国产亚洲欧美在线一区二区| 夜夜夜夜夜久久久久| 国产精品乱码一区二三区的特点| 搡女人真爽免费视频火全软件 | 手机成人av网站| 国产伦精品一区二区三区视频9 | 一个人看的www免费观看视频| 精品乱码久久久久久99久播| 久99久视频精品免费| 香蕉久久夜色| avwww免费| 最后的刺客免费高清国语| 国产色婷婷99| 国产男靠女视频免费网站| 欧美成人性av电影在线观看| 91字幕亚洲| 精品久久久久久久毛片微露脸| 97超级碰碰碰精品色视频在线观看| 少妇熟女aⅴ在线视频| 亚洲片人在线观看| 男插女下体视频免费在线播放| 真人做人爱边吃奶动态| www日本黄色视频网| 一区二区三区免费毛片| 亚洲欧美日韩高清在线视频| 亚洲美女黄片视频| 啪啪无遮挡十八禁网站| 日韩大尺度精品在线看网址| 精品人妻1区二区| 日本免费a在线| 色尼玛亚洲综合影院| 人妻夜夜爽99麻豆av| 亚洲狠狠婷婷综合久久图片| 欧美日韩亚洲国产一区二区在线观看| 全区人妻精品视频| 综合色av麻豆| 一卡2卡三卡四卡精品乱码亚洲| 九九在线视频观看精品| 国产精品日韩av在线免费观看| 狂野欧美激情性xxxx| 一级黄色大片毛片| 亚洲内射少妇av| 成年免费大片在线观看| 在线观看免费视频日本深夜| 久久久国产精品麻豆| 欧美另类亚洲清纯唯美| 不卡一级毛片| 叶爱在线成人免费视频播放| 精品久久久久久久久久久久久| 国产精品综合久久久久久久免费| 观看美女的网站| 精品人妻一区二区三区麻豆 | 午夜免费激情av| 真人做人爱边吃奶动态| 久久精品国产自在天天线| 久久性视频一级片| 在线播放无遮挡| 丰满的人妻完整版| bbb黄色大片| 又黄又爽又免费观看的视频| 国产成年人精品一区二区| 免费在线观看亚洲国产| 小说图片视频综合网站| 亚洲av日韩精品久久久久久密| 欧美日韩亚洲国产一区二区在线观看| 亚洲成人久久性| 亚洲七黄色美女视频| 中文字幕av成人在线电影| 国产三级黄色录像| a在线观看视频网站| 色av中文字幕| 999久久久精品免费观看国产| 免费看美女性在线毛片视频| 国产 一区 欧美 日韩| 神马国产精品三级电影在线观看| 男女视频在线观看网站免费| 日日摸夜夜添夜夜添小说| 亚洲乱码一区二区免费版| 99久久无色码亚洲精品果冻| 亚洲在线观看片| 国产高潮美女av| 一夜夜www| 中文在线观看免费www的网站| 亚洲真实伦在线观看| 午夜福利在线观看吧| 国产av麻豆久久久久久久| 国产不卡一卡二| av女优亚洲男人天堂| 日本熟妇午夜| 深夜精品福利| 成人鲁丝片一二三区免费| 女同久久另类99精品国产91| 极品教师在线免费播放| 国产精品一区二区免费欧美| 亚洲精品日韩av片在线观看 | 国产毛片a区久久久久| 一二三四社区在线视频社区8| 少妇的丰满在线观看| 亚洲电影在线观看av| 18禁美女被吸乳视频| 亚洲在线观看片| 国产一区二区在线观看日韩 | 夜夜看夜夜爽夜夜摸| 18禁在线播放成人免费| 亚洲第一电影网av| 人人妻人人澡欧美一区二区| 美女cb高潮喷水在线观看| 欧美日韩国产亚洲二区| 国产成年人精品一区二区| 国产v大片淫在线免费观看| 三级国产精品欧美在线观看| 99久久无色码亚洲精品果冻| 亚洲成av人片在线播放无| 高清日韩中文字幕在线| 美女高潮的动态| 日本黄大片高清| 久久6这里有精品| 日日摸夜夜添夜夜添小说| 久久精品国产亚洲av香蕉五月| 在线看三级毛片| 精品一区二区三区视频在线观看免费| 午夜亚洲福利在线播放| 国产激情偷乱视频一区二区| 久久久成人免费电影| aaaaa片日本免费| 亚洲成人免费电影在线观看| 国产精品女同一区二区软件 | 国产精品永久免费网站| 亚洲真实伦在线观看| 一本一本综合久久| 99久久九九国产精品国产免费| 变态另类丝袜制服| 成人18禁在线播放| 日韩欧美精品v在线| 欧美日韩一级在线毛片| 久久香蕉精品热| 精品免费久久久久久久清纯| 午夜视频国产福利| 久久久久久久久久黄片| 亚洲欧美精品综合久久99| 在线观看av片永久免费下载| 禁无遮挡网站| 一个人看的www免费观看视频| 欧美性猛交╳xxx乱大交人| 国产色婷婷99| 高清日韩中文字幕在线| 成熟少妇高潮喷水视频| 伊人久久大香线蕉亚洲五| 国产精华一区二区三区| 网址你懂的国产日韩在线| 超碰av人人做人人爽久久 | 国产私拍福利视频在线观看| 成熟少妇高潮喷水视频| 亚洲乱码一区二区免费版| 99精品久久久久人妻精品| 在线观看免费视频日本深夜| 亚洲精品国产精品久久久不卡| 国产中年淑女户外野战色| 欧美精品啪啪一区二区三区| 九九热线精品视视频播放| 久久人妻av系列| 国产不卡一卡二| 两人在一起打扑克的视频| 麻豆久久精品国产亚洲av| 老鸭窝网址在线观看| 在线国产一区二区在线| 长腿黑丝高跟| 午夜久久久久精精品| 色噜噜av男人的天堂激情| 两人在一起打扑克的视频| 一进一出抽搐gif免费好疼| 免费看十八禁软件| 亚洲av五月六月丁香网| 天美传媒精品一区二区| 亚洲国产日韩欧美精品在线观看 | 两性午夜刺激爽爽歪歪视频在线观看| 国产精品日韩av在线免费观看| 亚洲av成人精品一区久久| 国产精品久久久人人做人人爽| 老司机福利观看| 国产三级在线视频| 精品熟女少妇八av免费久了| 国产一级毛片七仙女欲春2| 久久精品91无色码中文字幕| 欧美精品啪啪一区二区三区| 香蕉丝袜av| 在线国产一区二区在线| 久久久久久国产a免费观看| 天堂网av新在线| 黄片小视频在线播放| 亚洲精品乱码久久久v下载方式 | 午夜精品一区二区三区免费看| 九九久久精品国产亚洲av麻豆| 亚洲第一欧美日韩一区二区三区| 色在线成人网| 夜夜夜夜夜久久久久| 国产三级中文精品| 国产美女午夜福利| 人妻夜夜爽99麻豆av| 国产亚洲精品久久久com| 少妇高潮的动态图| 国产高清有码在线观看视频| 成人永久免费在线观看视频| 精品久久久久久久毛片微露脸| 国产精品野战在线观看| 免费高清视频大片| 男女那种视频在线观看| 色噜噜av男人的天堂激情| 可以在线观看的亚洲视频| 无限看片的www在线观看| 激情在线观看视频在线高清| 精品一区二区三区人妻视频| 精品免费久久久久久久清纯| x7x7x7水蜜桃| 白带黄色成豆腐渣| 哪里可以看免费的av片| 成年女人毛片免费观看观看9| 日韩国内少妇激情av| 国产精品三级大全| 亚洲久久久久久中文字幕| 97碰自拍视频| 亚洲黑人精品在线| 看片在线看免费视频| av国产免费在线观看| 1024手机看黄色片| 搡老熟女国产l中国老女人| 国产精品,欧美在线| 国产精品亚洲av一区麻豆| 精品国产超薄肉色丝袜足j| 岛国在线免费视频观看| 国产精品一区二区免费欧美| 无遮挡黄片免费观看| 色精品久久人妻99蜜桃| 小蜜桃在线观看免费完整版高清| 99久久精品热视频| 很黄的视频免费| 精品不卡国产一区二区三区| 噜噜噜噜噜久久久久久91| 内地一区二区视频在线| 日韩欧美国产一区二区入口| 日韩欧美精品免费久久 | 亚洲av成人精品一区久久| 国产男靠女视频免费网站| 国产精品久久视频播放| 91在线观看av| 亚洲av美国av| 久久草成人影院| 一进一出抽搐gif免费好疼| 亚洲国产精品成人综合色| 免费人成在线观看视频色| 国产蜜桃级精品一区二区三区| 热99re8久久精品国产| 黄色日韩在线| 亚洲国产欧美人成| 在线播放国产精品三级| 久久人人精品亚洲av| 午夜福利视频1000在线观看| 老司机深夜福利视频在线观看| 亚洲精品美女久久久久99蜜臀| 色综合欧美亚洲国产小说| 日本免费一区二区三区高清不卡| 91久久精品国产一区二区成人 | 午夜福利18| 国模一区二区三区四区视频| 波多野结衣巨乳人妻| 精品乱码久久久久久99久播| 成人鲁丝片一二三区免费| 老熟妇仑乱视频hdxx| 久久久久国内视频| 韩国av一区二区三区四区| 欧美黄色片欧美黄色片| 国产69精品久久久久777片| 麻豆久久精品国产亚洲av| 亚洲精品影视一区二区三区av| 国产熟女xx| 天堂√8在线中文| 尤物成人国产欧美一区二区三区| 国产野战对白在线观看| 男人的好看免费观看在线视频| 国产探花极品一区二区| 亚洲av日韩精品久久久久久密| 两个人看的免费小视频| 精华霜和精华液先用哪个| 国内精品久久久久久久电影| 精品国产亚洲在线| 极品教师在线免费播放| 脱女人内裤的视频| 国产蜜桃级精品一区二区三区| 国产成人欧美在线观看| ponron亚洲| 一本久久中文字幕| 久久精品国产亚洲av涩爱 | 亚洲成人中文字幕在线播放| 国产中年淑女户外野战色| 不卡一级毛片| 国模一区二区三区四区视频| 久久精品国产亚洲av涩爱 | 久久欧美精品欧美久久欧美| 给我免费播放毛片高清在线观看| 白带黄色成豆腐渣| 国内毛片毛片毛片毛片毛片| 怎么达到女性高潮| 九九久久精品国产亚洲av麻豆| 国产成人aa在线观看| 亚洲成人免费电影在线观看| 欧美zozozo另类| 成人精品一区二区免费| 亚洲熟妇中文字幕五十中出| 婷婷精品国产亚洲av| 国产精品香港三级国产av潘金莲| 狂野欧美白嫩少妇大欣赏| 九九在线视频观看精品| 亚洲av第一区精品v没综合| 欧美最黄视频在线播放免费| 18禁国产床啪视频网站| 校园春色视频在线观看| av中文乱码字幕在线| 久9热在线精品视频| 黄色成人免费大全| 亚洲av第一区精品v没综合| 91九色精品人成在线观看| 19禁男女啪啪无遮挡网站| 国产成人av激情在线播放| 他把我摸到了高潮在线观看| 亚洲第一欧美日韩一区二区三区| 亚洲精品亚洲一区二区| 男插女下体视频免费在线播放| 又黄又爽又免费观看的视频| 超碰av人人做人人爽久久 | 97碰自拍视频| 日韩有码中文字幕| 日韩中文字幕欧美一区二区| 国产高清有码在线观看视频| 国产亚洲精品av在线| 欧美bdsm另类| 最后的刺客免费高清国语| 白带黄色成豆腐渣| 欧美日韩中文字幕国产精品一区二区三区| 狂野欧美激情性xxxx| 婷婷精品国产亚洲av在线| 18禁黄网站禁片午夜丰满| 精品国产超薄肉色丝袜足j| 性色avwww在线观看| 在线a可以看的网站| 免费人成视频x8x8入口观看| 成人高潮视频无遮挡免费网站| 香蕉丝袜av| 国产精品亚洲美女久久久| 18禁在线播放成人免费| netflix在线观看网站| 丰满乱子伦码专区| 国产精品电影一区二区三区| АⅤ资源中文在线天堂| 天堂网av新在线| 国产高清视频在线观看网站| 久久人妻av系列| 男女下面进入的视频免费午夜| 精品久久久久久成人av| 国产一区在线观看成人免费| 欧美中文日本在线观看视频| 国产av在哪里看| 欧美黄色淫秽网站| 亚洲真实伦在线观看| 国产视频内射| 国产av在哪里看| 国产97色在线日韩免费| 村上凉子中文字幕在线| 首页视频小说图片口味搜索| 久久人人精品亚洲av| av片东京热男人的天堂| 欧美日本亚洲视频在线播放| 欧美色欧美亚洲另类二区| 久久欧美精品欧美久久欧美| 国产麻豆成人av免费视频| 精品电影一区二区在线| 少妇人妻精品综合一区二区 | 久久性视频一级片| 成人特级黄色片久久久久久久| 母亲3免费完整高清在线观看| 久久久久国产精品人妻aⅴ院| 欧美成人性av电影在线观看| 免费看光身美女| 国产黄色小视频在线观看| 国产熟女xx| 免费大片18禁| 无限看片的www在线观看| 天美传媒精品一区二区| 香蕉久久夜色| 国产伦人伦偷精品视频| 一个人看视频在线观看www免费 | 成人国产综合亚洲| 女人十人毛片免费观看3o分钟| 国产精品国产高清国产av| 一个人观看的视频www高清免费观看| 激情在线观看视频在线高清| 男女视频在线观看网站免费| 变态另类成人亚洲欧美熟女| 日韩欧美精品免费久久 | 91字幕亚洲| 男人和女人高潮做爰伦理| 日本黄大片高清| 别揉我奶头~嗯~啊~动态视频| 我的老师免费观看完整版| 亚洲成人久久爱视频| 国产精品久久久久久亚洲av鲁大| xxxwww97欧美| 久久国产乱子伦精品免费另类| 亚洲第一欧美日韩一区二区三区| 色噜噜av男人的天堂激情| 欧美中文综合在线视频| 一进一出好大好爽视频| 国产精品一区二区免费欧美| www.999成人在线观看| 波多野结衣巨乳人妻| 叶爱在线成人免费视频播放| 久久精品国产亚洲av涩爱 | 热99在线观看视频| 国产精品久久电影中文字幕| 丰满的人妻完整版| 亚洲在线观看片| 九九热线精品视视频播放| 欧美+日韩+精品| 亚洲aⅴ乱码一区二区在线播放| 亚洲色图av天堂| 桃红色精品国产亚洲av| 在线天堂最新版资源| 午夜精品久久久久久毛片777| 精品人妻1区二区| 亚洲第一欧美日韩一区二区三区| 国产高清激情床上av| 99热这里只有精品一区| 宅男免费午夜| 中文在线观看免费www的网站| 深夜精品福利| 少妇的逼水好多| 日韩欧美免费精品| 亚洲av五月六月丁香网| 黄片大片在线免费观看| 国产高潮美女av| 久久久久性生活片| 亚洲自拍偷在线| 国产精品 欧美亚洲| 国产伦精品一区二区三区视频9 | 在线观看av片永久免费下载| 免费在线观看亚洲国产| 啦啦啦免费观看视频1| 日韩欧美在线二视频| 88av欧美| 91在线观看av| 91久久精品国产一区二区成人 | 亚洲精品美女久久久久99蜜臀| 看黄色毛片网站| 国产av不卡久久| 亚洲欧美日韩高清在线视频| 国产av不卡久久| 亚洲午夜理论影院| 亚洲av一区综合| 成人国产综合亚洲| 国产亚洲精品久久久com| 日本免费一区二区三区高清不卡| av片东京热男人的天堂| avwww免费| 亚洲在线观看片| 听说在线观看完整版免费高清| 亚洲欧美日韩东京热| 中国美女看黄片| 久久久久久人人人人人| 亚洲成a人片在线一区二区| 国产真实伦视频高清在线观看 | 少妇的逼好多水| 9191精品国产免费久久| 99国产精品一区二区蜜桃av| 又黄又爽又免费观看的视频| 男插女下体视频免费在线播放| 久久久久久九九精品二区国产| 97超级碰碰碰精品色视频在线观看| 国产精品香港三级国产av潘金莲| 国产在线精品亚洲第一网站| АⅤ资源中文在线天堂| 亚洲一区二区三区不卡视频| 免费人成视频x8x8入口观看|