• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Deep learning based Doppler frequency offset estimation for 5G-NR downlink in HSR scenario①

    2022-07-06 03:23:16YANGLihua楊麗花WANGZenghaoZHANGJieJIANGTing
    High Technology Letters 2022年2期

    YANG Lihua(楊麗花), WANG Zenghao, ZHANG Jie, JIANG Ting

    (?College of Communication and Information Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210003, P.R.China)

    (??College of Electronic and Information Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,P.R.China)

    Abstract In the fifth-generation new radio (5G-NR) high-speed railway (HSR) downlink, a deep learning (DL) based Doppler frequency offset (DFO) estimation scheme is proposed by using the back propagation neural network (BPNN). The proposed method mainly includes pre-training, training,and estimation phases, where the pre-training and training belong to the off-line stage, and the estimation is the online stage. To reduce the performance loss caused by the random initialization, the pre-training method is employed to acquire a desirable initialization, which is used as the initial parameters of the training phase. Moreover, the initial DFO estimation is used as input along with the received pilots to further improve the estimation accuracy. Different from the training phase, the initial DFO estimation in pre-training phase is obtained by the data and pilot symbols. Simulation results show that the mean squared error (MSE) performance of the proposed method is better than those of the available algorithms, and it has acceptable computational complexity.

    Key words: fifth-generation new radio (5G-NR), high-speed railway (HSR), deep learning(DL), back propagation neural network (BPNN), Doppler frequency offset (DFO) estimation

    0 Introduction

    With the rapid development of high-speed railway(HSR), the HSR wireless communication has attracted more and more attentions around the world[1-2],and HSR has been used as one of the important usage scenarios of the fifth-generation new radio (5G-NR)communication network. In the 5G-NR system, the HSR is expected to achieve a moving speed of up to 500 km/h. However, the high mobility will significantly limit the coverage area and transmission rate, and most current wireless communication systems are designed for the low or medium mobility scenarios. Therefore, it is necessary to design a reliable and efficient communication system for 5G-NR HSR (up to 500 km/h) scenario[3-5].

    In 5G-NR HSR scenario, the Doppler shift will become large due to the increase in vehicle speed and the use of high carrier frequency bands. The large Doppler shift will cause more serious inter-carrier interference, which seriously affects the performance of the HSR communication system[6-7]. Therefore, the anti-Doppler frequency shift technology is very important in 5G-NR HSR environment, where the Doppler frequency offset (DFO) estimation and compensation technology is the basis.

    Although many DFO estimation methods in highspeed mobile scenarios have been developed, most of them are carried out for HSR scenarios under 4G-LTE systems[8-11]. Due to the increase in vehicle speed and the use of high carrier frequencies, the Doppler frequency shift of 5G-NR HSR scenario is larger than that of 4G-LTE HSR scenario, so the existing estimation schemes in 4G-LTE HSR scenario cannot be directly used for 5G-NR HSR scenario.

    Currently, there have been a few DFO estimation methods for the 5G-NR HSR scenario[6,12-13], where the Ref.[6] gave a DFO estimation and compensation algorithm based on position and pre-compensation for the millimeter-wave HSR system, which calculated the Doppler shift according to the position and speed of the train. However, it relies on high-precision positioning,while the positioning error cannot be avoided in practice. In Ref. [12], a DFO elimination method was presented for a millimeter-wave HSR mobile communication system, where the frequency offsets of the received signals of the head and the tail antennas located on the train are assumed to be the same, but have opposite direction. By multiplying the received signals from head and tail antennas, it can eliminate the Doppler shift. However,when the train passes the base station, the DFO will rapidly change, and the time of the head-to-tail antennas passing through the base station is different, so its performance will be deteriorated when the train is handed over. In Ref.[13], a pilotbased maximum likelihood DFO estimation method was given, which estimates the DFO by segmenting the pilot and solving the maximum likelihood function, but it requires a large computational complexity to obtain high estimation accuracy. To meet the requirements of pilot special segmentation, the scheme in Ref.[13]has a strict limit on the length of the pilot symbols, so it is not suitable for systems where the pilot structure has been determined.

    In addition, artificial intelligence, especially deep learning (DL), has been applied into the fields of computer vision, natural language processing, speech recognition, etc.[14]. Moreover, the DL is also applied to the wireless communication systems, such as channel estimation, signal detection and channel decoding,etc. In the previous work, a DL-based DFO estimation method has been presented in Ref.[15], which is mainly divided into two stages, off-line training and online estimation. In the previous work, the training samples are constructed only by the received pilot signals, and then the training samples are employed to train the back propagation neural network (BPNN) in an off-line manner. Based on the trained network, the DFO can be estimated. Although the algorithm in Ref.[15] has a better estimation accuracy than the existing schemes, its performance still needs to be further improved.

    Currently, the existing DL-based algorithms are mainly carried out from two aspects, one is to obtain better estimation results by using different neural networks[16-17], and the other is to obtain good results from designing the input values of the network[18-19]. To improve the performance of DFO estimation, a novel DLbased method is proposed from designing the initial value or input value of the network in the paper, which belongs to the second aspect.

    The proposed DL-based method mainly contains three phases, i.e., pre-training, training and estimation stages. In the pre-training phase, the training samples are constructed by the received signal and initial DFO estimation, where the initial DFO is estimated by the data and pilot signals. In the training phase,only the received pilots and initial DFO estimation is used to train the BPNN, and the initial DFO estimation is obtained by the pilots. Due to the pre-training and initial DFO estimation, the performance of proposed method is greatly improved.

    The rest of this paper is organized as follows. Section 1 introduces the system model. Section 2 presents the proposed method in detail. The simulation results and conclusions are given in Section 3 and Section 4 respectively.

    1 Signal model

    In a 5G-NR downlink single input single outputorthogonal frequency division multiple access (SISOOFDMA) system, assume that thenth transmitted time domain signal during themth OFDMA symbol in theith subframe issi(m,n).Since the Ricean-fading channel is often employed as the HSR channel[20-22],the discrete-time multipath Ricean-fading channel during themth OFDMA symbol in theith subframe is given as[23]

    wherewi(m,n) is the additive white Gaussian noise(AWGN) with the covarianceσ2w.

    Since the change of frequency offset during one OFDMA symbol is relatively small, the frequency offset in one subframe can be regarded as a constant. Moreover, the processing of the DFO estimation in each subframe is the same. Therefore, the subscriptith and superscriptmth can be omitted to derive conveniently in the following.

    2 Proposed DFO estimation method

    In the section, the architecture of BPNN is given first, and then the proposed method will be introduced in detail.

    2.1 BPNN

    In the field of DL, BPNN is a multi-layer feedforward neural network, which is trained by the error back propagation algorithm, and it has strong nonlinear mapping ability and a wide range of applications. Considering the complex correlation of data in high-speed mobile scenario, BPNN is employed to estimate DFO in the proposed method.

    Fig.1 shows the structure of BPNN withLlayers,which containsL-2 hidden layers. In Fig.1, the input of thebth node of thelth layer can be expressed as

    wherearepresents a set of nodes in the (L-1)th layer connected to the nodeb.w(l)b,ais a weight vector between the nodeband each node ina.Iais the input vector of the (L-1)th layer node.

    Fig.1 The structure of BPNN

    In BPNN, the output of the node is the value obtained by weighting all the inputs and then processing them through the transfer function, so the output of the nodebth of thelth layer is

    wheref(·) represents the transfer function, and different transfer functions can be selected according to the specific application. In the proposed method, the Tansig and Purelin transfer functions are respectively employed in the hidden layer and output layer, i.e.,

    2.2 DL-based DFO estimation algorithm

    The proposed method contains pre-training, training, and estimation stages, which can be seen from Fig.2, where ΓR(·) represents the reshaping function given in Eq.(8). BPNN is firstly trained by an off-line manner at the pre-training and training stages.At the estimation stage, DFO will be estimated in real time by using little pilots. Moreover, the initial DFO estimation is also used as input to further improve the estimation accuracy.

    Fig.2 The proposed algorithm

    (1) Pre-training phase. To reduce the performance loss caused by the random initialization, the pretraining approach is firstly employed to obtain a desirable initialization, which is used as the initial parameters of the training stage.

    In pre-training stage, assume that theuth training sample set of BPNN is

    where 0 ≤u≤U-1,Uis the number of the training sample sets.R(k) represents the received signal at thekth subcarrier, which is obtained by IFFT ofr(m,n)given in Eq.(4) and includes pilot and information symbols.Nuis the number of the used subcarrier for one OFDMA symbol, which includesNppilot andNu-Npinformation symbols.f^dis the estimated Doppler frequency offset by the algorithm given in Ref.[11] with information symbols known.

    The input data must be reshaped because BPNN can only work in real domain. Assume that ΓR(Ζ) is the input reshaping function, i.e.,

    In the training phase, the training samples are the received pilots and estimated DFO, where the DFO is estimated only by the pilots. However, training samples are the estimated DFO and received signal in the pre-training phase, where the DFO is estimated by the information and pilot symbols, which can improve the estimation accuracy. Moreover, the proposed DL-based estimator adoptsf^das part of the input such that the BPNN can further improve the performance.

    (3) Estimation phase. The estimation stage is the process of DFO estimation in an online manner by using the network model obtained in the training stage.Moreover, the input data in the estimation stage has same structure as that in the training stage. By feeding the input data into the trained BPNN, one can obtain the DFO estimation.

    3 Simulation results

    3.1 MSE performance

    To evaluate the performance of the proposed method, a 5G-NR for HSR scenario is considered[24-26].The simulation parameters are given as follows: the length of one slot is 250 μs, and each slot contains 14 OFDMA symbols. The length of FFT is 1024, and the carrier frequency is 30 GHz. The pilot uses the centralized placement. The cyclic prefix (CP) length is 128.The sub-carrier spacing is 60 kHz, and the vehicle speed is 500 km/h. The single path Ricean channel model is considered, and the Ricean factors are 5 and 10. In comparison with the proposed method, the previous work in Ref.[15], the pilot segment based DFO estimation method in Ref.[11], and the pilot based maximum likelihood estimation ( ML) method in Ref.[13] are also simulated.

    Fig.3 MSE performances of the DL-based DFO estimation method with different training methods and training parameters (Ricean factor is 10)

    Fig.3 gives the mean squared error (MSE) performances of the DL-based DFO estimation method with different training methods and training parameters. In Fig.3,the DL-based without pre-training and only using pilot symbols is the previous work given in Ref.[15].In the simulation, the number of used pilot is 72 for DL-based without pre-training, and the number of used pilot for pre-training and training are 72 and 16 respectively for both DL-based with pre-training and proposed method. Compared with the DL-based without pretraining given in Ref.[15], the DL-based with pretraining method has a better performance due to its using pre-training. However, the proposed method has a best performance due to employing the pre-training and initial estimation

    Fig.4 shows the MSE performance under the different numbers of training sample sets for the proposed method. In the simulation, the number of pilotsNpin each sample set is the same, andNp=16. In Fig.4,one can see that the accuracy of DFO estimation is improved as the number of sample setsUincreases,which indicates that the larger training sample sets can improve the learning efficiency of the neural network,but it will also increase the complexity of offline training. Therefore, the choice of the number of training sample sets should be a compromise between performance and computational complexity in practice.

    Fig.4 MSE performance under different numbers of training sample sets for the proposed method (Ricean factor is 10)

    Fig.5 shows the MSE performance of the DFO estimation by the network trained under different signalto-noise ratios (SNRs) conditions for the proposed method. When the SNR is lower than 12 dB, the performance of proposed method with the network trained under the fixed SNR of 10 dB is better than that of the network trained under the 20 dB, and when the SNR is greater than 12 dB, the performance of the network trained under the 20 dB is better. When training the network with varying SNRs, the proposed method can maintain good performance regardless of whether SNR is low or high. Therefore, when DFO estimation is performed, in order to maintain better estimation performance, a suitable neural network can be selected according to different SNRs for estimation.

    Fig.5 MSE performance of proposed method by training under different SNRs (Rican factor is 10)

    Fig.6 shows the MSE performances of the different DFO estimation methods with the different Ricean factors. In simulation,U=4000 andNp=32 for the proposed method, andNp=1024 and the number of the segments is 2 both for the schemes in Ref.[11]and Ref.[13]. From Fig.6, the proposed method can obtain the best performance but only using a little pilot, while the algorithms in Ref.[11] and Ref.[13]are limited by the number of pilot segments, so they have a poor estimation performance. Moreover, the performance of all methods will be improved as Ricean factor increases.

    Fig.6 MSE performances of different DFO estimation methods with different Ricean factors

    3.2 Complexity analysis

    Assume thatL=3 andT=100, the number of neurons in the two hidden layers is 20 and 50 respectively. In the case, the complexity of the proposed method in the off-line stage is larger than those of the algorithms in Ref.[11] and Ref.[13], while its complexity in online stage is close to those of the algorithms in Ref.[11] and Ref.[13]. However, the proposed method only needs to train the neural network once in an off-line manner for the same wireless environments,and the network can be used to obtain the DFO estimation in an on-line manner. Moreover, the estimation performance of the proposed method is best, which can be seen from Fig.6.

    4 Conclusions

    A DL-based DFO estimation method is proposed for 5G-NR HSR scenario. After training the network in an off-line manner, the proposed method only uses little pilots to obtain the high-precision DFO estimation in an online manner, which has low computational complexity. The proposed method is not only suitable for 5G-NR HSR scenarios, but also can be employed to estimate the DFO in existing and future high-speed mobile communication scenarios.

    国产无遮挡羞羞视频在线观看| 欧美少妇被猛烈插入视频| 免费观看av网站的网址| 久久亚洲国产成人精品v| av在线老鸭窝| 青草久久国产| 99国产精品免费福利视频| 91麻豆精品激情在线观看国产 | 我要看黄色一级片免费的| 国产精品久久久久成人av| 免费一级毛片在线播放高清视频 | 日本vs欧美在线观看视频| 免费av中文字幕在线| 老司机影院成人| 久久久久久人人人人人| 十八禁网站免费在线| 汤姆久久久久久久影院中文字幕| 欧美少妇被猛烈插入视频| 手机成人av网站| 91成人精品电影| 精品久久久久久久毛片微露脸 | 9热在线视频观看99| 无遮挡黄片免费观看| 一个人免费在线观看的高清视频 | 天堂俺去俺来也www色官网| 少妇被粗大的猛进出69影院| 日韩人妻精品一区2区三区| 精品久久蜜臀av无| 一本大道久久a久久精品| 99国产极品粉嫩在线观看| 国产三级黄色录像| 最黄视频免费看| 午夜免费鲁丝| 国产无遮挡羞羞视频在线观看| 久久中文看片网| 又大又爽又粗| 91大片在线观看| 欧美成人午夜精品| 午夜福利,免费看| 亚洲精华国产精华精| 国产深夜福利视频在线观看| 国产成人免费无遮挡视频| 蜜桃国产av成人99| 久久av网站| 十八禁人妻一区二区| 免费久久久久久久精品成人欧美视频| 五月天丁香电影| 国产精品久久久av美女十八| 亚洲欧美精品自产自拍| 中文精品一卡2卡3卡4更新| 欧美 亚洲 国产 日韩一| 91成人精品电影| 日本黄色日本黄色录像| 久久国产精品大桥未久av| 久久免费观看电影| 精品国产乱码久久久久久小说| 多毛熟女@视频| 人人妻人人添人人爽欧美一区卜| 高清欧美精品videossex| 老汉色∧v一级毛片| 精品一区二区三卡| 在线永久观看黄色视频| 捣出白浆h1v1| 黄色视频不卡| 黄频高清免费视频| 亚洲人成电影观看| 日本撒尿小便嘘嘘汇集6| 啦啦啦在线免费观看视频4| 久久久久久久大尺度免费视频| 国产一区二区三区综合在线观看| 免费观看a级毛片全部| 久久99热这里只频精品6学生| 老司机靠b影院| 成年人免费黄色播放视频| 美女主播在线视频| 国产成人a∨麻豆精品| 国产精品影院久久| 亚洲精品中文字幕一二三四区 | av电影中文网址| 午夜影院在线不卡| 精品福利永久在线观看| 搡老乐熟女国产| 久久国产精品影院| 亚洲少妇的诱惑av| 亚洲av成人不卡在线观看播放网 | 久久久久国内视频| 精品一区二区三区四区五区乱码| 大码成人一级视频| 亚洲欧洲精品一区二区精品久久久| 中文字幕色久视频| 久久国产精品人妻蜜桃| 悠悠久久av| 五月开心婷婷网| 日本vs欧美在线观看视频| 少妇精品久久久久久久| 亚洲国产精品999| a在线观看视频网站| 黑人猛操日本美女一级片| 一级a爱视频在线免费观看| 蜜桃在线观看..| 91国产中文字幕| 啦啦啦中文免费视频观看日本| 亚洲国产成人一精品久久久| 久久国产精品大桥未久av| 少妇的丰满在线观看| 女性被躁到高潮视频| 成年动漫av网址| 狠狠狠狠99中文字幕| 2018国产大陆天天弄谢| 亚洲欧美清纯卡通| 黄色视频在线播放观看不卡| 亚洲欧美色中文字幕在线| 叶爱在线成人免费视频播放| 在线观看免费午夜福利视频| 2018国产大陆天天弄谢| 亚洲精品久久午夜乱码| 亚洲国产欧美网| 久久国产精品影院| 丝袜喷水一区| 亚洲,欧美精品.| 免费高清在线观看日韩| 人妻人人澡人人爽人人| 男人爽女人下面视频在线观看| 国产成+人综合+亚洲专区| 亚洲中文字幕日韩| 男人爽女人下面视频在线观看| 777久久人妻少妇嫩草av网站| 在线观看www视频免费| 日本91视频免费播放| 亚洲成av片中文字幕在线观看| 国产成人精品无人区| 欧美少妇被猛烈插入视频| 精品国产超薄肉色丝袜足j| 老汉色av国产亚洲站长工具| 亚洲免费av在线视频| 手机成人av网站| 久久av网站| 99热国产这里只有精品6| 免费一级毛片在线播放高清视频 | 国产日韩欧美亚洲二区| 亚洲av日韩在线播放| 亚洲欧洲日产国产| 12—13女人毛片做爰片一| 黑丝袜美女国产一区| 美女扒开内裤让男人捅视频| 亚洲中文字幕日韩| 成在线人永久免费视频| 男女高潮啪啪啪动态图| 久久久久久人人人人人| 最近最新中文字幕大全免费视频| 老司机午夜十八禁免费视频| 天堂8中文在线网| 国产老妇伦熟女老妇高清| 蜜桃国产av成人99| 在线永久观看黄色视频| 男女之事视频高清在线观看| 精品亚洲成国产av| 午夜福利在线观看吧| 看免费av毛片| 午夜影院在线不卡| 久久九九热精品免费| 大片免费播放器 马上看| 日韩 欧美 亚洲 中文字幕| 免费人妻精品一区二区三区视频| 国产成人a∨麻豆精品| 国产xxxxx性猛交| 最新的欧美精品一区二区| 久久国产亚洲av麻豆专区| 91成人精品电影| 亚洲精品自拍成人| 男男h啪啪无遮挡| 日韩 欧美 亚洲 中文字幕| 免费人妻精品一区二区三区视频| 久久精品国产综合久久久| 久久精品aⅴ一区二区三区四区| 制服诱惑二区| 热99国产精品久久久久久7| 久久亚洲国产成人精品v| 久久这里只有精品19| 美女国产高潮福利片在线看| 久久久久精品人妻al黑| 91麻豆av在线| 欧美日韩亚洲高清精品| 国产成人精品久久二区二区91| 久久国产精品人妻蜜桃| 极品少妇高潮喷水抽搐| 汤姆久久久久久久影院中文字幕| 女人爽到高潮嗷嗷叫在线视频| 国产av一区二区精品久久| 欧美人与性动交α欧美精品济南到| 无限看片的www在线观看| 国产精品国产av在线观看| 精品国产乱码久久久久久小说| 老司机影院成人| 国产欧美日韩精品亚洲av| e午夜精品久久久久久久| 97精品久久久久久久久久精品| 岛国毛片在线播放| 美女扒开内裤让男人捅视频| 久久人人97超碰香蕉20202| 99国产精品一区二区蜜桃av | 色综合欧美亚洲国产小说| 激情视频va一区二区三区| 免费观看人在逋| 9色porny在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 精品国产乱码久久久久久男人| 国产一区二区三区av在线| 午夜免费观看性视频| 女人久久www免费人成看片| 欧美日韩亚洲综合一区二区三区_| 亚洲国产av影院在线观看| 国产日韩一区二区三区精品不卡| 如日韩欧美国产精品一区二区三区| 51午夜福利影视在线观看| 日韩大片免费观看网站| 五月天丁香电影| 成年动漫av网址| av超薄肉色丝袜交足视频| 亚洲欧洲精品一区二区精品久久久| 又紧又爽又黄一区二区| www.999成人在线观看| 国产极品粉嫩免费观看在线| 国产免费视频播放在线视频| 精品人妻一区二区三区麻豆| 51午夜福利影视在线观看| 亚洲国产中文字幕在线视频| 亚洲精品一卡2卡三卡4卡5卡 | 国产又色又爽无遮挡免| 亚洲九九香蕉| 欧美黄色淫秽网站| 国产日韩一区二区三区精品不卡| 黄片大片在线免费观看| 亚洲精品乱久久久久久| av国产精品久久久久影院| 亚洲va日本ⅴa欧美va伊人久久 | av电影中文网址| 国产欧美日韩一区二区三区在线| 欧美日韩中文字幕国产精品一区二区三区 | 成人国语在线视频| 中文字幕高清在线视频| 在线观看www视频免费| 啦啦啦 在线观看视频| 少妇人妻久久综合中文| 蜜桃国产av成人99| 亚洲av欧美aⅴ国产| 9191精品国产免费久久| 日本精品一区二区三区蜜桃| 国产激情久久老熟女| 狠狠精品人妻久久久久久综合| 久久99一区二区三区| 91精品国产国语对白视频| 80岁老熟妇乱子伦牲交| 一本—道久久a久久精品蜜桃钙片| 老汉色∧v一级毛片| 母亲3免费完整高清在线观看| 亚洲av片天天在线观看| 99re6热这里在线精品视频| 成人三级做爰电影| 久久久久久久国产电影| 亚洲五月婷婷丁香| 一级a爱视频在线免费观看| 亚洲九九香蕉| 在线观看免费高清a一片| 久久中文看片网| 一级片'在线观看视频| 老熟女久久久| 欧美人与性动交α欧美精品济南到| av免费在线观看网站| 免费高清在线观看日韩| 亚洲av电影在线观看一区二区三区| 三上悠亚av全集在线观看| 精品国产一区二区三区四区第35| 亚洲av成人一区二区三| 日韩 亚洲 欧美在线| 午夜福利,免费看| 99久久精品国产亚洲精品| 97人妻天天添夜夜摸| 天天躁夜夜躁狠狠躁躁| 性色av乱码一区二区三区2| 亚洲成国产人片在线观看| 咕卡用的链子| 极品少妇高潮喷水抽搐| 俄罗斯特黄特色一大片| 爱豆传媒免费全集在线观看| 午夜福利视频精品| 丝袜喷水一区| 母亲3免费完整高清在线观看| 人人妻人人添人人爽欧美一区卜| 国产精品久久久久久精品古装| 在线精品无人区一区二区三| 中国国产av一级| 国产真人三级小视频在线观看| 日本vs欧美在线观看视频| 欧美亚洲日本最大视频资源| 国产色视频综合| 久久久久国产精品人妻一区二区| 亚洲七黄色美女视频| 99久久99久久久精品蜜桃| 精品人妻熟女毛片av久久网站| 国产人伦9x9x在线观看| 男女无遮挡免费网站观看| 两人在一起打扑克的视频| 在线亚洲精品国产二区图片欧美| 国产1区2区3区精品| 一级毛片女人18水好多| kizo精华| 国产亚洲午夜精品一区二区久久| 美女午夜性视频免费| 日本wwww免费看| 国产成人欧美| 国产一区二区三区av在线| 亚洲五月色婷婷综合| 大型av网站在线播放| 亚洲精品国产av成人精品| 性高湖久久久久久久久免费观看| 久久 成人 亚洲| 一二三四社区在线视频社区8| 国产男女内射视频| 欧美在线黄色| 精品久久蜜臀av无| 天天影视国产精品| 大码成人一级视频| 欧美在线黄色| 一级片'在线观看视频| 国产一区有黄有色的免费视频| 久久这里只有精品19| 午夜精品国产一区二区电影| 日本一区二区免费在线视频| 动漫黄色视频在线观看| 在线观看免费日韩欧美大片| 久久国产精品影院| 最近最新免费中文字幕在线| 精品卡一卡二卡四卡免费| 日韩欧美一区二区三区在线观看 | 国产精品自产拍在线观看55亚洲 | 人人妻人人澡人人看| 国产高清国产精品国产三级| 婷婷成人精品国产| 国产有黄有色有爽视频| 免费观看人在逋| 麻豆av在线久日| 午夜成年电影在线免费观看| 岛国在线观看网站| 人妻 亚洲 视频| 波多野结衣一区麻豆| 久久久久网色| 一区二区三区激情视频| 久久人妻福利社区极品人妻图片| 亚洲精品国产色婷婷电影| 免费在线观看影片大全网站| 国产精品.久久久| 久9热在线精品视频| 最近最新免费中文字幕在线| 伦理电影免费视频| www日本在线高清视频| 啦啦啦中文免费视频观看日本| 国产xxxxx性猛交| 一区二区av电影网| 美女国产高潮福利片在线看| 一个人免费看片子| a在线观看视频网站| 超碰成人久久| 高清视频免费观看一区二区| 国产男人的电影天堂91| 亚洲专区中文字幕在线| 国产精品久久久人人做人人爽| 别揉我奶头~嗯~啊~动态视频 | 国产不卡av网站在线观看| 操美女的视频在线观看| 黑人巨大精品欧美一区二区mp4| 精品久久久久久久毛片微露脸 | 日本a在线网址| 中国国产av一级| 男女午夜视频在线观看| 汤姆久久久久久久影院中文字幕| 精品久久久精品久久久| 亚洲国产精品999| 麻豆国产av国片精品| 最近最新免费中文字幕在线| 亚洲国产精品一区三区| 日韩制服丝袜自拍偷拍| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲精品成人av观看孕妇| 啪啪无遮挡十八禁网站| 久久精品亚洲熟妇少妇任你| 欧美日韩亚洲综合一区二区三区_| 久久午夜综合久久蜜桃| av在线app专区| 男女下面插进去视频免费观看| 免费av中文字幕在线| 亚洲欧美一区二区三区久久| 日韩免费高清中文字幕av| 久久亚洲国产成人精品v| 久久久久国产一级毛片高清牌| 美女视频免费永久观看网站| 欧美精品人与动牲交sv欧美| 亚洲欧美一区二区三区久久| 久久久水蜜桃国产精品网| 欧美少妇被猛烈插入视频| 丁香六月天网| 别揉我奶头~嗯~啊~动态视频 | 亚洲国产日韩一区二区| 黑人猛操日本美女一级片| 精品人妻1区二区| 日本av免费视频播放| 水蜜桃什么品种好| 精品国产乱码久久久久久男人| av国产精品久久久久影院| 热99久久久久精品小说推荐| 在线av久久热| 亚洲全国av大片| 伊人亚洲综合成人网| 午夜91福利影院| 欧美黄色片欧美黄色片| 欧美另类亚洲清纯唯美| 十八禁高潮呻吟视频| 国产欧美日韩一区二区精品| 国产精品1区2区在线观看. | netflix在线观看网站| 99精品欧美一区二区三区四区| 狂野欧美激情性xxxx| 超碰97精品在线观看| 高清黄色对白视频在线免费看| 亚洲欧美一区二区三区久久| 中文字幕人妻丝袜一区二区| 男女国产视频网站| 免费黄频网站在线观看国产| 操出白浆在线播放| 激情视频va一区二区三区| 久久久久久久久久久久大奶| 我要看黄色一级片免费的| 91精品三级在线观看| 正在播放国产对白刺激| 美女午夜性视频免费| 国产成人一区二区三区免费视频网站| 国产精品免费视频内射| 女人久久www免费人成看片| 丰满迷人的少妇在线观看| 日韩欧美一区视频在线观看| 99热网站在线观看| 亚洲国产成人一精品久久久| 黄网站色视频无遮挡免费观看| 亚洲专区字幕在线| 老汉色av国产亚洲站长工具| 国产人伦9x9x在线观看| 精品人妻在线不人妻| 国产激情久久老熟女| 在线观看一区二区三区激情| 国产成人av教育| 国产精品久久久久久精品古装| 超色免费av| 久久久久网色| 肉色欧美久久久久久久蜜桃| 丝袜美足系列| 亚洲精品粉嫩美女一区| 人人妻人人添人人爽欧美一区卜| 考比视频在线观看| www.精华液| av欧美777| 久久久久视频综合| av线在线观看网站| 久久久国产成人免费| 亚洲精品成人av观看孕妇| 人成视频在线观看免费观看| 99国产精品一区二区三区| 黄色视频,在线免费观看| 91精品伊人久久大香线蕉| 久久亚洲国产成人精品v| 大片电影免费在线观看免费| 巨乳人妻的诱惑在线观看| e午夜精品久久久久久久| 十八禁高潮呻吟视频| 黄片大片在线免费观看| 一边摸一边做爽爽视频免费| 一级片免费观看大全| 老司机亚洲免费影院| 免费女性裸体啪啪无遮挡网站| 亚洲欧美一区二区三区久久| 午夜福利免费观看在线| 国精品久久久久久国模美| 十八禁网站免费在线| av国产精品久久久久影院| 老汉色av国产亚洲站长工具| 我的亚洲天堂| 欧美激情 高清一区二区三区| 亚洲精品久久久久久婷婷小说| 欧美 亚洲 国产 日韩一| 国产av精品麻豆| 一区二区三区乱码不卡18| 丝袜美腿诱惑在线| 女人爽到高潮嗷嗷叫在线视频| 国产精品自产拍在线观看55亚洲 | cao死你这个sao货| a级毛片黄视频| 69av精品久久久久久 | 国产日韩欧美视频二区| 久久天躁狠狠躁夜夜2o2o| 欧美日韩av久久| 精品福利永久在线观看| 成年人午夜在线观看视频| 国产成人精品久久二区二区91| 不卡av一区二区三区| 免费观看人在逋| 高清欧美精品videossex| 国产亚洲精品久久久久5区| 一本综合久久免费| 91av网站免费观看| 国产在视频线精品| 日韩视频一区二区在线观看| 大片免费播放器 马上看| 免费高清在线观看日韩| 午夜日韩欧美国产| 亚洲av电影在线进入| 黑人操中国人逼视频| 久久久国产精品麻豆| 天堂俺去俺来也www色官网| 涩涩av久久男人的天堂| 桃花免费在线播放| 男人舔女人的私密视频| 老司机午夜十八禁免费视频| 99久久人妻综合| 日本wwww免费看| av在线app专区| 夜夜夜夜夜久久久久| 男女午夜视频在线观看| 两人在一起打扑克的视频| 精品人妻一区二区三区麻豆| 黄色片一级片一级黄色片| 嫩草影视91久久| 两人在一起打扑克的视频| 无遮挡黄片免费观看| 亚洲第一欧美日韩一区二区三区 | 亚洲三区欧美一区| 男女边摸边吃奶| 麻豆乱淫一区二区| 久久精品亚洲av国产电影网| 国产一级毛片在线| 在线观看免费午夜福利视频| 天天躁夜夜躁狠狠躁躁| 女警被强在线播放| 人人妻,人人澡人人爽秒播| 亚洲免费av在线视频| 亚洲国产毛片av蜜桃av| 日韩中文字幕视频在线看片| 亚洲国产看品久久| 午夜成年电影在线免费观看| 久久中文看片网| 精品少妇久久久久久888优播| 国产精品九九99| 精品卡一卡二卡四卡免费| 日本a在线网址| 久久久久国产精品人妻一区二区| 在线观看免费日韩欧美大片| 欧美 日韩 精品 国产| 日韩一卡2卡3卡4卡2021年| 国产日韩欧美在线精品| 男女国产视频网站| 99精品欧美一区二区三区四区| 日日摸夜夜添夜夜添小说| 国产三级黄色录像| av电影中文网址| 精品福利永久在线观看| 亚洲中文字幕日韩| 99香蕉大伊视频| 亚洲av成人不卡在线观看播放网 | 国产野战对白在线观看| 久久久久视频综合| 在线观看免费视频网站a站| 久久久久精品国产欧美久久久 | 久9热在线精品视频| 久久精品国产a三级三级三级| 亚洲成国产人片在线观看| 精品视频人人做人人爽| 国产人伦9x9x在线观看| 欧美日本中文国产一区发布| 王馨瑶露胸无遮挡在线观看| 精品免费久久久久久久清纯 | e午夜精品久久久久久久| 啦啦啦免费观看视频1| 黑人猛操日本美女一级片| 99re6热这里在线精品视频| 亚洲中文日韩欧美视频| 天堂中文最新版在线下载| 狂野欧美激情性bbbbbb| 国产av又大| 人妻人人澡人人爽人人| 亚洲中文av在线| 午夜福利影视在线免费观看| 99国产精品一区二区蜜桃av | 一区二区av电影网| 亚洲国产毛片av蜜桃av| 一级毛片电影观看| 在线天堂中文资源库| 午夜91福利影院| 大型av网站在线播放| 一区二区三区激情视频| 精品国产一区二区久久| 日本欧美视频一区| 亚洲欧洲精品一区二区精品久久久| 一二三四社区在线视频社区8| 男男h啪啪无遮挡| 久久精品国产亚洲av高清一级| 少妇 在线观看| 麻豆国产av国片精品| 91成人精品电影| 欧美另类一区| www.av在线官网国产| 又黄又粗又硬又大视频| 亚洲精华国产精华精| 久久久久久久大尺度免费视频| 一本—道久久a久久精品蜜桃钙片| 国产免费av片在线观看野外av| 窝窝影院91人妻| 在线看a的网站|