• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Pseudo-label based semi-supervised learning in the distributed machine learning framework①

    2022-07-06 03:23:22WANGXiaoxi王曉曦WUWenjunYANGFengSIPengboZHANGXuanyiZHANGYanhua
    High Technology Letters 2022年2期

    WANG Xiaoxi (王曉曦), WU Wenjun②, YANG Feng, SI Pengbo, ZHANG Xuanyi, ZHANG Yanhua

    (?Faculty of Information Technology, Beijing University of Technology, Beijing 100124, P.R.China)

    (??Beijing Capital International Airport Co., Ltd., Beijing 101317, P.R.China)

    Abstract With the emergence of various intelligent applications, machine learning technologies face lots of challenges including large-scale models, application oriented real-time dataset and limited capabilities of nodes in practice. Therefore, distributed machine learning (DML) and semi-supervised learning methods which help solve these problems have been addressed in both academia and industry. In this paper, the semi-supervised learning method and the data parallelism DML framework are combined. The pseudo-label based local loss function for each distributed node is studied, and the stochastic gradient descent(SGD) based distributed parameter update principle is derived. A demo that implements the pseudo-label based semi-supervised learning in the DML framework is conducted, and the CIFAR-10 dataset for target classification is used to evaluate the performance. Experimental results confirm the convergence and the accuracy of the model using the pseudo-label based semi-supervised learning in the DML framework. Given the proportion of the pseudo-label dataset is 20%, the accuracy of the model is over 90% when the value of local parameter update steps between two global aggregations is less than 5. Besides,fixing the global aggregations interval to 3,the model converges with acceptable performance degradation when the proportion of the pseudo-label dataset varies from 20% to 80%.

    Key words:distributed machine learning (DML),semi-supervised,deep neural network (DNN)

    0 Introduction

    Recently, the rapid growth of emergent applications including unmanned driving, face recognition and automatic navigation has greatly promoted the development of artificial intelligent (AI) technologies. However, in some of the scenarios, such as unmanned aerial vehicle (UAV) networks[1]and Internet of vehicles(IoV)[2], the implementation of AI technologies faces challenges aroused by the limited batteries, low computing capability as well as data privacy. Moreover, in most of the practical cases,the performance of AI technologies is limited by the size of training sample set and the accuracy of the labels. To address the above problems, distributed machine learning (DML)[3]and semi-supervised learning[4]has attracted enormous attentions.

    DML is a distributed collaboration architecture for multiple worker nodes to train a machine learning(ML) model together[3]. Generally,there are two basic parallelism modes for DML, which are model parallelism and data parallelism. In the model parallelism mode, the ML model is partitioned among workers and each worker updates part of the parameters using the entire dataset[5]. In the data parallelism mode, each worker has a local copy of the complete ML model and updates model parameters based on their local data[3,6]. Nowadays, the data parallelism has been more widely adopted than the model parallelism, given that most ML models can be entirely stored in the memory of modern GPUs. Since workers do not need to send the raw data to a central node,the data privacy issue is well solved.

    As for the aggregation process of DML, both the synchronous mode and the asynchronous mode can be used in the communication between workers and the aggregator[7]. In the synchronous communication, all the workers should stop at the overall ‘barrier synchronous’ and wait for other workers to finish the local training before the barrier. While using the asynchronous communication, such as HogWild![8]and Cyclades[9], all the workers can send their parameters or models to the aggregator when they accomplish several local training. Obviously, the synchronous mode wastes the waiting time, but the aggregation algorithm is simple. Meanwhile, the asynchronous mode can fully utilize the time. However, due to the different computation capabilities of different workers, the poor workers may slow down the convergence rate and become a drag of the whole model.

    Semi-supervised learning is a class of methods which can train deep neural networks (DNN) by using both labeled and unlabeled data. With these methods,the problem of lacking labeled data in some of the realtime application scenarios can be overcome. One of the early methods of training the DNN based on labeled and unlabeled data was studied[10]. Ref.[11] proposed a semi-supervised deep learning method for hyperspectral image classification which uses limited labeled data and unlabeled data to train a DNN. In the research area of modulation classification, combining handcrafted feature with deep learning, Ref.[12] proposed a few-shot modulation classification method based on feature dimension reduction and pseudo-label training.

    Although DML and semi-supervised learning are widely used in the areas such as image classification[13], face recognition[14], natural language processing[15]etc., the implementation combining these two technologies together has not been well studied. For some of the scenarios, especially some AI applications with real-time collected unlabeled data using devices with limited capability such as the UAV based emergency rescue and real time high definition mapping in IoV, the combination of DML with semi-supervised learning is of great necessary.

    In this paper, a data parallelism architecture enabling the pseudo-label based semi-supervised learning in DML is proposed. Then the cross entropy based local loss function with pseudo-label at each worker is given and the learning problem is formulated. The stochastic gradient descent (SGD) is adopted in the training process and the corresponding local parameter updating equation is derived. A demo that implements the pseudo-label based semi-supervised learning in the DML framework is conducted and the CIFAR-10 data set for target classification is used to evaluate the performance. Given the proportion of the pseudo-label dataset is 20%, results show that the model converges when the local update steps between every two global aggregation is less than 5. Results also confirm that the proportion of the pseudo-label dataset affects the convergence rate and the accuracy.

    1 Distributed semi-supervised method

    1.1 Architecture

    A typical data parallelism architecture enabling the pseudo-label based semi-supervised learning in DML is considered and shown in Fig.1. The raw data is locally stored atNworker nodes, each of which trains a complete machine learning model (i.e. DNN)by using the local data. The local dataset of each worker consists of two parts, i.e., the labeled dataset and unlabeled dataset. Moreover, it is necessary to assume that all the workers collaborate in a synchronous way and a parameter server implements the parameter aggregation process.

    Fig.1 Architecture

    1.2 Loss function of the distributed semi-supervised learning

    2 SGD-based training process

    Obviously, how to use the local data to calculate Eq.(14) and to update the local parameter vector in practice is crucial.

    In this work, the stochastic gradient descent(SGD)[16]method is adopted for the local training in each worker. In each local update step of the SGD method, the gradient of the loss function is computed based on a randomly selected subset of the samples,which is referred to as a mini-batch, rather than the whole sample dataset. So the mini-batch chosen at local training steptat thei-th worker can be defined asSit?Di, which includes labeled and unlabeled samples. ThenSi1t?Di1andSi2t?Di2are the sets of labeled and unlabeled samples inSitrespectively. What’s more, the proportion of the pseudo-label samples in the whole mini-batch can be defined asμ=|Si2t|/|Sit|.

    Based on the above definitions and the local loss function given in Eq.(5), the local loss function of thei-th worker at time steptin the SDG based training process can be written as

    Algorithm 1 Training procedure at the aggregator 1 Initialize t ←0, global step ←0 2 Initialize w(0) as a random vector and send it to all workers 3 Repeat:4 If t%τ = 0 5 Receive wi(t) from each worker i 6 Compute w(t) = ∑N i=1 | Di | wi(t)| D|7 Broadcast w(t) to all the workers 8 global step +1 9 Until the model converges 10 Set STOP flag and send it o all the workers step ←global

    Algorithm 2 Training procedure at the i-th worker 1 Initialize t →0 2 Repeat:3 Select a mini-batch (including labeled data and unlabeled data) from the local dataset of the i-th worker 4 Obtain the pseudo label following y′jk = 1 k = argmaxk′ fk′(w, xj)0 otherwise{5 Receive w(t) from the aggregator, set w′i(t) ←w(t)6 for μ = 1,2,…,τ do 7 t ←t +1 8 Compute:wi(t) = w′i(t -1)-η 1| Si1t |j∈Si1t∑C∑- yjk[( ) ?f jk k=1 f j k+1 -yjk 1 -f j k ?w′i(t -1)]-η 1| Si2t |∑j∈Si2t∑C ( ) ?f ′j[- y′j k k+1 -y′j k k=1 f ′j k 1 -f ′j k ?w′i(t -1)]9 if μ <τ then 10 w′i(t) ←wi(t)11 else 12 Send wi(t) to the aggregator 13 end if end for 14 Until STOP flag is received.

    3 Experimentation

    3.1 Hardware environment

    A DML framework that consists of three workers(worker0, worker1 and worker2) and a parameter server(ps0) is adopted in the experiment. The experiment demo is conducted on three laptops, which are in a local area network and connected by a router, and ps0 and worker0 are deployed on the same laptop. The configuration parameters of the three PCs are as follows.

    (1) worker0 and ps0 PC. Processor: AMD Ryzen 74 800 H with Radeon Graphics 2.90 GHz. Memory:RAM 32. 00 GB. System type: 64-bit operating system, based on the X64 processor. Operating system version: Windows 10.

    (2) worker1 PC. Processor: Intel (R) Core(TM) i7-9750H CPU @2.60 GHz 2.59 GHz. Memory: RAM 16. 00 GB. System type: 64-bit operating system, based on the X64 processor. Operating system version: Windows 10.

    (3) worker2 PC. Processor: Intel (R) Core(TM) i7-9750H CPU @2.60 GHz 2.59 GHz. Memory: RAM 32. 00 GB. System type: 64-bit operating system, based on the X64 processor. Operating system version: Windows 10.

    3.2 Software environment

    The deep neural network of the target classification model is GoogLeNet[17], which is a convolution neural network considering the local sparsity of the model. It consists of 27 layers including convolution layers, max pool layers, inception structure, dropout layers, linear layers and softmax layers. At the end of the neural network, the fully connection layer is replaced by an average pooling layer, but the use of dropout remained essential.

    The DML model is conducted based on the framework of distributed TensorFlow[18], and Python 3.7 and TensorFlow-gpu 1.13.1 with CUDA 10.0 and cuDNN 7.5 are used. Worker0, which is in charge of initializing and restoring the model,is the chief worker in the TensorFlow cluster,and others should wait for the chief worker finishing his initialization and then start their training. Since the value of local update stepsτbetween every two global aggregations affects the convergence of the training process, the results of different values ofτare evaluated under the condition ofμ=20%.

    3.3 Dataset

    The dataset of CIFAR-10 is used, which includes 60 000 color images (50 000 for training and 10 000 for testing) of 10 different types of classifications[19]. In this experiment, the whole dataset is randomly divided into three parts of 10 000 samples,20 000 samples and 20 000 samples which are the local datasets of worker0, worker1 and worker2, respectively. Thus each worker has the uniform (but not full) information. In the training process, the size of mini-batch is set as 20 for all the workers.

    The proportion of the pseudo-label dataset is another factor that affects the convergence performance,thus different value ofμare also evaluated when the value ofτis 3. Since all the samples in CIFAR-10 are labeled originally, some samples are regarded as the unlabeled data and their labels are ignored, and pseudo labels are sought for them following Eq.(4) in the training process.

    4 Results and analysis

    4.1 Performance evaluation of different values of τ

    In the first part of the experiments, the value ofμis fixed as 20% and the value ofτis varied from 3 to 7.

    The training results in Fig.2 and Fig.3 show that when the value ofτis not greater than 5, the target classification model is converged. But for different value ofτ,the convergence performance is different. Whenτ= 3,the value of loss is close to 0.25 and the accuracy is 97.7% after 12 000globalstep(36 000 local update steps). Whenτ= 5,the model needs much more time to get an acceptable performance. It converges after about 220 000globalstep(1 100 000 local update steps), and the final values of loss and accuracy are about 0.48 and 96%, respectively. However, when the value ofτis greater than 5, takingτ= 7 as the example, the target classification model cannot converge.The value of loss drops down at the first,and then rises again after severalglobalstep. Meanwhile, the accuracy rises to about 56% and then falls. This is because that whenτis too large, the local gradient may deviate too much from the global gradient,resulting in the poor convergence.

    Fig.3 Training results of loss (μ=20%)

    The test results in Fig.4 and Fig.5 are consistent with the training results in most cases, and the performance of accuracy and loss are slightly worse than that of the training performance due to the difference in training and test samples. Whenτ= 3,the loss of the test result is about 0.6 and accuracy is about 92%. It is worth noting that when the value ofτis equal to 5,the loss performance cannot converge on the test dataset. That is to say, the acceptable value ofτis less than 5 in practice.

    Further, the performance of the well trained model is also tested. The models with the best training performance in Fig.2 for different value ofτare selected,and the test results are given in Fig.6. The performance ofτ= 3 andτ= 4 is as good as that given in Fig.2 and Fig.5. However,whenτ=5 andτ=6,the performance is not good, which is consistent with the phenomenon occuring in Fig.5. Sinceτ= 5 is the critical value and the performance is unstable, the distributions of the loss for the test samples using models obtained from differentglobalstepare counted in Fig.7.When the average loss is 5, which is acceptable, the loss values of most of the samples are less than 5. But when the average loss is around 70, only 18.8% of the samples can gain the low loss which is less than 5, and 25.9% of the samples have extremely high loss which is larger than 100.

    Fig.4 Test results of accuracy (μ=20%)

    Fig.5 Test results of loss (μ=20%)

    4.2 Performance evaluation of different values of μ

    The impact of different proportion of pseudo-label dataset on the performance is evaluated. Since the critical value forμ= 20%isτ= 5,the value ofτis set as 3 in the following experiments to ensure a certain margin, andμis set to 20%,50% and 80%.

    Fig.6 The best test performance of different value of τ

    Fig.7 Proportion of samples with the different test loss results

    Fig.8 Training results of accuracy (τ=3)

    Fig.9 Training results of loss (τ=3)

    As shown in Fig.8 and Fig.9, the target classification model converges. Whenμ= 20%,the accuracy can increase to 98%, and the loss value can descent to 0.17. Whenμ= 50%,the model can also achieve an acceptable accuracy of about 95%, and the value of loss is about 0.3. However,whenμ= 80%,the curve is different from those whenμ= 20%andμ= 50%.The convergence rate decreases obviously, and three steps can be observed in the ascending stage. At the beginning, the accuracy is kept in an extremely low level, which is because the credible pseudo label for the unlabeled data cannot be obtained based on the initial model. But after about 80 000globalstep, it raises up gradually, and the final accuracy can reach 94%.

    As for the test results given in Fig.10 and Fig.11,the performance is slightly degraded, but still acceptable. Whenμ=20%andμ=50%,the accuracy of the model can reach 92%. But whenμ=80%,which is very large,the accuracy on the test dataset is only 87%.

    Fig.10 Test results of accuracy (τ=3)

    4.3 Calculation and communication cost analysis

    The cost of the pseudo-label based semi-supervised learning algorithm is composed of two parts,i.e., the computational cost of the local training process and the communication cost of the parameter transmission.

    Fig.11 Test results of loss (τ=3)

    The measurement of computational cost mainly focuses on the number of floating-point operations (FLOPs).As mentioned in Section 3, the convolution neural network GoogLeNet is adopted, and the time complexity of all convolution layers can be expressed as

    This is the sum quantity of parameters and feature maps of all layers,Kis the size of convolution kernel,Clis the number of output channels of thel-th layer,andMis the length of the output feature map. Since the worker needs to upload the local parameters to the aggregator and get the updated global parameters from the aggregator, the communication cost of one local worker can be measured as 2Ωpara.As for GoogLeNet,the number of the parameters of the whole model isΩpara≈6.8 M according to the calculation in Ref.[17].Thus, the communication cost of one local worker is about 13.6 M.

    Since all the workers train their local models in parallel and communicate with the aggregator at the same time, the cost of one global update can be estimated asΩTimeτ|Sit| (1+μ)+2Ωparafrom the aspect of time efficiency. Therefore, the cost of the whole distributed training process isTM[ΩTimeτ|Sit| (1+μ)+2Ωpara],whereTMis the number of global updates.

    5 Conclusions

    In this paper, the main work is the implementation of the semi-supervised DML based on the pseudolabel method in a distributed framework. The local loss function of each distributed learning worker is studied,and the SGD-based parameter update equation is derived. The GoogLeNet based target classification model is evaluated by using the dataset of CIFAR-10. Results show that the model converges when the local update steps between every two global aggregation is less than 5 and the proportion of the pseudo-label dataset is 20%. Further evaluation results under the condition ofτ= 3 show that the increasing of the proportion of the pseudo-label dataset slows down the convergence rateand reduces the accuracy. But even whenμ= 80%,the model still converges.

    女人十人毛片免费观看3o分钟| 国产片特级美女逼逼视频| 国产高清有码在线观看视频| 日韩免费高清中文字幕av| 97精品久久久久久久久久精品| 99久久人妻综合| 亚洲精华国产精华液的使用体验| 亚洲精品乱码久久久久久按摩| xxx大片免费视频| 亚洲va在线va天堂va国产| 熟妇人妻不卡中文字幕| 亚洲在久久综合| 国产女主播在线喷水免费视频网站| 99热网站在线观看| 丰满少妇做爰视频| 亚洲av成人精品一区久久| 成人亚洲欧美一区二区av| 黄片wwwwww| 天堂8中文在线网| 国产中年淑女户外野战色| 亚洲三级黄色毛片| 男女边摸边吃奶| 九色成人免费人妻av| 男人和女人高潮做爰伦理| 直男gayav资源| 伦理电影大哥的女人| 久久99蜜桃精品久久| 国产视频首页在线观看| 成人二区视频| 日韩国内少妇激情av| 久久99精品国语久久久| 舔av片在线| 亚洲欧美日韩另类电影网站 | 精品酒店卫生间| 亚洲精品,欧美精品| 国产精品爽爽va在线观看网站| 老司机影院成人| 尤物成人国产欧美一区二区三区| 永久网站在线| 国产精品免费大片| 青春草国产在线视频| 18+在线观看网站| 日韩av不卡免费在线播放| 国国产精品蜜臀av免费| 国产视频内射| 国产成人freesex在线| 亚洲真实伦在线观看| 搡老乐熟女国产| 秋霞在线观看毛片| 亚洲在久久综合| 国产 一区精品| 青青草视频在线视频观看| 国产精品一二三区在线看| 国产精品人妻久久久久久| 中文字幕av成人在线电影| 国产精品欧美亚洲77777| 简卡轻食公司| 欧美老熟妇乱子伦牲交| 精品人妻视频免费看| 18禁在线播放成人免费| 在线亚洲精品国产二区图片欧美 | 欧美变态另类bdsm刘玥| 亚洲精品,欧美精品| 18禁在线播放成人免费| 国产精品蜜桃在线观看| 国产高清不卡午夜福利| 一本色道久久久久久精品综合| 国产国拍精品亚洲av在线观看| 在线观看免费高清a一片| 天堂俺去俺来也www色官网| 久久久久视频综合| 99久久精品国产国产毛片| 久久久久久人妻| 熟女av电影| 亚洲国产精品999| 午夜福利在线观看免费完整高清在| 亚洲综合色惰| 91久久精品国产一区二区成人| 性色av一级| 亚洲精品456在线播放app| 国产精品国产三级国产专区5o| 免费看日本二区| 建设人人有责人人尽责人人享有的 | 九草在线视频观看| 中文在线观看免费www的网站| 老熟女久久久| 大又大粗又爽又黄少妇毛片口| kizo精华| 日韩av不卡免费在线播放| 亚洲精品乱久久久久久| 少妇人妻 视频| 欧美国产精品一级二级三级 | 啦啦啦视频在线资源免费观看| 亚洲精品国产av成人精品| 狂野欧美激情性bbbbbb| 欧美成人午夜免费资源| 亚洲中文av在线| 熟女电影av网| 国产伦精品一区二区三区视频9| 日本午夜av视频| 国产精品女同一区二区软件| 婷婷色综合www| 国产亚洲一区二区精品| 久久精品国产亚洲av天美| 日韩在线高清观看一区二区三区| 国产高清不卡午夜福利| freevideosex欧美| 高清日韩中文字幕在线| 国产精品欧美亚洲77777| 美女福利国产在线 | 久久99热6这里只有精品| 久久久欧美国产精品| 夜夜看夜夜爽夜夜摸| 91aial.com中文字幕在线观看| 亚洲伊人久久精品综合| 激情 狠狠 欧美| 久久久色成人| 如何舔出高潮| 国产免费又黄又爽又色| 欧美日韩综合久久久久久| 草草在线视频免费看| 久久久国产一区二区| 欧美成人a在线观看| 久久久久国产精品人妻一区二区| 精品久久久噜噜| 女人久久www免费人成看片| 纵有疾风起免费观看全集完整版| 亚洲美女视频黄频| 超碰av人人做人人爽久久| 亚洲欧美中文字幕日韩二区| 一个人免费看片子| 不卡视频在线观看欧美| 国产免费一级a男人的天堂| 亚洲av国产av综合av卡| 成人影院久久| 欧美成人一区二区免费高清观看| 亚洲国产最新在线播放| 男人狂女人下面高潮的视频| 精品久久久噜噜| 国产午夜精品一二区理论片| av.在线天堂| 久久久亚洲精品成人影院| 一边亲一边摸免费视频| 一区二区三区免费毛片| 久久久久久久久久久丰满| 亚洲久久久国产精品| 国产极品天堂在线| 天美传媒精品一区二区| 黄色视频在线播放观看不卡| 高清在线视频一区二区三区| 欧美成人一区二区免费高清观看| 99热这里只有是精品在线观看| 建设人人有责人人尽责人人享有的 | 一级毛片我不卡| 午夜激情福利司机影院| 男女无遮挡免费网站观看| av在线蜜桃| 精品久久久久久久久亚洲| 久久久精品94久久精品| 婷婷色综合www| 免费看日本二区| 欧美老熟妇乱子伦牲交| 国产乱人视频| 18禁裸乳无遮挡动漫免费视频| 久久韩国三级中文字幕| 久久精品久久久久久久性| h视频一区二区三区| 一级毛片黄色毛片免费观看视频| 日韩精品有码人妻一区| 免费大片18禁| 最近的中文字幕免费完整| 美女中出高潮动态图| 少妇高潮的动态图| 亚洲欧美精品专区久久| 久久久久人妻精品一区果冻| 人妻少妇偷人精品九色| 在线观看人妻少妇| 精品少妇黑人巨大在线播放| 日本与韩国留学比较| 有码 亚洲区| 国内精品宾馆在线| 免费看不卡的av| 22中文网久久字幕| 观看av在线不卡| 一级毛片我不卡| 国产成人午夜福利电影在线观看| 欧美精品一区二区免费开放| 男人爽女人下面视频在线观看| 尾随美女入室| 久久久久久久久大av| 免费黄色在线免费观看| 国产欧美亚洲国产| 又粗又硬又长又爽又黄的视频| 免费看av在线观看网站| 久久女婷五月综合色啪小说| 美女xxoo啪啪120秒动态图| 亚洲精品乱码久久久v下载方式| 永久网站在线| 国产免费视频播放在线视频| 亚洲精华国产精华液的使用体验| 免费不卡的大黄色大毛片视频在线观看| a级毛色黄片| 国产男女超爽视频在线观看| 一级毛片久久久久久久久女| 成人一区二区视频在线观看| 亚洲伊人久久精品综合| 91精品国产九色| 天堂中文最新版在线下载| 激情 狠狠 欧美| 亚洲av不卡在线观看| 免费观看在线日韩| 啦啦啦视频在线资源免费观看| 国产无遮挡羞羞视频在线观看| 日本黄色日本黄色录像| 免费久久久久久久精品成人欧美视频 | 午夜视频国产福利| 成人国产麻豆网| 日韩 亚洲 欧美在线| 国产精品一区二区三区四区免费观看| 男女国产视频网站| 一个人免费看片子| 日韩不卡一区二区三区视频在线| 久久人人爽人人片av| 成人亚洲欧美一区二区av| 狂野欧美激情性xxxx在线观看| 久久精品国产鲁丝片午夜精品| 国产女主播在线喷水免费视频网站| 欧美zozozo另类| 精品一区二区三卡| 久久久成人免费电影| 亚洲欧美中文字幕日韩二区| 黄色欧美视频在线观看| 又大又黄又爽视频免费| 黄色视频在线播放观看不卡| 大香蕉久久网| 大片电影免费在线观看免费| 熟妇人妻不卡中文字幕| 男人舔奶头视频| 国产综合精华液| 中文在线观看免费www的网站| 2022亚洲国产成人精品| 天天躁日日操中文字幕| 久久久精品免费免费高清| 搡女人真爽免费视频火全软件| 丝袜脚勾引网站| 亚洲国产日韩一区二区| 欧美另类一区| 亚洲精品日本国产第一区| 老熟女久久久| 久久久亚洲精品成人影院| 91精品伊人久久大香线蕉| 精品一品国产午夜福利视频| 九九久久精品国产亚洲av麻豆| 狂野欧美激情性bbbbbb| 欧美日韩一区二区视频在线观看视频在线| 国产亚洲午夜精品一区二区久久| 中文字幕免费在线视频6| 人妻夜夜爽99麻豆av| 日日摸夜夜添夜夜爱| 久久这里有精品视频免费| 少妇丰满av| 51国产日韩欧美| 女人久久www免费人成看片| 欧美国产精品一级二级三级 | 久久亚洲国产成人精品v| 亚洲av男天堂| 欧美丝袜亚洲另类| 美女脱内裤让男人舔精品视频| 久久影院123| 精品亚洲成a人片在线观看 | 99热这里只有是精品50| 草草在线视频免费看| 国产精品一二三区在线看| 精品国产露脸久久av麻豆| 激情 狠狠 欧美| 少妇精品久久久久久久| 又大又黄又爽视频免费| 亚洲精品中文字幕在线视频 | 色婷婷久久久亚洲欧美| 大又大粗又爽又黄少妇毛片口| 婷婷色麻豆天堂久久| 久久97久久精品| 免费少妇av软件| 国产精品偷伦视频观看了| av卡一久久| 亚洲av成人精品一区久久| 国产乱人视频| a级毛片免费高清观看在线播放| 精品人妻熟女av久视频| 男人添女人高潮全过程视频| 这个男人来自地球电影免费观看 | 一区在线观看完整版| 亚洲精品国产成人久久av| 精品人妻熟女av久视频| 久久婷婷青草| 久久热精品热| 777米奇影视久久| 热99国产精品久久久久久7| 久久久久久久国产电影| 久久久久久久久久成人| 日韩av在线免费看完整版不卡| 免费av中文字幕在线| 欧美xxxx性猛交bbbb| 18+在线观看网站| 亚洲美女黄色视频免费看| 免费观看性生交大片5| 亚洲精品中文字幕在线视频 | 热re99久久精品国产66热6| 国产成人一区二区在线| 亚洲熟女精品中文字幕| 插阴视频在线观看视频| 日本欧美视频一区| 亚洲精品乱码久久久久久按摩| videossex国产| 亚洲欧美成人精品一区二区| 一级a做视频免费观看| 亚洲精品乱码久久久v下载方式| 欧美亚洲 丝袜 人妻 在线| 高清欧美精品videossex| 大香蕉久久网| 久久青草综合色| kizo精华| 欧美少妇被猛烈插入视频| 久久久a久久爽久久v久久| 日韩精品有码人妻一区| 久久久久国产精品人妻一区二区| 22中文网久久字幕| 在线免费十八禁| 色网站视频免费| 久久99热这里只频精品6学生| 午夜免费观看性视频| 中国三级夫妇交换| 免费黄网站久久成人精品| 一区二区三区精品91| 热99国产精品久久久久久7| 国产有黄有色有爽视频| 最近手机中文字幕大全| 日本-黄色视频高清免费观看| 免费观看无遮挡的男女| 成人高潮视频无遮挡免费网站| 久久影院123| 亚洲人成网站在线观看播放| 欧美少妇被猛烈插入视频| 日韩电影二区| 一级毛片电影观看| 99久久精品一区二区三区| 亚洲内射少妇av| 少妇精品久久久久久久| 久久久久视频综合| 精品一区二区三卡| 亚洲欧洲日产国产| 国产又色又爽无遮挡免| 久久影院123| kizo精华| 观看美女的网站| 久久久久久久久久成人| 国产高清有码在线观看视频| 国产精品.久久久| 啦啦啦视频在线资源免费观看| 人妻制服诱惑在线中文字幕| 久久国产亚洲av麻豆专区| 不卡视频在线观看欧美| 一二三四中文在线观看免费高清| 女性生殖器流出的白浆| 丰满少妇做爰视频| 亚洲第一区二区三区不卡| 插阴视频在线观看视频| 在线看a的网站| 日本欧美国产在线视频| 交换朋友夫妻互换小说| 国产成人freesex在线| 久久人人爽av亚洲精品天堂 | 美女内射精品一级片tv| 熟女电影av网| 国产淫片久久久久久久久| 我的老师免费观看完整版| 女性被躁到高潮视频| 高清黄色对白视频在线免费看 | 在线观看免费视频网站a站| 亚洲内射少妇av| 亚洲av中文字字幕乱码综合| 一级二级三级毛片免费看| 国产毛片在线视频| 日本av手机在线免费观看| 免费看光身美女| 亚洲欧美日韩卡通动漫| 免费av不卡在线播放| 一级毛片我不卡| 亚洲电影在线观看av| 最近手机中文字幕大全| 交换朋友夫妻互换小说| 免费在线观看成人毛片| 欧美日韩在线观看h| 亚洲av综合色区一区| 精品人妻视频免费看| 久热久热在线精品观看| 国产一区二区在线观看日韩| 国产在线一区二区三区精| 美女国产视频在线观看| 免费少妇av软件| 国产精品免费大片| 欧美日本视频| 久久99热这里只频精品6学生| 岛国毛片在线播放| 一级毛片我不卡| 亚洲欧美一区二区三区黑人 | 国产精品人妻久久久久久| 国产高清国产精品国产三级 | 国模一区二区三区四区视频| 亚洲欧美一区二区三区黑人 | 尾随美女入室| 免费观看无遮挡的男女| 99视频精品全部免费 在线| 免费观看的影片在线观看| 身体一侧抽搐| 人妻系列 视频| 日本av免费视频播放| 中文字幕亚洲精品专区| 美女国产视频在线观看| 国产淫语在线视频| 成人特级av手机在线观看| 日韩在线高清观看一区二区三区| av在线播放精品| 成人亚洲精品一区在线观看 | 伦理电影大哥的女人| 能在线免费看毛片的网站| 日本黄大片高清| 久久精品夜色国产| 哪个播放器可以免费观看大片| 中文字幕亚洲精品专区| av免费在线看不卡| 久久婷婷青草| 免费大片18禁| 老司机影院毛片| 亚洲四区av| 国产乱人视频| 国产精品久久久久久久久免| 亚洲av.av天堂| 又黄又爽又刺激的免费视频.| 日本猛色少妇xxxxx猛交久久| 午夜免费观看性视频| 99九九线精品视频在线观看视频| 大香蕉久久网| 国内精品宾馆在线| 午夜福利在线在线| 欧美高清性xxxxhd video| 久久久久久伊人网av| 青春草视频在线免费观看| 亚洲精品国产色婷婷电影| 在线精品无人区一区二区三 | 欧美精品一区二区大全| 国产中年淑女户外野战色| av免费观看日本| 久久久久久久久久久丰满| 亚洲av福利一区| 亚洲人成网站在线观看播放| 女人十人毛片免费观看3o分钟| 国产高清不卡午夜福利| 黄色视频在线播放观看不卡| 成人黄色视频免费在线看| 又爽又黄a免费视频| 午夜激情久久久久久久| 国产精品99久久久久久久久| 好男人视频免费观看在线| 亚洲第一区二区三区不卡| 亚洲欧美日韩另类电影网站 | 麻豆精品久久久久久蜜桃| 国产一区二区在线观看日韩| 国产高清三级在线| 精品一区二区三卡| 精品亚洲成a人片在线观看 | 国内精品宾馆在线| 九九在线视频观看精品| av卡一久久| 丝袜脚勾引网站| 色5月婷婷丁香| av又黄又爽大尺度在线免费看| 免费黄网站久久成人精品| 2022亚洲国产成人精品| 久久综合国产亚洲精品| 尾随美女入室| 自拍欧美九色日韩亚洲蝌蚪91 | av女优亚洲男人天堂| 免费观看av网站的网址| 国模一区二区三区四区视频| 岛国毛片在线播放| 在线观看三级黄色| 99热这里只有精品一区| 婷婷色综合大香蕉| 建设人人有责人人尽责人人享有的 | av网站免费在线观看视频| 我要看黄色一级片免费的| 免费av不卡在线播放| av卡一久久| av福利片在线观看| 在线观看免费高清a一片| 精品少妇黑人巨大在线播放| 成人漫画全彩无遮挡| 91精品一卡2卡3卡4卡| 国产高清国产精品国产三级 | 成人特级av手机在线观看| 一级毛片aaaaaa免费看小| 亚洲自偷自拍三级| 国产色爽女视频免费观看| 亚洲一级一片aⅴ在线观看| 国产 一区 欧美 日韩| 99久久中文字幕三级久久日本| 亚洲av在线观看美女高潮| 久久久成人免费电影| 精品99又大又爽又粗少妇毛片| 国产伦精品一区二区三区视频9| 精品一品国产午夜福利视频| 久久精品久久精品一区二区三区| 身体一侧抽搐| 最近2019中文字幕mv第一页| 国产精品成人在线| av线在线观看网站| 国产亚洲最大av| 看十八女毛片水多多多| 乱系列少妇在线播放| 国产精品无大码| 国产色爽女视频免费观看| 中国国产av一级| 美女脱内裤让男人舔精品视频| 国产中年淑女户外野战色| 日韩制服骚丝袜av| 午夜视频国产福利| 欧美成人a在线观看| 在线看a的网站| 国产v大片淫在线免费观看| 亚洲精品乱久久久久久| 99国产精品免费福利视频| 久久国内精品自在自线图片| 亚洲欧美日韩无卡精品| 久久久a久久爽久久v久久| 丰满迷人的少妇在线观看| 国产熟女欧美一区二区| 麻豆乱淫一区二区| 一本—道久久a久久精品蜜桃钙片| 久久亚洲国产成人精品v| 国产在视频线精品| av播播在线观看一区| 国产成人a区在线观看| 黄色怎么调成土黄色| 国产有黄有色有爽视频| 啦啦啦啦在线视频资源| 色吧在线观看| 中国美白少妇内射xxxbb| 婷婷色综合www| 欧美精品一区二区免费开放| 欧美一级a爱片免费观看看| 亚洲美女视频黄频| 另类亚洲欧美激情| videossex国产| 一区二区三区精品91| 少妇精品久久久久久久| 久久久久久久精品精品| 成人毛片60女人毛片免费| 亚洲国产成人一精品久久久| 97在线视频观看| 成人亚洲欧美一区二区av| a级毛色黄片| 日韩中文字幕视频在线看片 | 国产免费一区二区三区四区乱码| 男女啪啪激烈高潮av片| 伊人久久国产一区二区| 国产精品女同一区二区软件| 永久网站在线| 国产91av在线免费观看| 国产精品三级大全| 色网站视频免费| 干丝袜人妻中文字幕| 啦啦啦在线观看免费高清www| 欧美人与善性xxx| 日韩亚洲欧美综合| 日韩不卡一区二区三区视频在线| 国产又色又爽无遮挡免| 中文字幕精品免费在线观看视频 | 免费少妇av软件| 欧美zozozo另类| 久久精品人妻少妇| 精品人妻一区二区三区麻豆| 青青草视频在线视频观看| 人妻夜夜爽99麻豆av| 成年av动漫网址| 我要看日韩黄色一级片| av.在线天堂| 特大巨黑吊av在线直播| 精品一区在线观看国产| 插逼视频在线观看| 久热久热在线精品观看| 欧美少妇被猛烈插入视频| 高清午夜精品一区二区三区| 国产精品蜜桃在线观看| 久久久精品94久久精品| 亚洲国产高清在线一区二区三| 啦啦啦啦在线视频资源| 久久久久视频综合| 女人久久www免费人成看片| 国产乱来视频区| 97超视频在线观看视频| 成人高潮视频无遮挡免费网站| 最近2019中文字幕mv第一页| 久久久久久久久大av| 国产一区二区三区综合在线观看 | 国产精品成人在线| 日韩视频在线欧美| 久久午夜福利片| 亚洲精品亚洲一区二区| 纯流量卡能插随身wifi吗| 中国三级夫妇交换| 久久毛片免费看一区二区三区| 91在线精品国自产拍蜜月| 国产精品久久久久久久电影| 国产精品99久久99久久久不卡 |