• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Gaussian-Student’s t mixture distribution PHD robust filtering algorithm based on variational Bayesian inference①

    2022-07-06 03:23:32HUZhentao胡振濤YANGLinlinHUYumeiYANGShibo
    High Technology Letters 2022年2期

    HU Zhentao(胡振濤), YANG Linlin,HU Yumei②, YANG Shibo

    (?School of Artificial Intelligence, Henan University, Zhengzhou 450046, P.R.China)(??School of Automation, Northwestern Polytechnical University, Xi’an 710029, P.R.China)

    Abstract Aiming at the problem of filtering precision degradation caused by the random outliers of process noise and measurement noise in multi-target tracking (MTT) system, a new Gaussian-Student’s t mixture distribution probability hypothesis density (PHD) robust filtering algorithm based on variational Bayesian inference (GST-vbPHD) is proposed. Firstly, since it can accurately describe the heavy-tailed characteristics of noise with outliers, Gaussian-Student’s t mixture distribution is employed to model process noise and measurement noise respectively. Then Bernoulli random variable is introduced to correct the likelihood distribution of the mixture probability, leading hierarchical Gaussian distribution constructed by the Gaussian-Student’s t mixture distribution suitable to model non-stationary noise. Finally, the approximate solutions including target weights,measurement noise covariance and state estimation error covariance are obtained according to variational Bayesian inference approach. The simulation results show that, in the heavy-tailed noise environment, the proposed algorithm leads to strong improvements over the traditional PHD filter and the Student’s t distribution PHD filter.

    Key words: multi-target tracking (MTT), variational Bayesian inference, Gaussian-Student’s t mixture distribution, heavy-tailed noise

    0 Introduction

    Multi-target tracking (MTT) technique based on point measurements is used to real-time estimate the number of targets, status, trajectory, and other attribute information with the processing of measurement information. The traditional implementation of MTT generally adopts the data association strategies, such as joint probabilistic data association (JPDA)[1], multihypothesis tracking ( MHT)[2], and probabilistic multi-hypothesis tracking (PMHT)[3]. However,these above methods cannot deal well with the time-varying characteristics of the target state, i.e. the time-varying number of targets makes it difficult to achieve an effective correlation between the state set and the measurement set of the target. Recently, since bypassing the complex data association,the MTT based on random finite set (RFS) theory and its improvements have attracted extensive attention[4]. Specifically, their complexity and track ability are better than those methods using data association strategy. A typical implementation mentioned above is the probability hypothesis density (PHD) filter which recursively solves the state posterior first-order statistical moments, thus gives the first engineering implementation of RFS[5]. The existing PHD filter implementation strategies mainly include sequential Monte Carlo PHD (SMC-PHD)[6]and Gaussian mixture PHD (GM-PHD)[7-8].

    In practical engineering applications, the noise outlier induced by electromagnetic interference, aging of the sensor, and uncertainty of the dynamic model will deteriorate PHD filter tracking accuracy. Besides,the outlier-containing noise usually exhibits heavytailed characteristics. However, traditional GM-PHD suffers poor robustness at heavy-tailed process noise and measurement noise existing[9]. Under the condition of Gaussian distribution, the SMC-PHD filter may partially relieve the above problem with high computational cost. Huber’s M-estimation theory can be used to improve the GM-PHD filter’s performance when outliers exist in the measurement model, but it cannot deal with outliers in process noisy. Moreover, since it is based on Gaussian distribution approximation, GMPHD filter may induce biased estimates on the state and number of targets, thus is unsuitable to handle non-Gaussian noise system model with noisy outliers[10]. Existing literatures show that heavy-tailed noise may not be efficiently tackled in Gaussian noise hypothetical scenario, so heavy-tailed noise modeling becomes the key to deal with multi-target tracking problem with noise outliers[11].

    Since Student’s t distribution exhibits heavier tail than Gaussian distribution and converges to Gaussian distribution as its freedom increasing, it may be suitable for modeling non-Gaussian noise with significant heavy-tailed. Assuming the measurement noise follows Student’s t distribution, Li et al.[12]proposed a robust PHD filter which used VB to update the posterior likelihood function, but the method is unsuitable for noisy outliers. Liu et al.[13]presented a robust Student’s t mixture PHD filter by recursively propagating the intensity as a mixture of Student’s t components in PHD filtering framework. In addition, to alleviate the unfavorable effects on filtering performance induced by heavytailed noise, Liu re-weighted on true measurement,outliers and clutter according to their value, and proposed M-estimation based dual-gating strategy to construct a Student’s t mixture distribution. With approximately regarding the process noise and measurement noise as the Student’s t distribution, Hong et al.[14]proposed a Student’s t mixture particle PHD (STMPPHD) filter. They argued that the intensity of the multi-target may be approximated by using a Student’s t mixture model,while Monte Carlo is utilized to calculate the Student’ s t function integral, leading to a closed Student’s t hybrid recursive framework. However, few literatures above focus on improving the filtering robustness by using variational Bayesian inference. Zhang et al.[15]designed a robust Student’s t based labeled multi-Bernoulli ( RSTLMB ) filter through modeling the Student’s t distribution with the state prediction probability density and the measurement likelihood function of individual targets. Moreover, a closed recursion filter is proposed to jointly estimate the target state and the parameters of the Student’s t distribution. Due to the random occurrence of the outliers in noise, RSTLMB hardly model nonstationarity of noise by using one single Student’s t distribution.

    Obviously, using fixed inverse scale matrix or Student’s t distribution can hardly model random noise with heavy-tailed outliers. To address the above problem, a new Gaussian-Student’s t mixture distribution PHD robust filtering algorithm based on variational Bayesian inference (GST-vbPHD) is proposed here.The main contributions are summarized as follows.

    (1) Random outliers existing in process noise and measurement noise are modeled as Gaussian-Student’s t mixture distribution, in addition, the parameters of the mixture distribution and kinematic state are integrated in the augmentation matrix.

    (2) Bernoulli random variables are introduced to transform the mixture distribution model of noise outliers into a hierarchical Gaussian form in which parameters including targets states and weights are updated by variational Bayesian inference.

    (3) In different experiment scenarios, two types of performance indicators, the optimal subpattern assignment (OSPA) distance and the accuracy of the target number estimation, are used to verify the feasibility and validity of the proposed algorithm. The experiment results demonstrate that the proposed algorithm outperforms the comparison methods on tracking accuracy.

    1 Gaussian mixed PHD filter

    whereSk∣k-1(x) andBk|k-1(x) denote the random finite sets of survival targets and spawned targets fromXk-1at timek,respectively.Γkis the random finite sets of birth targets at timek. Θ(x) andκkdenote respectively the observed random sets generated by targets and clutters at timek.

    The PHD filter estimates the states of targets and its number by iteratively propagating the posterior intensity, which is a first order statistic of the random finite set[7]. The linear Gaussian MTT system develops Gaussian mixture implementation in finding the analytic solution of the Bayesian integral, the process of which clearly demonstrates how the Gaussian components propagate analytically to the next moment. Assume that the prior intensity functionvk-1at timek- 1 obeys the Gaussian distribution

    2 GST-vbPHD filter

    2.1 Gaussian-Student’s t mixture distribution

    The outliers of the process noise and measurement noise may appear at different moments in practical engineering application, resulting in the non-stationarity characteristic of the non-Gaussian noise. The modeling of noise with outliers, by adopting the mixed probabilityηas a mixed Gaussian-Student’s t distribution, is as follows

    The auxiliary variableλis introduced to transform the mixed Gaussian-Student’s t distribution into the following hierarchical Gaussian form[16]

    2.2 GST-vbPHD filting

    2.2.1 Predict

    Combined with the model constructed by Eq.(9)and Eq.(10), the implementation of GST-vbPHD is derived for linear multi-target systems. According to Bayesian probability theory, a beta distribution is selected as the conjugate prior distribution of unknown mixing probabilityηk[16].The likelihood distribution of theηkis expressed as Bernoulli distribution, and Bernoulli componentεkis introduced to select Gaussian or Student’ s t distribution. It is well known that the Student’s t distribution can be expressed as the product of gamma distribution and Gaussian distribution after introducing auxiliary variablesλk.

    Suppose the augmented state?kof one single target, which contains one single target state and a set of parameters for constructing the distribution, can be represented as?k?(xk,ηk,εk,λk),whereηk,εkandλkrespectively refer to the mixed probability, Bernoulli random variables and auxiliary variables, and they are mutually independent ofxk.The components of the predicted intensity are the same as Eq.(1),so the mixed distribution model of joint probability density is expressed as

    Algorithm 1 The variational iteration process for each Gaussian Student’s t mixture components Inputs:m(j)k|k-1, P(j)k|k-1, w(j)k|k-1, Hk, Rk, zk, PD,k, r, e1, e2,ω1, ω2, N 1. Initialization:E(0)[γ] = 1,E(0)[logγ] = 0,E(0)[ε] = 1,E(0)[log(1 - σ)] = nψ(1 - e) - ψ(1)E(0)[logσ] = ψ(e) - ψ(1),2. m(j)(0)k = m(j)k∣k-1, P(j)(0)k = P(j)k∣k-1 3. for n = 0: N -1 do 4. Calculate ~P(j)(n)k|k-1 and ~R(j)(n)k using Eqs(48) and (49)5. Calculate m(j)(n+1)k and P(j)(n+1)k using Eqs(45) -(47)6. Calculate w(j)(n+1)k (z) using Eqs(43) -(44)7. Calculate A(n+1)k , B(n+1)k using Eqs(39) - (40) Update qn+1(ε1,k), qn+1(ε2,k) as Bernoulli distributions

    8. Calculate Prn+1(ε1,k = 1), Prn+1(ε1,k = 0) and Prn+1(ε2,k = 1),Prn+1(ε2,k = 0) using Eqs(33) -(36)9. Calculate En+1[ε1,k], En+1[ε2,k] using Eq.(50)Update qn+1(γ1,k), qn+1(γ2,k) as Gamma distributions 10. Calculate wn+1 1,k, hn+1 1,k and wn+12,k, hn+1 2,k using Eqs(29) -(32)11. Calculate En+1[γ1,k], En+1[γ2,k] and En+1[logγ1,k], En+1[logγ2,k] using Eqs(51) -(52)Update qn+1(σ1,k), qn+1(σ2,k) as Bate distributions 12. Calculate en+1 1,k, tn+1 1,k and en+12,k, tn+1 2,k using Eqs(25) -(28)13. Calculate En+1[logσ1,k], En+1[logσ2,k] and En+1[log(1 - σ1,k)], En+1[log(1 - σ2,k)] using Eqs(39) -(40)14. if m(j+1)(n+1)k - m(j+1)(n)k ≤ε then 15. Stop the iteration 16. end if 17. end for Outputs:m(j)k 、P(j)k and w(j)k

    3 Simulation results and analysis

    3.1 Scenario design

    To verify the tracking performance of the proposed algorithm, two simulation scenarios are designed in the 2-D plane, i.e. the scenario of the measurement noise with outliers and the scenario of outliers in both process noise and measurement noise. In addition, the different probabilities of generating outliers are compared in the two scenarios. For comparison, the tracking performance of the Gaussian mixture PHD filter (GMPHD), the robust Student’s t based PHD filter (RSTPHD) and the GST-vbPHD are employed.

    Assuming that there are four targets in the surveillance range,they are present at time [1 8 12 26](s)until time [20 25 25 40](s) in turn disappears,with uniform motion during the survival period. The real trajectories of all targets are plotted in Fig.1.

    Fig.1 The true trajectory of multiple targets

    3.2 Simulation parameters

    A total of 40 steps are running in the simulation process, and the simulation results are the average after 300 Monte Carlo (MC) trials. What is more, the objective survival probabilityPS,k= 0.99, detection probabilityPD,k= 0.98 and the clutter rateλ= 3.The state and measurement equations of the targets are modeled as the following form

    3.3 Results and analysis

    3.3.1 Scenario 1

    To observe the performance of MTT at measurement outliers existing, the measurement noise covariance is constructed with outlier according to Ref.[21].

    where,p1 is the probability of the measurement noise without outliers and is set to be in a range of 5 -30 s during the multi-target motion.

    Fig.2 shows the OSPA distance errors for the three filters with probabilityp1 = 0. 98. Due to the measurement outliers, it can be observed that the GMPHD has significantly inferior tracking performance to the other two filters. Specifically, when there are outliers in the measurement,because of the light-weight tail property of Gaussian distribution, the weight of Gaussian components tends to be a small value or even zero in some cases, which leads to a larger OSPA distance. In contrast, although RST-PHD takes into account the heavy-tailed feature of noise, it uses a fixed Student’s t distribution for modeling, which lacks robustness to randomly occurring outliers. The OSPA distance curve of GST-vbPHD is lower than that of GM-PHD and RSTPHD, which demonstrates that the tracking performance of GST-vbPHD surpasses the other two algorithms. Due to the random characteristic of the measurement noise outliers, the noise cannot always remain in a heavy-tailed or Gaussian distribution state. GSTvbPHD employs the model with mixture distribution to better estimate the target weights, which helps to track the target without loss. The results of three algorithms for estimating the number of targets are given in Fig.3,and it can be seen that GST-vbPHD significantly outperforms GM-PHD and RST-PHD.

    Fig.2 The OSPA distance

    Fig.3 The number of targets

    To further analyze the impact of the probabilityp1on the filter performance, the statistical analysis on the average OSPA distance is shown in Fig.4. When the probability of the measurement noise without outliers is 0.98,0.96,0.94,0.92 and 0.9 respectively, OSPA average distance all decrease with increasing of the probability of the measurement noise, and that is because the effect of measurement noise outliers on the system significantly weakens. GST-vbPHD has a lower OSPA average distance than GM-PHD and RST-PHD,and has better tracking accuracy under lighter-tailed measurements or even heavy-tailed measurements.

    Fig.4 Average OSPA with different p1

    3.3.2 Scenario 2

    To evaluate the performance of MTT at outlier both existing in process noise and measurement noise,a new experiment Scenario 2 is constructed. The measurement noise outliers can be generated according to Scenario 1, and the process noise covariance with outliers is shown as follows.

    wherep2is the probability of the process noise without outliers. Assume that the time period of outliers in the noise is the same as Scenario 1.

    For outliers of the process noise and the measurement noise with the same probability, Fig.5 shows the OSPA distance comparison of three filters. From Fig.5 and Fig.6, it can be found that GST-vbPHD shows a better tracking result for both the tracking accuracy and the estimation of target number. The process noise outliers may be induced by target maneuvers, while the GM-PHD filter cannot capture the target due to the light tail of the Gaussian distribution, and RST-PHD lacks adaptability to random outliers. The proposed algorithm utilizes the mixture distribution model of noise to correct state error covariance, effectively eliminates the adverse effects induced by process noise outliers.Overall, if there are outliers in both process noise and measurement noise, the GST-vbPHD can achieve reliable and effective performance in MTT.

    Fig.5 The OSPA distance

    Fig.6 The number of targets

    In order to deeply analyze the tracking performance of the filters under different probabilities of outliers, the additional experiments are executed. First,p2is fixed, whilep1is 0. 9, 0. 92, 0. 94, 0. 96, and 0.98 respectively. After that, the average OSPA distance is given in Fig.7. On the contrary, whenp1is fixed,p2changes and the corresponding simulation results are shown in Fig.8. The average OSPA distance of the three filters gradually decreases, which means that the poor tracking performance with the occurrence probability of outliers increases. In Fig.8, the average OSPA distance of the three filters decreases less obviously than that in Fig.7. The results can be attributed to the different multiples of setting outliers in the dynamic model, and the filter is more sensitive to the process noise. As shown in Fig.7 and Fig.8, the proposed algorithm achieves relatively stable tracking performance for different probabilities of outliers in process noise and measurement noise.

    Fig.7 Average OSPA with different p1

    Fig.8 Average OSPA with different p2

    The computation time of the RST-PHD and the GST-vbPHD in this paper is 1.4 s and 3.5 s respectively when both the variational approximation iterations are used. The proposed algorithm not only improves the accuracy of tracking and estimating the number of targets, but also increases the operation time. This is because we consider that both process noise and measurement noise may have outliers. Two sets of parameters are used to modify the measurement noise covariance and state error covariance respectively, and participate in the variational iteration. The contrast algorithm only considers the heavy tail characteristics of noise outliers, but ignores the associate the nonstationarity. It simply uses student t distribution to model the noise.Therefore, the proposed algorithm in this paper does not perform well on the evaluation index of operation time.

    4 Conclusions

    In this paper, a new Gaussian-Student’s t mixture distribution PHD robust filtering algorithm is proposed based on variational Bayesian inference, which models the one-step state prediction PDF and the measurement likelihood PDF as the hierarchical Gaussian forms. Concretely, the hierarchical Gaussian form is employed to correct state error covariance matrix and measurement noise covariance matrix, eliminating the adverse effects of process noise and measurement noise both with outliers on the tracking performance. In addition, the parameters in the mixed distribution term are iteratively optimized by variational inference to obtain the target posterior probability density. The simulation results show that the proposed algorithm can achieve competitive performance with the traditional Gaussian hybrid PHD filter and the Student’s t PHD filter on tracking accuracy in MTT. Future work will focus on how to construct a hierarchical Gaussian noise distribution for nonlinear systems to effectively solve the influence of noise outliers.

    免费无遮挡裸体视频| 热99在线观看视频| 亚洲av免费高清在线观看| 12—13女人毛片做爰片一| 免费看av在线观看网站| 深爱激情五月婷婷| 最新中文字幕久久久久| 我的老师免费观看完整版| 一级毛片aaaaaa免费看小| 成人二区视频| 乱系列少妇在线播放| 男人的好看免费观看在线视频| 99九九线精品视频在线观看视频| avwww免费| ponron亚洲| 国内精品一区二区在线观看| 亚洲av不卡在线观看| 午夜精品在线福利| 成人特级av手机在线观看| 少妇人妻一区二区三区视频| av在线蜜桃| 国产免费一级a男人的天堂| 夫妻性生交免费视频一级片| 精品久久久久久久久久免费视频| 色视频www国产| 午夜福利视频1000在线观看| 给我免费播放毛片高清在线观看| 亚洲真实伦在线观看| 国产精品一区二区性色av| 欧美激情久久久久久爽电影| 国产av麻豆久久久久久久| 免费观看精品视频网站| 成人鲁丝片一二三区免费| 听说在线观看完整版免费高清| 五月玫瑰六月丁香| 精品国产三级普通话版| 男人舔女人下体高潮全视频| 日本一本二区三区精品| 国产精品,欧美在线| 亚洲精品日韩在线中文字幕 | 级片在线观看| 国产亚洲欧美98| 欧美色视频一区免费| 天天躁日日操中文字幕| 青青草视频在线视频观看| 精品久久久久久久久av| 国产精品久久久久久精品电影| 3wmmmm亚洲av在线观看| 边亲边吃奶的免费视频| 人体艺术视频欧美日本| 搞女人的毛片| 在线播放无遮挡| 国产激情偷乱视频一区二区| 亚洲在线自拍视频| 人妻久久中文字幕网| 国产日本99.免费观看| 亚洲国产精品成人久久小说 | 亚洲久久久久久中文字幕| 人妻系列 视频| 亚洲婷婷狠狠爱综合网| 99国产精品一区二区蜜桃av| 日韩成人av中文字幕在线观看| 亚洲欧洲日产国产| 久久久久久久久久黄片| 免费av毛片视频| 色吧在线观看| www.色视频.com| 国内少妇人妻偷人精品xxx网站| 悠悠久久av| 亚洲成人久久性| 欧美一区二区精品小视频在线| 全区人妻精品视频| 国产熟女欧美一区二区| 老熟妇乱子伦视频在线观看| 中文字幕av在线有码专区| 一级毛片aaaaaa免费看小| 99精品在免费线老司机午夜| 嘟嘟电影网在线观看| 欧美色欧美亚洲另类二区| 久久99热6这里只有精品| 国产美女午夜福利| 国产精品久久久久久精品电影小说 | 在线观看午夜福利视频| av又黄又爽大尺度在线免费看 | 非洲黑人性xxxx精品又粗又长| 国产精品一二三区在线看| 精品一区二区三区视频在线| 最近2019中文字幕mv第一页| 51国产日韩欧美| 麻豆成人午夜福利视频| 亚洲四区av| 午夜福利视频1000在线观看| 在线观看午夜福利视频| 嫩草影院入口| 日本免费a在线| 欧美一区二区国产精品久久精品| 九九热线精品视视频播放| 色哟哟·www| 国产成年人精品一区二区| 97超视频在线观看视频| 男女下面进入的视频免费午夜| 国产一区二区在线观看日韩| 久久久成人免费电影| 日韩欧美一区二区三区在线观看| eeuss影院久久| 热99在线观看视频| 国产高清激情床上av| 日韩中字成人| 男人舔女人下体高潮全视频| 26uuu在线亚洲综合色| 亚洲精品乱码久久久久久按摩| 中文字幕久久专区| 麻豆国产av国片精品| 床上黄色一级片| 国产亚洲精品av在线| 久久久国产成人免费| 菩萨蛮人人尽说江南好唐韦庄 | 欧美三级亚洲精品| 亚洲高清免费不卡视频| 人人妻人人澡欧美一区二区| 大香蕉久久网| 在线国产一区二区在线| 岛国在线免费视频观看| 天美传媒精品一区二区| 超碰av人人做人人爽久久| 舔av片在线| 岛国在线免费视频观看| 插阴视频在线观看视频| 麻豆国产av国片精品| 一级黄片播放器| 又爽又黄无遮挡网站| 亚洲不卡免费看| 欧美一级a爱片免费观看看| 国产又黄又爽又无遮挡在线| 天堂网av新在线| av黄色大香蕉| 国产高清三级在线| 亚洲国产精品国产精品| 久久久久久久亚洲中文字幕| 国产成人a区在线观看| 成人午夜精彩视频在线观看| 18+在线观看网站| 中国美白少妇内射xxxbb| 亚洲国产精品合色在线| 国产伦在线观看视频一区| 日韩成人伦理影院| 国产精品国产高清国产av| 日本-黄色视频高清免费观看| 又粗又爽又猛毛片免费看| 亚洲欧美日韩无卡精品| 热99在线观看视频| 亚洲国产欧洲综合997久久,| 乱人视频在线观看| 男插女下体视频免费在线播放| 麻豆乱淫一区二区| 精品久久久久久成人av| 一级毛片aaaaaa免费看小| 日本成人三级电影网站| 国产乱人视频| 日韩精品有码人妻一区| 亚洲无线在线观看| 亚洲va在线va天堂va国产| 午夜爱爱视频在线播放| 99久久无色码亚洲精品果冻| 国产精品精品国产色婷婷| АⅤ资源中文在线天堂| 久久久久久伊人网av| 午夜福利高清视频| 白带黄色成豆腐渣| 免费av观看视频| 国产日韩欧美在线精品| 免费看av在线观看网站| 麻豆成人午夜福利视频| 好男人视频免费观看在线| 听说在线观看完整版免费高清| 搡女人真爽免费视频火全软件| 国产精品99久久久久久久久| 午夜精品一区二区三区免费看| 晚上一个人看的免费电影| 国产黄色视频一区二区在线观看 | 久久热精品热| 一个人看的www免费观看视频| 亚洲av成人精品一区久久| 嘟嘟电影网在线观看| a级毛色黄片| 99久国产av精品| 成人永久免费在线观看视频| 一区二区三区高清视频在线| 久久国产乱子免费精品| 97超视频在线观看视频| 国产黄色小视频在线观看| 亚洲av免费高清在线观看| 美女 人体艺术 gogo| 国产乱人偷精品视频| 亚洲精华国产精华液的使用体验 | 国产不卡一卡二| 亚洲国产欧美在线一区| 日日干狠狠操夜夜爽| 麻豆国产av国片精品| 秋霞在线观看毛片| 校园春色视频在线观看| 亚洲图色成人| 国产精品野战在线观看| 国产精品一区二区三区四区免费观看| 寂寞人妻少妇视频99o| 亚洲激情五月婷婷啪啪| 少妇被粗大猛烈的视频| 国产一区二区在线av高清观看| 男女视频在线观看网站免费| 亚洲精品影视一区二区三区av| 国产精华一区二区三区| 麻豆乱淫一区二区| 日本三级黄在线观看| 亚洲欧美成人精品一区二区| 你懂的网址亚洲精品在线观看 | 悠悠久久av| 最新中文字幕久久久久| 久久久久久久午夜电影| 91久久精品国产一区二区成人| 国产黄色视频一区二区在线观看 | 毛片一级片免费看久久久久| 观看美女的网站| 日本一二三区视频观看| 精品99又大又爽又粗少妇毛片| 91精品一卡2卡3卡4卡| 黄色日韩在线| 久久人人精品亚洲av| 国产精品人妻久久久影院| 成人午夜高清在线视频| 午夜激情欧美在线| 精品久久久久久久久久免费视频| 国产伦在线观看视频一区| av.在线天堂| 男人舔女人下体高潮全视频| 国产一区二区三区在线臀色熟女| 亚洲欧美日韩高清专用| 在线播放国产精品三级| 国产探花极品一区二区| 精品人妻偷拍中文字幕| 看非洲黑人一级黄片| 哪里可以看免费的av片| 一区二区三区免费毛片| 麻豆成人午夜福利视频| av卡一久久| 欧美xxxx黑人xx丫x性爽| 中国国产av一级| 嫩草影院新地址| 天天躁夜夜躁狠狠久久av| 晚上一个人看的免费电影| a级毛色黄片| 国产日本99.免费观看| 亚洲人与动物交配视频| 好男人在线观看高清免费视频| 欧美成人a在线观看| 在线观看美女被高潮喷水网站| 久久精品国产清高在天天线| 精品人妻视频免费看| 男人舔奶头视频| 边亲边吃奶的免费视频| 午夜福利高清视频| 亚洲av免费在线观看| 日韩av在线大香蕉| 乱系列少妇在线播放| 成年av动漫网址| 看黄色毛片网站| 亚洲电影在线观看av| 日韩精品有码人妻一区| 校园人妻丝袜中文字幕| 国产真实乱freesex| 高清毛片免费看| 熟妇人妻久久中文字幕3abv| 日本黄色视频三级网站网址| 欧美日韩在线观看h| 五月玫瑰六月丁香| 亚洲欧美日韩卡通动漫| 99热全是精品| 赤兔流量卡办理| 三级国产精品欧美在线观看| 亚洲精品成人久久久久久| 国产亚洲91精品色在线| av视频在线观看入口| 国产精品一二三区在线看| 联通29元200g的流量卡| 亚洲色图av天堂| 久久精品人妻少妇| 五月玫瑰六月丁香| 精品久久久久久久末码| 久久精品国产99精品国产亚洲性色| 国产精品人妻久久久久久| 两个人的视频大全免费| 日本色播在线视频| 九九热线精品视视频播放| 国产亚洲精品久久久com| 午夜精品国产一区二区电影 | 日本黄色片子视频| 97超碰精品成人国产| 欧美日本亚洲视频在线播放| 听说在线观看完整版免费高清| 麻豆国产av国片精品| 欧美高清成人免费视频www| 日韩精品青青久久久久久| 久久精品影院6| 亚洲高清免费不卡视频| 亚洲av不卡在线观看| www.av在线官网国产| 亚洲综合色惰| 亚洲欧美清纯卡通| av黄色大香蕉| 九九在线视频观看精品| 91av网一区二区| videossex国产| 国产综合懂色| 国产老妇女一区| 婷婷六月久久综合丁香| 天美传媒精品一区二区| 国产乱人偷精品视频| 欧美人与善性xxx| 久久人人精品亚洲av| 国产精品无大码| 麻豆国产97在线/欧美| 国产中年淑女户外野战色| 精品国内亚洲2022精品成人| 免费观看在线日韩| 久久久成人免费电影| 少妇猛男粗大的猛烈进出视频 | 久久精品国产99精品国产亚洲性色| 亚洲人成网站在线观看播放| 日本五十路高清| 国产一区二区亚洲精品在线观看| 国产精品蜜桃在线观看 | 日韩欧美国产在线观看| 婷婷亚洲欧美| 99热网站在线观看| 日本爱情动作片www.在线观看| 国产乱人偷精品视频| 精品不卡国产一区二区三区| 久久这里只有精品中国| 中国美女看黄片| 国产高清三级在线| 国产精品综合久久久久久久免费| АⅤ资源中文在线天堂| 在线免费观看不下载黄p国产| 尾随美女入室| 99久久久亚洲精品蜜臀av| 深夜精品福利| 久久九九热精品免费| 日本一本二区三区精品| 午夜福利在线观看免费完整高清在 | 女同久久另类99精品国产91| 久久亚洲精品不卡| 美女cb高潮喷水在线观看| 国产探花在线观看一区二区| 亚洲av二区三区四区| 久久精品国产亚洲av香蕉五月| 卡戴珊不雅视频在线播放| 国产久久久一区二区三区| 欧美日韩一区二区视频在线观看视频在线 | 六月丁香七月| 午夜精品在线福利| 麻豆av噜噜一区二区三区| 国产精品国产高清国产av| 亚州av有码| 一本久久中文字幕| 美女被艹到高潮喷水动态| 久久精品人妻少妇| 搡女人真爽免费视频火全软件| 一级二级三级毛片免费看| 少妇熟女欧美另类| 不卡视频在线观看欧美| 婷婷六月久久综合丁香| 美女cb高潮喷水在线观看| 国产精品人妻久久久久久| www日本黄色视频网| 99riav亚洲国产免费| 精品久久久久久久久久免费视频| 国内少妇人妻偷人精品xxx网站| 国产一区二区激情短视频| 久久草成人影院| 99久久九九国产精品国产免费| 五月玫瑰六月丁香| 少妇熟女欧美另类| 成人高潮视频无遮挡免费网站| 亚洲av.av天堂| 成人性生交大片免费视频hd| 亚洲无线观看免费| 国产高清激情床上av| 国产成人影院久久av| 免费观看精品视频网站| 国产av在哪里看| 69人妻影院| 秋霞在线观看毛片| 日韩一区二区视频免费看| 欧美一区二区精品小视频在线| 成人漫画全彩无遮挡| 午夜福利视频1000在线观看| 99热精品在线国产| 欧美日本亚洲视频在线播放| 搡老妇女老女人老熟妇| 中文字幕人妻熟人妻熟丝袜美| 永久网站在线| 日日干狠狠操夜夜爽| 男女那种视频在线观看| 久久热精品热| 国产黄片视频在线免费观看| 观看免费一级毛片| 亚洲欧美精品专区久久| av在线播放精品| 久久精品国产鲁丝片午夜精品| 久久热精品热| 99久久无色码亚洲精品果冻| 免费观看精品视频网站| 村上凉子中文字幕在线| 中国美女看黄片| 小蜜桃在线观看免费完整版高清| 3wmmmm亚洲av在线观看| 久久国内精品自在自线图片| 97超碰精品成人国产| 国产伦精品一区二区三区视频9| 美女 人体艺术 gogo| 亚洲成人av在线免费| 一级毛片久久久久久久久女| 国产在视频线在精品| 悠悠久久av| 免费搜索国产男女视频| 国产精品麻豆人妻色哟哟久久 | 国产精品美女特级片免费视频播放器| 久久久久国产网址| 天堂√8在线中文| 欧美成人免费av一区二区三区| 欧美精品一区二区大全| 性插视频无遮挡在线免费观看| 国产午夜精品一二区理论片| 免费不卡的大黄色大毛片视频在线观看 | 日韩,欧美,国产一区二区三区 | 黄片wwwwww| 日本欧美国产在线视频| 尾随美女入室| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 一级毛片电影观看 | 国产精品av视频在线免费观看| 简卡轻食公司| 老熟妇乱子伦视频在线观看| 哪里可以看免费的av片| 尤物成人国产欧美一区二区三区| 国产午夜精品久久久久久一区二区三区| 亚洲四区av| 网址你懂的国产日韩在线| 变态另类丝袜制服| 亚洲图色成人| 亚洲精品自拍成人| 午夜免费激情av| 内射极品少妇av片p| 丰满人妻一区二区三区视频av| 国产精品伦人一区二区| 久久鲁丝午夜福利片| 99久久久亚洲精品蜜臀av| 国产精品久久久久久av不卡| 欧美激情国产日韩精品一区| 精品国产三级普通话版| 嫩草影院精品99| 如何舔出高潮| 成人毛片a级毛片在线播放| 毛片一级片免费看久久久久| 91精品一卡2卡3卡4卡| 国产精品国产三级国产av玫瑰| 久久草成人影院| 亚洲激情五月婷婷啪啪| 美女cb高潮喷水在线观看| 国产毛片a区久久久久| 久久久精品欧美日韩精品| 日韩大尺度精品在线看网址| 久久精品夜夜夜夜夜久久蜜豆| 干丝袜人妻中文字幕| 国产精品综合久久久久久久免费| 精品久久久久久久末码| 天天一区二区日本电影三级| 淫秽高清视频在线观看| 啦啦啦韩国在线观看视频| 久久久久久伊人网av| 国产精品久久久久久久久免| 午夜福利在线观看免费完整高清在 | 高清毛片免费观看视频网站| 午夜免费男女啪啪视频观看| 日日撸夜夜添| 亚洲欧美精品综合久久99| 国产亚洲5aaaaa淫片| 亚洲欧美中文字幕日韩二区| 欧美日韩综合久久久久久| 岛国在线免费视频观看| 国产伦一二天堂av在线观看| 久久精品综合一区二区三区| 天堂网av新在线| 日韩欧美三级三区| 晚上一个人看的免费电影| 日产精品乱码卡一卡2卡三| 成人性生交大片免费视频hd| 久久精品91蜜桃| 好男人视频免费观看在线| 看免费成人av毛片| 一级毛片电影观看 | 熟女人妻精品中文字幕| 网址你懂的国产日韩在线| 国产精品女同一区二区软件| 亚洲丝袜综合中文字幕| 91麻豆精品激情在线观看国产| 国产91av在线免费观看| 欧美日韩一区二区视频在线观看视频在线 | 91精品一卡2卡3卡4卡| 亚洲熟妇中文字幕五十中出| 国产乱人偷精品视频| 91麻豆精品激情在线观看国产| av黄色大香蕉| 国产伦精品一区二区三区视频9| 亚洲图色成人| 草草在线视频免费看| 一级av片app| 亚洲乱码一区二区免费版| 简卡轻食公司| 身体一侧抽搐| 美女内射精品一级片tv| 黄色配什么色好看| 我要看日韩黄色一级片| 成人欧美大片| 亚洲av成人av| 亚洲在线自拍视频| 日韩欧美一区二区三区在线观看| 99久国产av精品| 久久人人精品亚洲av| 韩国av在线不卡| 国产老妇女一区| 一区二区三区免费毛片| 国产高清不卡午夜福利| 久久综合国产亚洲精品| 看黄色毛片网站| 久久久久久国产a免费观看| 成人一区二区视频在线观看| 国产成人91sexporn| 99热这里只有精品一区| 精品人妻视频免费看| 秋霞在线观看毛片| 日韩精品青青久久久久久| 成人性生交大片免费视频hd| 国产精品综合久久久久久久免费| 在线免费十八禁| 国产午夜福利久久久久久| 久久久久九九精品影院| 国产亚洲精品久久久久久毛片| 能在线免费看毛片的网站| 九九在线视频观看精品| 午夜老司机福利剧场| 国产黄片美女视频| 男女视频在线观看网站免费| 亚洲av二区三区四区| 一个人观看的视频www高清免费观看| 大香蕉久久网| 91在线精品国自产拍蜜月| 日本熟妇午夜| 日韩成人av中文字幕在线观看| 亚洲性久久影院| 成人漫画全彩无遮挡| 不卡视频在线观看欧美| 亚洲av熟女| 天天一区二区日本电影三级| 嫩草影院新地址| 国产伦在线观看视频一区| av在线天堂中文字幕| 亚洲精华国产精华液的使用体验 | 欧美变态另类bdsm刘玥| 精品久久久久久久久av| 国产色婷婷99| av又黄又爽大尺度在线免费看 | 国产亚洲精品久久久com| 国产午夜福利久久久久久| 一本一本综合久久| 我的老师免费观看完整版| 一本久久中文字幕| 夫妻性生交免费视频一级片| 亚洲五月天丁香| 日本成人三级电影网站| 午夜免费激情av| 成人毛片60女人毛片免费| 久久九九热精品免费| 中文字幕av成人在线电影| 桃色一区二区三区在线观看| 亚洲精品日韩av片在线观看| 精品无人区乱码1区二区| 又粗又爽又猛毛片免费看| 国产日本99.免费观看| av在线观看视频网站免费| 一级av片app| 国产高清激情床上av| 国产色爽女视频免费观看| 欧美精品国产亚洲| 亚洲av中文字字幕乱码综合| 舔av片在线| 国内精品一区二区在线观看| 美女内射精品一级片tv| 九九在线视频观看精品| 午夜爱爱视频在线播放| 国产免费一级a男人的天堂| 乱系列少妇在线播放| 国产精品福利在线免费观看| 极品教师在线视频| 最新中文字幕久久久久| 99久久成人亚洲精品观看| 国产高清视频在线观看网站| 99久久精品一区二区三区| 国产一区二区三区在线臀色熟女| 国产精品不卡视频一区二区| 深爱激情五月婷婷| 日韩,欧美,国产一区二区三区 | 午夜福利成人在线免费观看| 日韩制服骚丝袜av| 欧洲精品卡2卡3卡4卡5卡区| 国产精品人妻久久久影院|