• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A correlation OPTS algorithm for reducing peak to average power ratio of FBMC-OQAM systems①

    2022-07-06 03:23:08WANGXingMATianmingLIFengrongZHAOQinghua
    High Technology Letters 2022年2期

    WANG Xing (王 星), MA Tianming②, LI Fengrong, ZHAO Qinghua

    (?School of Electrical and Electronic Engineering, Shanghai University of Engineering Science, Shanghai 201620, P.R.China)

    (??Laboratory of Broadband Wireless Technology, Shanghai Institute of Microsystem and Information Technology,Chinese Academy of Sciences, Shanghai 200050, P.R.China)

    Abstract A correlation overlapping partial transmit sequence (C-OPTS) algorithm is proposed to solve the issue of high complexity of overlapping partial transmit sequence (OPTS) algorithm in suppressing the peak to average power ratio (PAPR) of filter bank multicarrier-offset quadrature amplitude modulation (FBMC-OQAM) signals. The V subblocks in partial transmit sequence (PTS) are regrouped into U combinations according to the correlation coefficient ρ,and overlapping subblocks are allowed between adjacent groups. The search starts from the first group and sets the phase factors of the subsequent groups to 1. When the phase factors of the non-overlapping subblocks in the first group are determined,the subsequent groups are searched in turn to determine their respective phase factors. Starting from the second data block, the data overlapped with it should be taken into account when determining its optimal phase factor vector. Theoretical analysis and simulation results indicate that compared with the OPTS algorithm, the proposed algorithm can significantly reduce the computational complexity at the cost of slight deterioration of PAPR performance. Meanwhile, compared with the even-odd iterative double-layers OPTS (ID-OPTS) algorithm, it can further reduce the complexity and obtain a better PAPR suppression effect.

    Key words: filter bank multicarrier (FBMC), offset quadrature amplitude modulation (OQAM),peak to average power ratio (PAPR), overlapping partial transmit sequence (OPTS), correlation coefficient

    0 Introduction

    Filter bank multicarrier-offset quadrature amplitude modulation (FBMC-OQAM) technology has become one of the candidate physical layer transmission technologies for cognitive radio and the 5G mobile communication[1-2]. Compared with the orthogonal frequency division multiplexing (OFDM) technology, FBMCOQAM does not need strict orthogonality between each subcarrier, thus, it can not only remove the cyclic prefix to further save the system resources without causing the generation of inter symbol interference (ISI) but also allow some operations such as time-domain synchronization,channel estimation to be carried out separately on each subcarrier, so that the strict restrictions of OFDM in different communication scenarios can be significantly relaxed to better meet the technical requirements in 5G new scene communications[3]. However, FBMC-OQAM still has some defects such as the inability to obtain accurate channel information with conventional schemes and the excessively high peak to average power ratio (PAPR)[4],which hinder its practical application.

    This paper mainly studies the problem of high PAPR in FBMC-OQAM.The traditional methods for inhibiting PAPR in OFDM are finite amplitude method[5],compression and expansion method[6], selective mapping (SLM) method[7], partial transmit sequence(PTS) method[8], and so on. Since FBMC-OQAM adopts a non-orthogonal modulation mode, its signal structure is significantly different from that of OFDM.Therefore, employing the PAPR suppression methods of OFDM directly in FBMC-OQAM can not obtain a good restraining effect.

    Presently, several methods have been put forward to mitigate PAPR, which can be divided into three categories.

    The first category is the signal distortion method,including chipping method, peak windowing method,and pressure expansion method. A new compression technique based onA-law andμ-law was put forward in Ref.[9]. In Ref.[10], a chipping and iterative compensation method was proposed, which cuts the time domain signal and then applies the iterative Bussgang noise cancellation technique at the receiver to prevent the system performance from deteriorating. Although the above two signal distortion methods can effectively reduce PAPR, they will also incur the out-of-band energy leakage and deteriorate the bit error rate (BER)of the FBMC-OQAM system.

    The second category is a non-distortion method,including SLM, PTS and tone reservation (TR). The overlapping PTS ( OPTS ) method proposed in Ref.[11] considered the time-domain overlap between adjacent data blocks. The optimal phase factor of the current data block was determined by the current data block and its overlapped data blocks. Although the algorithm could effectively reduce PAPR, its complexity increased exponentially with the increase of the number of data blocks. In Ref.[12], an even-odd iterative double-layer OPTS (ID-OPTS) algorithm was proposed, which divides the data block intoVsubblocks,and then further divides theseVsubblocks intoDsections. Then, the odd-even iteration method was adopted to change the search method of phase factor for the double-layers optimization of the data block, which reduced the computational complexity and achieved a good PAPR suppression effect. Although this kind of non-distortion method will not cause signal distortion,its computational complexity is still high. Therefore, if the non-distortion method can be used to reduce PAPR, how to further reduce its computational complexity should be considered.

    The third category is the hybrid method of the above two categories. In Ref.[13], a method combining trellis-based selective mapping (TSLM) andA-law compression was proposed. It applied the TSLM algorithm to obtain the optimal phase rotation sequence and adopts theA-law compression function to further compress high amplitude signal samples and extend the low amplitude signal samples, which not only reduced PAPR effectively but also helped to reduce signal distortion. In Ref.[14], the low complexity dispersion selective mapping and the chipping filtering technique were combined to mitigate PAPR without affecting BER. Although this hybrid method can integrate the advantages of different methods, it still has the demerits of high complexity and signals distortion.

    To solve the problem of high computational complexity when applying OPTS method to suppress PAPR[11]in the second category, a new suppressing algorithm is proposed, which divides the originalVsubblocks intoUcombinations (U≤V), and allows overlapped subblocks between adjacent combinations.Then, a full search on each combination is carried out to determine the phase factor of the non-related subblocks in each combination until all combinations are searched. Theoretical analysis and simulation results indicate that compared with OPTS algorithm[11], the proposed algorithm can significantly reduce the computational complexity at the cost of slight deterioration of PAPR performance, meanwhile, compared with IDOPTS algorithm[12],it can further reduce the complexity and obtain better PAPR suppression effect.

    1 FBMC-OQAM system model

    The transmitter model of FBMC-OQAM system is illustrated in Fig.1. It can be supposed that themth data symbol input at the transmitter can be expressed as Eq.(1).

    Fig.1 Block diagram of transmitter structure of FBMC-OQAM system

    2 OPTS algorithm

    wherev(v=1,2, …),V, andWare the number of allowed phase factors. To reduce the search complexity, the value of theWis 2, and the selection of the phase factor is +1 or -1. After multiplyingbmwith Eq.(6) and passing through inverse fast Fourier transform (IFFT), themth transmission signalxmcan be described by

    Fig.2 Schematic diagram of conventional PTS algorithm

    In FBMC-OQAM system, the overlapping structure of the time-domain between two adjacent data blocks ofx(t) can be shown in Fig.3.

    Fig.3 Time domain structure of adjacent data blocks in FBMC-OQAM system

    Sincex(t) has the characteristic of time-domain overlapping, thus, applying Eq.(8) directly to mitigate PAPR will not obtain a good suppression effect.The OPTS algorithm proposed in Ref.[11] considered the time-domain overlaps between adjacent data blocks. The optimal phase factor of the current data block is determined by the current data block and its overlapped data blocks. Assuming that the optimal phase vectors of the firstM-1 data blocks are known,the best phase factor vector of themth block can be expressed by

    3 Correlation OPTS algorith m

    In this section, a correlation OPTS (C-OPTS) algorithm is introduced, which recombines the original number ofVsubblocks intoUgroups (U≤V) to reduce the high complexity of OPTS. Here correlation coefficientρis defined as the number of overlapped subblocks in two adjacent groups. Obviously, if there is no overlap, the correlation coefficientρ=0. Fig.4 depicts the different grouping situations when the number of subblocksVis 8 and the correlation coefficientρis 1, 2, 3, and 5 respectively. According to the inspection, it is not difficult to discover thatρ+U=V,1≤ρ≤V-1.If the value ofρisV-1, then the number of combinationsUis 1,and there will be no related subblocks among recombination.

    Fig.4 The recombination of V subblocks (V=8) with different values of ρ

    Next, a detailed description of the search algorithm in C-OPTS can be described as follows.

    Step 1 TheVsub-blocks are divided intoUgroups again, the number of overlapping sub-blocks between adjacent groups isρ, a full search is performed on the first group, and the phase factors in other combinations are all assigned a value of 1. For example, whenV=8,U=7,ρ=1, the full search of the first group can get 2ρ+1cases, namely (1,1), (1, -1), ( -1,1),and ( -1, -1). When the phase factor in other combinations is 1, the following four candidate phase factor vectors (1,1,1,1,1,1,1,1), (1, -1,1,1,1,1,1,1), ( -1,1,1,1,1,1,1,1), and ( -1,-1,1,1,1,1,1,1) can be obtained.

    Step 2 These candidate phase factor vectors are substituted into Eq.(11) for a calculation to obtain the best phase factor vector at this time,and the phase factors of the non-overlapping parts of the first group and the second group are retained.For example, if the vector ( -1, -1, 1, 1, 1, 1, 1, 1) is the best phase factor vector, only -1 at the first position is retained.

    Step 3 Carrying out a full search for the second group. Except for the reserved phase factors of the first group, the phase factors in other combinations are assigned as 1, and then ( -1, 1, 1, 1, 1, 1, 1, 1),( -1,1, -1,1,1,1,1,1), ( -1, -1,1,1,1,1), and ( -1, -1, -1, 1, 1, 1, 1) can be obtained. Then repeat step 2 to retain the phase factors of the non-overlapping parts of the second group and the third group.

    Step 4 Repeat the above steps until all groups are searched, and the final optimal phase factor vector can be obtained.

    Then, the implementation steps of the C-OPTS algorithm withρ=1 can be described as follows.

    Step 1 The registerOused to store the over-

    Fig.5 Schematic diagram of overlapping data stored in register O

    Step 3 The second data block is grouped in the same way as the first data block. The optimal phase factor vector of the second data block must satisfy Eq.(11) so that the data stored in the registerOand the second data block have the smallest amplitude after being superimposed.In the candidate phase factor vector, the vector meeting the smallest amplitude is saved as~b2= [~b12,~b22,…,~bV2].Finally, the registerOis updated according to the method in step 2.

    Step 4 Similarly, the optimal phase factor vectors~b3,…,~bMof the remainingM-2 data blocks can also be obtained according to the searching method mentioned in step 2 and step 3. Accordingly, theMoptimal phase factor vectors can be expressed as ~b=[~b1,~b2,…,~bM].

    According to the aforementioned descriptions, the overall flowchart of C-OPTS algorithm can be shown in Fig.6.

    Fig.6 The flowchart of the C-OPTS algorithm

    4 Simulation results and algorithm complexity analysis

    4.1 Computational complexity analysis

    The following is an analysis of the computational complexity of C-OPTS algorithm. The improvement of algorithm complexity is usually measured by the computational complexity reduction ratio (CCRR), which can be defined by

    From Refs[12], [18] and [19], it is not difficult to find that the real multiplications and real additions of OPTS algorithm and ID-OPTS algorithm can be given by

    whereN,MandVare the numbers of subcarriers, data symbols,and subblocks, respectively.Dis the number of outer section optimization in ID-OPTS algorithm,andLh=KTis the length of the prototype filter.

    The difference in computational complexity between C-OPTS algorithm and OPTS algorithm is mainly reflected in the search of their phase factors. Since C-OPTS algorithm with correlation coefficientρcan be divided intoV-ρcombinations, each combination needs to search phase factor 2ρ+1times, therefore, C-OPTS algorithm needs to search (V-ρ) ×2ρ+1times in total.Therefore, its real multiplications and real additions can be expressed by

    Table 1 illustrates the computational complexity and CCRR of the above three algorithms under the conditions ofM=20,N=64,V=8,Lh=256,D=2, 4 andρ=1. According to the inspection,it is not difficult to find that the computational complexity of C-OPTS algorithm is slightly lower than that of ID-OPTS algorithm and significantly lower than that of OPTS algorithm.

    Table 1 The computational complexity and CCRR of OPTS, ID-OPTS and C-OPTS

    4.2 Performance simulations analysis

    The C-OPTS algorithm proposed in the previous section is investigated by the simulation software. Table 2 summarizes the main parameters for the simulations.In order to ensure the reliability of the simulation results,the number of simulation experiments is set to 1000,and ITU-VB[20], which has an obvious relative delay,is applied as the wireless channel model for system simulation.

    The performance of PAPR can be measured by the complementary cumulative distribution function (CCDF).It is defined as the probability that PAPR exceeds a given threshold PAPR[17]0, which can be presented as

    CCDF(N, PAPR0) =Pr{PAPR >PAPR0}

    = 1 -(1 -e-PAPR0)N(20)whereNis the number of subcarriers of FBMC-OQAM.

    The whole simulation process can be divided into the following three stages.

    Firstly, the method of variable control is applied to analyze the influence of parametersρ,Mand modulation modes on the PAPR suppression performance of the proposed C-OPTS algorithm. The final simulation results can be demonstrated in Fig.7, from which the following conclusions can be made.

    Table 2 System simulation parameters

    Fig.7 PAPR performance of C-OPTS algorithm with different parameters and modulation modes

    (1) The PAPR suppression performance of C-OPTS algorithm atρ=2,3,5 is 0.16 dB,0.42 dB and 0.89 dB better than that atρ=1, respectively in Fig.7(a). Meanwhile, its PAPR curve atρ= 1 is 0.11 dB,0.49 dB and 0.84 dB lower than that atρ=2,3, and 5, respectively in Fig.7(b), which demonstrates that whenMis constant, the performance of COPTS algorithm to suppress PAPR will be better with the increase ofρ. The main reason is that the number of searched phase factor vectors will increase with the increase ofρ, which increases the possibility of finding a better phase factor vector. While according to Eq.(18) and Eq.(19), it is not difficult to discover that the increase ofρwill also induce a significant increase in computational complexity. Therefore,ρ=1 is more appropriate.

    (2) Comparing Fig.7(a) with Fig.7(b), and Fig.7(c) with Fig.7(d), it is easy to find that the difference ofMdoes not affect the effect of C-OPTS algorithm to reduce PAPR. As can be seen from Fig.4,no matter what the value ofMis,it will be divided intoVsubblocks for processing. And from Eq.(4), it can be seen thatMonly affects the length of the transmitted signalx(t), and may reduce the PAPR value of the FBMC-OQAM signal when it is superimposed on each other. As shown in Fig.7(a) and (b), whenM=30 andM=200, the PAPR of the FBMC-OQAM signal itself is 12.11 dB and 11.82 dB, respectively.

    (3) Comparing Fig.7(a) with Fig. 7(c), and Fig.7(b) with Fig.7(d), it is not difficult to discover that for the same method, the scheme adopting 4QAM modulation will obtain a lower PAPR value than the scheme adopting 16QAM modulation, the main reason lies in the fact that although increasing the modulation order can make the original modulation achieve higher transmission efficiency, unfortunately, it will inevitably increase the probability of high PAPR.

    Secondly, the performance of PAPR to evaluate C-OPTS with OPTS and ID-OPTS withV=8,D=2,4,M=30 andρ=1 under different modulation modes can be shown in Fig.8. It is not difficult to discover that:

    (1) Whenρ=1, the PAPR performance of COPTS algorithm is 1.11 dB lower than that of OPTS algorithm, which illustrates that C-OPTS algorithm achieves a significant decrease in complexity at the cost of a small deterioration of PAPR performance so that the algorithm can be accepted by the practical systems;

    (2) The PAPR performance of C-OPTS is 0.38 dB and 1. 27 dB better than that of ID-OPTS algorithm whenD=4 andD=2, respectively, which is due to the fact that the phase factor vectors that can be searched by the even-odd iteration method in ID-OPTS algorithm are fixed and repeated. TakingV=4 andD=2 as examples, 64 possible phase factor vectors can be searched according to ID-OPTS algorithm.Unfortunately, only 16 of them are effective phase factor vectors,and the remaining 48 are the repetition of these 16 phase factor vectors, which inevitably leads to high computational complexity and poor PAPR mitigation.While C-OPTS algorithm proposed in this paper applies full search in each combination, which can further improve the randomness of the phase factor vector searched, so it can search for a better phase factor vector.

    Fig.8 Comparison of PAPR performance of various algorithms with V=8, D=2,4, M=30 and ρ=1

    Finally, the simulations to evaluate the BER performances of the above algorithms with the same parameters and modulation modes can be shown in Fig.9.The simulation results are demonstrated in Fig.9, from which the following conclusions can be made.

    (1) The BER performance of the system with C-OPTS algorithm is obviously better than that with IDOPTS algorithm and is very close to that with OPTS algorithm under the same promise of the same modulation mode. The main reason is that the correlation scheme introduced in C-OPTS is essentially a non-distortion technology, which will not deteriorate the BER performance of the system. In the meantime,the introduction of a correlation scheme expands the search range of the phase factor and then the peak probability of the signal can be further reduced, which will undoubtedly raise the BER performance of the system;

    Fig.9 Comparison of BER performance of various algorithms with V=8, D=4, M=30 and ρ=1

    (2) For the same scheme,applying 4QAM modulation can achieve better BER performance than that applying 16QAM modulation. For instance,the SNR of C-OPTS is raised by approximately 2 dB when the BER performance is 10-5. The primary reason is that 4QAM has a larger minimum Euclidean distance than 16QAM, that is to say, when the received signals with 4QAM are demodulated,the anti-interference performance will become better, therefore, the system performance can be further improved accordingly.

    5 Conclusions

    In this paper, C-OPTS algorithm is presented,which reduces the computational complexity by groupingVsubblocks for a local solution, and adds correlation coefficients in the search process to limit the global complexity. Theoretical analysis and simulation results indicate that compared with OPTS algorithm, the proposed algorithm can significantly reduce the computational complexity at the cost of slight deterioration of PAPR performance, meanwhile, compared with the even-odd ID-OPTS algorithm, it can further reduce the complexity and obtain better PAPR suppression effect and structure, which is promising for practical applications.

    99久久99久久久精品蜜桃| 99国产极品粉嫩在线观看| 国产精品一区二区三区四区免费观看 | 天天躁夜夜躁狠狠躁躁| 美女午夜性视频免费| 啦啦啦免费观看视频1| 极品教师在线免费播放| 一本久久中文字幕| 熟女电影av网| 国产精品1区2区在线观看.| 999精品在线视频| 久久精品国产亚洲av香蕉五月| 国产精品一区二区三区四区久久| 99国产精品一区二区蜜桃av| 欧美国产日韩亚洲一区| 在线a可以看的网站| 日韩 欧美 亚洲 中文字幕| 极品教师在线免费播放| 99久久精品国产亚洲精品| 看片在线看免费视频| 欧美日韩黄片免| 亚洲成人国产一区在线观看| 久久午夜亚洲精品久久| 窝窝影院91人妻| 亚洲精品在线美女| 国产午夜精品久久久久久| 久久九九热精品免费| 正在播放国产对白刺激| 亚洲精品在线美女| 老汉色av国产亚洲站长工具| 国产精品 欧美亚洲| 岛国在线观看网站| 在线永久观看黄色视频| 18美女黄网站色大片免费观看| 欧美极品一区二区三区四区| 国产精品98久久久久久宅男小说| 91麻豆精品激情在线观看国产| 欧美黑人巨大hd| 精品日产1卡2卡| 熟妇人妻久久中文字幕3abv| 欧美色视频一区免费| 黄色丝袜av网址大全| 欧美不卡视频在线免费观看 | 亚洲avbb在线观看| 色老头精品视频在线观看| 欧美日本亚洲视频在线播放| 国内毛片毛片毛片毛片毛片| 又爽又黄无遮挡网站| 91九色精品人成在线观看| 欧美又色又爽又黄视频| 精品国产乱码久久久久久男人| 国内精品久久久久久久电影| 两性午夜刺激爽爽歪歪视频在线观看 | 禁无遮挡网站| 怎么达到女性高潮| 精品人妻1区二区| 亚洲av日韩精品久久久久久密| 免费在线观看黄色视频的| 丁香六月欧美| 亚洲成人精品中文字幕电影| 国产精品久久久久久人妻精品电影| 欧美成人免费av一区二区三区| 不卡av一区二区三区| 国产成人系列免费观看| 午夜福利在线观看吧| 老司机福利观看| 女人被狂操c到高潮| www.精华液| 精品午夜福利视频在线观看一区| x7x7x7水蜜桃| 免费在线观看亚洲国产| 女警被强在线播放| 精品日产1卡2卡| 两个人看的免费小视频| 欧美最黄视频在线播放免费| 超碰成人久久| 欧美日韩黄片免| 精品人妻1区二区| 精品乱码久久久久久99久播| 国产精品精品国产色婷婷| a在线观看视频网站| 操出白浆在线播放| 久久久久国产一级毛片高清牌| 日本一本二区三区精品| 搞女人的毛片| 亚洲 欧美 日韩 在线 免费| 精品久久久久久,| 久久精品影院6| 欧美在线一区亚洲| x7x7x7水蜜桃| 在线观看舔阴道视频| 日韩欧美国产一区二区入口| 九色成人免费人妻av| 夜夜爽天天搞| 久久久精品大字幕| 国产三级在线视频| 欧美成人一区二区免费高清观看 | 麻豆成人av在线观看| 国产欧美日韩一区二区三| 嫁个100分男人电影在线观看| xxx96com| 免费看a级黄色片| 黄频高清免费视频| 国产精品永久免费网站| av福利片在线观看| 麻豆国产97在线/欧美 | 午夜免费成人在线视频| 夜夜爽天天搞| 成人一区二区视频在线观看| 少妇人妻一区二区三区视频| 亚洲av熟女| 色尼玛亚洲综合影院| 全区人妻精品视频| 亚洲人成77777在线视频| 女人被狂操c到高潮| 免费无遮挡裸体视频| 久久精品国产清高在天天线| 黄色片一级片一级黄色片| 中文资源天堂在线| 国产精品久久久人人做人人爽| 俺也久久电影网| 窝窝影院91人妻| 免费看a级黄色片| av视频在线观看入口| 日本在线视频免费播放| 午夜福利高清视频| 香蕉丝袜av| 美女扒开内裤让男人捅视频| 免费在线观看影片大全网站| а√天堂www在线а√下载| 法律面前人人平等表现在哪些方面| 亚洲国产高清在线一区二区三| 久久久水蜜桃国产精品网| 99久久国产精品久久久| 国产精品98久久久久久宅男小说| 视频区欧美日本亚洲| 国产精品亚洲av一区麻豆| 免费无遮挡裸体视频| 亚洲av美国av| 成人国语在线视频| 黄色成人免费大全| 90打野战视频偷拍视频| 成人18禁在线播放| 好男人电影高清在线观看| 国产亚洲精品久久久久5区| 日本三级黄在线观看| 精品国产超薄肉色丝袜足j| av有码第一页| 熟女少妇亚洲综合色aaa.| 在线a可以看的网站| 床上黄色一级片| 国内精品久久久久久久电影| 在线观看免费视频日本深夜| 国产三级黄色录像| √禁漫天堂资源中文www| 国产一级毛片七仙女欲春2| 久久久久久大精品| 一本精品99久久精品77| 亚洲成人精品中文字幕电影| 色播亚洲综合网| 91大片在线观看| 黄色 视频免费看| 丝袜美腿诱惑在线| 黑人欧美特级aaaaaa片| 日韩精品青青久久久久久| 国产成人精品久久二区二区91| 欧美中文综合在线视频| 嫩草影视91久久| 狠狠狠狠99中文字幕| 日韩欧美国产在线观看| 久久人人精品亚洲av| 一级片免费观看大全| 黑人欧美特级aaaaaa片| 日韩成人在线观看一区二区三区| 国产熟女午夜一区二区三区| www日本在线高清视频| 国产蜜桃级精品一区二区三区| 在线观看日韩欧美| 国产精品1区2区在线观看.| 亚洲熟妇熟女久久| 午夜成年电影在线免费观看| 最好的美女福利视频网| 国产欧美日韩一区二区精品| 免费无遮挡裸体视频| 哪里可以看免费的av片| 久99久视频精品免费| 91大片在线观看| 老熟妇仑乱视频hdxx| 欧美黑人欧美精品刺激| 欧美成狂野欧美在线观看| 一本综合久久免费| АⅤ资源中文在线天堂| 午夜成年电影在线免费观看| 亚洲美女黄片视频| 麻豆国产av国片精品| 又黄又粗又硬又大视频| 国产一区二区在线av高清观看| 可以免费在线观看a视频的电影网站| 女同久久另类99精品国产91| а√天堂www在线а√下载| 久久久精品大字幕| 久久99热这里只有精品18| 欧美日韩一级在线毛片| 中文亚洲av片在线观看爽| a级毛片a级免费在线| 亚洲avbb在线观看| 午夜福利18| 国产成人影院久久av| 亚洲av片天天在线观看| 国产高清视频在线观看网站| 国产精品 欧美亚洲| 成人国产一区最新在线观看| 母亲3免费完整高清在线观看| 窝窝影院91人妻| 神马国产精品三级电影在线观看 | 国产又黄又爽又无遮挡在线| 高潮久久久久久久久久久不卡| 久久久久精品国产欧美久久久| 国产精品国产高清国产av| 午夜福利高清视频| 亚洲精品中文字幕一二三四区| 国产av一区在线观看免费| 老熟妇乱子伦视频在线观看| 又粗又爽又猛毛片免费看| 亚洲精品粉嫩美女一区| 男人的好看免费观看在线视频 | 日韩免费av在线播放| 视频区欧美日本亚洲| 日韩有码中文字幕| 久久精品国产综合久久久| 欧美日韩黄片免| 亚洲精品久久成人aⅴ小说| 香蕉丝袜av| 亚洲成人久久爱视频| 国产精品一区二区免费欧美| 757午夜福利合集在线观看| 极品教师在线免费播放| 国产免费av片在线观看野外av| 久久久精品欧美日韩精品| 午夜老司机福利片| 亚洲av成人一区二区三| 日韩成人在线观看一区二区三区| 大型av网站在线播放| 精品日产1卡2卡| 亚洲 欧美 日韩 在线 免费| 欧美日韩中文字幕国产精品一区二区三区| 男人的好看免费观看在线视频 | 一区二区三区国产精品乱码| 91字幕亚洲| 亚洲av电影在线进入| 亚洲免费av在线视频| 欧美日韩瑟瑟在线播放| 亚洲片人在线观看| 国产成人影院久久av| 人妻丰满熟妇av一区二区三区| 久久久久久人人人人人| 听说在线观看完整版免费高清| 97超级碰碰碰精品色视频在线观看| 无限看片的www在线观看| 色噜噜av男人的天堂激情| 国产精品久久视频播放| 国产99久久九九免费精品| 97碰自拍视频| av福利片在线| 精品一区二区三区视频在线观看免费| 日本 欧美在线| 国产伦在线观看视频一区| 亚洲精品色激情综合| 人妻久久中文字幕网| 亚洲全国av大片| 俺也久久电影网| 成人国产综合亚洲| 国产高清有码在线观看视频 | 日本精品一区二区三区蜜桃| 黄色丝袜av网址大全| 成人三级黄色视频| 免费在线观看成人毛片| 身体一侧抽搐| 制服诱惑二区| 午夜两性在线视频| 日韩大码丰满熟妇| 手机成人av网站| 俄罗斯特黄特色一大片| 国产成人精品久久二区二区免费| 亚洲精品粉嫩美女一区| 99精品在免费线老司机午夜| 美女黄网站色视频| 在线播放国产精品三级| 国产主播在线观看一区二区| 国产激情久久老熟女| 亚洲成人精品中文字幕电影| 亚洲免费av在线视频| 日本免费一区二区三区高清不卡| 国产真实乱freesex| 国产精品亚洲一级av第二区| 在线观看午夜福利视频| 又紧又爽又黄一区二区| 中亚洲国语对白在线视频| 特级一级黄色大片| 国产黄色小视频在线观看| 久久久久久久久中文| 老汉色av国产亚洲站长工具| 国产又黄又爽又无遮挡在线| 宅男免费午夜| 亚洲天堂国产精品一区在线| 18禁国产床啪视频网站| 日韩欧美国产在线观看| 18禁国产床啪视频网站| 91大片在线观看| 久久亚洲精品不卡| 蜜桃久久精品国产亚洲av| 久久九九热精品免费| 欧美不卡视频在线免费观看 | 成人特级黄色片久久久久久久| 免费人成视频x8x8入口观看| 亚洲一区中文字幕在线| 69av精品久久久久久| 中文资源天堂在线| 久久人妻福利社区极品人妻图片| 国产午夜精品论理片| 精品久久久久久久毛片微露脸| 国产探花在线观看一区二区| 哪里可以看免费的av片| 黄色a级毛片大全视频| 18禁国产床啪视频网站| 欧美久久黑人一区二区| 国产精品一区二区三区四区久久| 国产91精品成人一区二区三区| 日本一区二区免费在线视频| 久久久久久人人人人人| 国产成人aa在线观看| 欧美日韩黄片免| 桃红色精品国产亚洲av| 亚洲中文字幕一区二区三区有码在线看 | 丝袜人妻中文字幕| 午夜两性在线视频| 午夜精品在线福利| 我的老师免费观看完整版| 给我免费播放毛片高清在线观看| 日本黄大片高清| 久久九九热精品免费| 亚洲成人免费电影在线观看| 两性夫妻黄色片| 日本成人三级电影网站| 18禁裸乳无遮挡免费网站照片| 亚洲专区国产一区二区| 丝袜人妻中文字幕| 国产99白浆流出| 老鸭窝网址在线观看| 手机成人av网站| cao死你这个sao货| 777久久人妻少妇嫩草av网站| 免费人成视频x8x8入口观看| 变态另类成人亚洲欧美熟女| 俺也久久电影网| 亚洲人成网站在线播放欧美日韩| 成人手机av| 午夜两性在线视频| 黄片大片在线免费观看| 老司机靠b影院| 一本一本综合久久| 成人av一区二区三区在线看| 国产麻豆成人av免费视频| 天天躁夜夜躁狠狠躁躁| 亚洲成a人片在线一区二区| 99国产极品粉嫩在线观看| aaaaa片日本免费| 国产精品综合久久久久久久免费| 女警被强在线播放| 欧美又色又爽又黄视频| 国产单亲对白刺激| 国产一区二区在线观看日韩 | 99国产精品一区二区蜜桃av| 亚洲精品一卡2卡三卡4卡5卡| 久久亚洲真实| 女同久久另类99精品国产91| 久久午夜亚洲精品久久| 91字幕亚洲| 免费在线观看亚洲国产| 丁香欧美五月| 欧美国产日韩亚洲一区| 岛国视频午夜一区免费看| 欧美一级a爱片免费观看看 | 日韩精品中文字幕看吧| 亚洲精华国产精华精| 国产精品1区2区在线观看.| 欧美成人一区二区免费高清观看 | 99精品欧美一区二区三区四区| 亚洲在线自拍视频| 欧美一区二区国产精品久久精品 | 88av欧美| 亚洲av中文字字幕乱码综合| 国产精品自产拍在线观看55亚洲| 亚洲va日本ⅴa欧美va伊人久久| 日本免费a在线| 两性午夜刺激爽爽歪歪视频在线观看 | 丁香六月欧美| 国产精品爽爽va在线观看网站| 黑人操中国人逼视频| 日韩欧美免费精品| 老熟妇乱子伦视频在线观看| 黄片大片在线免费观看| 国产爱豆传媒在线观看 | 国产精品av视频在线免费观看| 高清在线国产一区| 亚洲精品美女久久久久99蜜臀| 50天的宝宝边吃奶边哭怎么回事| 久久久国产精品麻豆| netflix在线观看网站| 黄色视频,在线免费观看| 亚洲一区二区三区不卡视频| 欧美zozozo另类| 亚洲专区国产一区二区| 最近在线观看免费完整版| 天天躁夜夜躁狠狠躁躁| 少妇的丰满在线观看| 男女下面进入的视频免费午夜| 亚洲第一电影网av| 99在线人妻在线中文字幕| 波多野结衣巨乳人妻| 中文字幕熟女人妻在线| 国内精品一区二区在线观看| 在线观看午夜福利视频| 午夜视频精品福利| 首页视频小说图片口味搜索| 久久精品国产亚洲av香蕉五月| 制服人妻中文乱码| 日韩三级视频一区二区三区| 国产伦一二天堂av在线观看| a级毛片在线看网站| 日韩中文字幕欧美一区二区| 操出白浆在线播放| 欧美av亚洲av综合av国产av| 国产精品 欧美亚洲| 国产成年人精品一区二区| 成人一区二区视频在线观看| 香蕉丝袜av| 成年版毛片免费区| 亚洲欧美日韩高清专用| 2021天堂中文幕一二区在线观| 欧美一级毛片孕妇| 国产91精品成人一区二区三区| 免费在线观看日本一区| 俄罗斯特黄特色一大片| 国产精品98久久久久久宅男小说| 日韩国内少妇激情av| 免费电影在线观看免费观看| 丁香六月欧美| 日本a在线网址| 国产精品99久久99久久久不卡| 91国产中文字幕| 好男人电影高清在线观看| 欧美中文日本在线观看视频| 亚洲激情在线av| 可以在线观看毛片的网站| 亚洲狠狠婷婷综合久久图片| 精品福利观看| 亚洲欧美日韩高清专用| 亚洲美女黄片视频| 级片在线观看| 久久久久久国产a免费观看| 又黄又粗又硬又大视频| a在线观看视频网站| 日韩免费av在线播放| 又爽又黄无遮挡网站| 少妇被粗大的猛进出69影院| 日日摸夜夜添夜夜添小说| av有码第一页| 99精品在免费线老司机午夜| АⅤ资源中文在线天堂| 国内精品久久久久精免费| 美女高潮喷水抽搐中文字幕| 一本精品99久久精品77| 亚洲精品久久成人aⅴ小说| 国产成人aa在线观看| 蜜桃久久精品国产亚洲av| 久久人人精品亚洲av| 99热6这里只有精品| 999久久久国产精品视频| 制服诱惑二区| 人妻夜夜爽99麻豆av| tocl精华| 麻豆成人av在线观看| 久久精品91无色码中文字幕| 亚洲一区中文字幕在线| 18禁美女被吸乳视频| 亚洲va日本ⅴa欧美va伊人久久| 叶爱在线成人免费视频播放| 精品高清国产在线一区| 黄色视频不卡| 日日爽夜夜爽网站| 19禁男女啪啪无遮挡网站| 成人一区二区视频在线观看| 久久精品影院6| 午夜免费激情av| 日韩中文字幕欧美一区二区| 这个男人来自地球电影免费观看| 成人国产综合亚洲| 搡老妇女老女人老熟妇| 在线免费观看的www视频| av片东京热男人的天堂| 大型黄色视频在线免费观看| 人人妻人人澡欧美一区二区| 后天国语完整版免费观看| 国产一级毛片七仙女欲春2| 午夜福利在线观看吧| 一二三四在线观看免费中文在| 18禁美女被吸乳视频| 美女高潮喷水抽搐中文字幕| 最近最新中文字幕大全电影3| 久久精品国产亚洲av香蕉五月| 一卡2卡三卡四卡精品乱码亚洲| 久久久国产欧美日韩av| 两人在一起打扑克的视频| 2021天堂中文幕一二区在线观| 免费在线观看亚洲国产| 国产男靠女视频免费网站| 国产日本99.免费观看| 国产三级在线视频| 久久久国产成人精品二区| 亚洲国产精品999在线| 欧美一级毛片孕妇| 亚洲国产看品久久| 亚洲国产精品久久男人天堂| 国产免费av片在线观看野外av| 国内久久婷婷六月综合欲色啪| 免费av毛片视频| xxx96com| АⅤ资源中文在线天堂| 国产精品野战在线观看| or卡值多少钱| 国产免费男女视频| 色播亚洲综合网| 麻豆成人av在线观看| 日本一二三区视频观看| 国产99白浆流出| 狂野欧美激情性xxxx| 国产精品一区二区三区四区久久| 亚洲最大成人中文| 在线观看日韩欧美| 亚洲美女视频黄频| 波多野结衣巨乳人妻| 中亚洲国语对白在线视频| 久久欧美精品欧美久久欧美| 一本精品99久久精品77| 我要搜黄色片| 日本黄大片高清| 特大巨黑吊av在线直播| 99在线人妻在线中文字幕| 亚洲一区中文字幕在线| 亚洲人与动物交配视频| 黄色女人牲交| 欧美高清成人免费视频www| 日韩大码丰满熟妇| 亚洲欧美日韩无卡精品| 久久久精品大字幕| 国产成人精品久久二区二区91| 日韩免费av在线播放| 久久伊人香网站| 淫秽高清视频在线观看| 在线a可以看的网站| 夜夜夜夜夜久久久久| 亚洲av美国av| 无限看片的www在线观看| 亚洲欧美日韩高清专用| 久久精品夜夜夜夜夜久久蜜豆 | 男人舔女人的私密视频| 亚洲第一电影网av| 久久中文字幕一级| 久久婷婷成人综合色麻豆| 亚洲avbb在线观看| 亚洲av电影在线进入| 一区二区三区激情视频| 亚洲第一欧美日韩一区二区三区| 亚洲精品粉嫩美女一区| 变态另类成人亚洲欧美熟女| 国产97色在线日韩免费| 十八禁网站免费在线| 免费无遮挡裸体视频| 国内精品久久久久久久电影| 免费在线观看完整版高清| 成人高潮视频无遮挡免费网站| 女警被强在线播放| 宅男免费午夜| www日本在线高清视频| bbb黄色大片| 久久中文看片网| 两性午夜刺激爽爽歪歪视频在线观看 | 国产免费男女视频| av福利片在线| 午夜免费观看网址| 在线十欧美十亚洲十日本专区| 操出白浆在线播放| 国产精品,欧美在线| 两性午夜刺激爽爽歪歪视频在线观看 | 在线a可以看的网站| 性欧美人与动物交配| 久久香蕉国产精品| 国产亚洲精品久久久久久毛片| 中出人妻视频一区二区| 欧美日韩中文字幕国产精品一区二区三区| 国产视频一区二区在线看| 久久久久国产一级毛片高清牌| 欧美日韩中文字幕国产精品一区二区三区| 亚洲熟女毛片儿| 色av中文字幕| 91成年电影在线观看| 黑人巨大精品欧美一区二区mp4| 亚洲一区高清亚洲精品| 亚洲精品粉嫩美女一区| 在线观看免费视频日本深夜| 精品欧美一区二区三区在线| 色综合站精品国产| 久久精品91蜜桃| 日韩欧美在线二视频|