• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    SAR image despeckling via Lp norm regularization①

    2022-07-06 03:23:08HANChengde韓成德CUIYingziHUANGYingGUOMingqiangLIUZhengWULiang
    High Technology Letters 2022年2期

    HAN Chengde(韓成德), CUI Yingzi, HUANG Ying?, GUO Mingqiang②,LIU Zheng, WU Liang

    (?Key Laboratory of Urban Land Resources Monitoring and Simulation, Ministry of Natural Resources, Shenzhen 518034, P.R.China)

    (??School of Geography and Information Engineering, China University of Geosciences, Wuhan 430074, P.R.China)

    (???Hubei Geomatics Technology Group Stock Co., Ltd., Wuhan 430074, P.R.China)

    (????Wuhan Zondy Advanced Technology Institute Co., Ltd., Wuhan 430074, P.R.China)

    (?????National Engineering Research Center of Geographic Information System, Wuhan 430074, P.R.China)

    Abstract Synthetic aperture radar (SAR) image despeckling has been an attractive problem in remote sensing. The main challenge is to suppress speckle while preserving edges and preventing unnatural artifacts (such as annoying artifacts in homogeneous regions and over-smoothed edges). To address these problems, this paper proposes a new variational model with a nonconvex nonsmooth Lp (0 <p<1) norm regularization. It incorporates Lp (0 <p <1) norm regularization and I-divergence fidelity term. Due to the nonconvex nonsmooth property, the regularization can better recover neat edges and homogeneous regions. The I-divergence fidelity term is used to suppress the multiplicative noise effectively. Moreover, based on variable-splitting and alternating direction method of multipliers(ADMM) method, an efficient algorithm is proposed for solving this model. Intensive experimental results demonstrate that nonconvex nonsmooth model is superior to other state-of-the-art approaches qualitatively and quantitatively.

    Key words:synthetic aperture radar (SAR) image,speckle,nonconvex nonsmooth regularization, variational method, alternating direction method of multiplier (ADMM)

    0 Introduction

    Synthetic aperture radar (SAR) is an active remote sensing system, which is widely used in military,agricultural, and disaster relief. Compared with other imaging systems (optical and infrared), the all-day and all-weather imaging capability of SAR is unique.However, as coherent imaging systems, speckle noise inevitably appears in SAR images. Over the years,many methods have been proposed to suppress speckle in SAR images, which can be classified into three major categories: the filtering methods, the variational methods, and the data-driven methods.

    The filtering method is a classical speckle reduction strategy. Early filters were proposed to suppress speckle in the spatial domain, for example, Lee filter[1], Kuan filter[2], Frost filter[3]. The above methods were based on maximum a posteriori (MAP),while these methods may lose features in the speckle suppression result. Therefore, filters in the wavelet domain were proposed to preserve signal resolution well so as to get the most suitable prior for the SAR image[4-5]. Recently, the nonlocal filtering methods,e.g., nonlocal mean (NLM)[6], block matching 3D(BM3D)[7], KSVD[8], overlapping group sparsity[9],and low rank recovery[10], are extended to suppress speckle in SAR image. Due to the mechanism of selfsimilarity search, nonlocal filters can usually obtain the breakthrough speckle reduction results, such as PPBit[11], SARBM3D[12], FANS[13].

    The variational method is another popular speckle suppression approach due to the favorable ability for recovering edges and homogeneous regions. The variational model usually incorporates a regularization and a fidelity term. The fidelity term generally simulates the random distribution of speckle noise, while the regularization usually contains the prior information of SAR image. Aubert and Aujol[14]proposed a variational model based on MAP to suppress speckle well, abbreviated as the AA model. However, due to the nonconvex AA fidelity term, the global minimum of the AA model is difficult to obtain by the common solving method, such as gradient descent approach. For tackling this problem, some studies were proposed, which can be classified into two categories: the convex approximation and the logarithmic transformation of AA model. In the first category, they usually add a penalty function to the original AA model so as to transform the nonconvex model into a convex model[15-17]. The second category is logarithmic transformation of the AA model[18-20]. By using logarithmic transformation, the nonconvex AA model can transform to a convex one.

    More recently, several deep learning methods[21-23]have attracted more attention. Chierchia et al.[22]used log-transformed and residual learning of SAR images for a convolutional neural network (SAR-CNN),which are trained in the log-transformed original image. Once the speckle-free log-transformed SAR image is obtained, the restored image of the original domain is mapping back through the exponential function. Wang et al.[23]proposed a convolutional neural network in the original domain of the image, where a componentwise division-residual layer is used for recovering the filtered image. The above methods can effectively suppress speckle noise,while they highly rely on the training data set.

    Motivated by these issues, a nonconvex nonsmooth model is proposed to suppress speckle noise for SAR image in this paper. The core idea of this work is to use a nonconvex nonsmoothLp(0 <p<1) norm regularization for getting the most suitable sparsity with SAR image, which can better recover neat edges and homogeneous regions. The I-divergence fidelity term is used to suppress the speckle noise effectively. Moreover, an efficient algorithm based on alternating direction method of multiplier (ADMM) method is proposed for solving this model. Specifically, the contributions are summarized as follows.

    (1) A new variational model with a nonconvex nonsmoothLp(0<p <1) norm regularization is proposed for recovering neat edges and homogeneous regions well.

    (2) An efficient algorithm based on variablesplitting and ADMM method is proposed for solving the propose nonconvex nonsmooth model.

    (3) Intensive experimental results demonstrate that the new model is superior to other state-of-the-art approaches in recovering neat edges and homogeneous regions.

    1 Variational methods for speckle reduction

    In this section, firstly the basic notations are defined, then the major variational methods for suppressing multiplicative noise are described. Finally,the motivations of the new nonconvex nonsmooth variational model are expressed.

    1.1 Basic notation

    For generality,SAR image intensityuis represented as anM×Nmatrix. The Euclidean space RM×Nis denoted asV, and the discrete gradient operator is a mapping ?:V→Q, whereQ=V×V. Foru∈V, ?uis given by

    1.2 Variational methods for speckle reduction

    Speckle noise is usually regarded as multiplicative noise in SAR image as follows.

    whereα >0 is a convex approximation parameter. To cope with the staircase artifacts produced by Eq.(9),Shama et al.[15]replaced the TV regularizer in Eq.(9)with TGV regularization. Li et al.[16]applied a difference of convex algorithm (DCA) to solve the original AA model Eq.(8), which can split the AA model into a difference of two convex functions.

    The second category is logarithmic transformation of the AA model. By using logarithmic transformation,the nonconvex AA model can transform to a convex one. Feng et al.[18]adopted this strategy with a TGV regularizer, but this method will result in low value pixels weakeness due to nonlinear logarithmic transform. To tackle this problem, Steidl and Teuber[24]proposed a variational model with I-divergence fidelity term which is convex and not require the deficiency of logarithmic transformation. The proposed model is formulated as

    Feng et al.[18]also modified the model Eq.(10)with TGV regularization term for reducing staircase effects. However, due to the using of high-order operator in their model, the results produced by their method also are over-blurring in edges and corners.

    The regularizer of the aforementioned models are all convexL1 norm regularizer. However, for many problems based on recovery of sparse and discontinuous signals, using nonconvex regularizer (Lpnorm) can usually obtain better results than the convex regularizer(L1 norm), which is verified by numerical experiments in numerous papers[25-28]. Inspired by these studies, this paper proposes a new variational model with a nonconvex nonsmoothLp(0<p <1) norm regularization.

    2 Lp-regularized model and corresponding numerical algorithm

    As coherent imaging systems, speckle noise inevitably appears in SAR images. Compared with Gaussian noise of natural images, multiplicative speckle noise can seriously blur geometry features, especially in SAR images with intensity format. In order to recovery neat edges and homogeneous regions well, this paper proposes a new variational model with a nonconvex nonsmoothLp(0<p <1) norm regularization as follows.

    here,α >0 is a regularization parameter, which is used to balance the weight between the fidelity term and the regularizer.p∈[0,1] is a parameter for controlling the nonconvexity of theLpregularizer.

    Because of the minimization problem Eq.(11) is nonconvex, it is difficult to find the global minimum.Inspired by Ref.[29], this paper uses variable-splitting and ADMM to solve this nonconvex model. Firstly, two auxiliary variableswandtare introduced in the problem Eq.(11),and then it is reformulated as follows.

    3 Experiments and analysis

    In this section,the proposed model is evaluated on three real SAR images, which are presented in the first row of Fig.1(a), Fig.2(a), and Fig.3(a). The real SAR images are accessed from https:/ /www. intelligence-airbusds. com/. The proposed SAR image despeckling method is abbreviated as IDIVLP,which is compared with the corresponding state-of-the-art methods, such as SARBM3D[12], PPBit[11], DCA[16], and TGV[18]. All the methods tested in this paper are implemented by using the code provided by their authors,except TGV[18]according to the published paper. All of the examples are run on a laptop with an AMD Ryzen7 core 2. 9 GHz processor and 16 GB RAM by using Matlab R2016a.

    3.1 Parameters tuning

    Most SAR image despeckling methods have parameters, which need to be manually tuned to produce satisfactory results. The proposed variational model Eq.(11) has two parameters:αandp. αis a weight between the fidelity term and the regularization, which is used to prevent the output deviating far from the input. Ifαis too large, the speckle noise cannot be suppressed fully; ifαis too small, the fine features will be oversmoothed. To obtain satisfactory despeckling results, this paper empirically gives the following parameter setting guidance:L≤4,α∈[0.1,20];L >4,α∈[10,100]. p∈[0,1] is a parameter for controlling the nonconvexity of theLpregularizer. The smaller ofpmeans that the nonconvexity of the new proposed model is stronger. Ifpis too small for the SAR image,staircase effects and other annoying artifacts appear in recovering results.

    On the contrary, too largepwill blur edges and leave some speckles. Therefore,pis suggested to be set a suitable value. For cartoon images,p∈[0.1,0.6];for images with rich details,p∈[0.5,0.9].

    3.2 Qualitative comparisons

    In this subsection, some visual experiments are executed to compare the new model IDIVLP with the state-of-the-art methods including SARBM3D, PPBit,DCA, and TGV. All the parameters used in these methods are elaborately tuned for yielding visually best speckle suppression results. In addition,to better evaluate the ability of edges recovery visually, ratio images are adopted in the tests (see the second row of Figs1,2, and 3). More structures appear in the ratio images,which means that this method loses more features and flattens more edges in the recover results.

    Fig.1 demonstrates and compares results of SAR1, which has sharp features and homogeneous areas. All of the methods are capable of removing speckle. However, it can be seen that, except the new method, all the other methods smooth some sharp edges and over-blur homogeneous regions more or less,especially for TGV (see the first row of Fig.1(e)). At the same time, the ratio image of TGV leaves the most structures (see the second row of Fig.1(e)). This is because that it uses the second derivative in its model,which tends to produce over-blurring results. DCA produces better results than TGV, but it also loses more features (see Fig.1(d)). In addition, it yields some staircase artifacts in homogeneous regions. Compared the new method with the non-local methods PPBit and SARBM3D, they usually yield better results than DZ and DCA. In ratio images, they leave fewer structures(see the second row of Fig.1(b), (c)). However,because of the attempt to recognize structures even when these structures are absent, the despeckling result of SARBM3D suffers from ghost artifacts in the homogeneous regions (see Fig.1(b) for example).For the same reason as SARBM3D, PPBit tends to produce some brushstrokes in homogeneous regions as shown in the first row of Fig.1(c). These unnatural artifacts produced by PPBbit and SARBM3D reduce the quality of the despeckling results evidently. In contrast to these methods, the new method IDIVLP yields the more attractive result with neat edge preserving and homogeneous regions recovery (see the first row of Fig.1(f)). In addition, IDIVLP also produces the fewest structures in ratio images (see the second row of Fig.1(f)).

    Fig.2 shows despeckling results on SAR2 containing city scene. TGV over-blurs weak edges and homogeneous regions in various degrees, and it leaves the most structures in ratio image (see the second row of Fig.2(e)). DCA produces better results than TGV in preserving edges, but it also produces staircase artifacts (see the second row of Fig.2(d)). Again,PPBit suffers from serious brushstrokes, and SARBM3D shows severe ghost artifacts (see the first rows of Fig.2(b)and (c)). In contrast, IDIVLP preserves clearer edges and recovers homogeneous regions better, and it yields the fewest structures in ratio images (Fig.2(f)).

    Fig.1 Despeckling results of SAR1 (the first row is: (a) noisy image, denoising results produced by (b) SARBM3D, (c) PPBit,(d) DCA, (e) TGV, (f) IDIVLP ( α = 6, p = 0.7 ), respectively, the second row is the corresponding ratio images)

    Fig.2 Despeckling results of SAR2 (the first row is: (a) noisy image, denoising results produced by (b) SARBM3D, (c) PPBit,(d) DCA, (e) TGV, (f) IDIVLP ( α = 11, p = 0.4 ), respectively, the second row is the corresponding ratio images)

    To further testify the validity of the new method IDIVLP, some tests are executed on SAR3 containing hill scene in Fig.3. DCA produces slight staircase effects in homogeneous regions,but it is superior in preserving edges compared with other tested despeckling methods.Moreover, the new method IDIVLP produces the least structures in ratio image (see the second rows of Fig.3(d)). TGV smoothes more sharp edges and homogeneous regions. PPBit and SARBM3D suffers from the annoying artifacts in homogeneous areas. In contrast, the new method preserves features well and outperforms the best structure recovery ability.

    Fig.3 Despeckling results of SAR3 (the first row is: (a) noisy image, denoising results produced by (b) SARBM3D, (c) PPBit,(d) DCA, (e) TGV, (f) IDIVLP ( α = 7, p = 0.7 ), respectively, the second row is the corresponding ratio images)

    3.3 Quantitative comparisons

    For demonstrating more objective comparisons,two indexes are adopted to further evaluate the performances of the despekling methods quantitatively. Specifically, equivalent number of looks (ENL) and edge preservation index (EPI) are used to respectively measure the ability of speckle suppression and edge preservation, which are widely suggested in previous work[21,30-32]. The ENL of tested SAR image were estimated from the homogenous regions in the rectangles in the first row of Figs1(a),2(a) and 3(a). The higher of ENL means that this method can suppress speckle more thoroughly. The value of EPI is in the range of[0,1] and EPI is close to 1 means that this method yields a favorable despeckling results in edges preserving. These assessment results of SAR1, SAR2, and SAR3 by using the two indexes are listed in Table 1.

    Table 1 Numerical evaluation results

    As shown in Table 1, for all tested SAR image,the values of ENL and EPI of the new method IDIVLP are consistently superior to the compared methods.These show that IDIVLP not only suppresses speckle noise effectively but also recovers neat edges well. In the compared methods, the nonlocal methods (PPBit and SARBM3D) usually can obtain better EPI but worse ENL. This is because that the nonlocal methods adopt the similar structures searching mechanism, so they can recover features well. However, in the same time, this mechanism produces the annoying artifacts in homogeneous regions, which results in the lower ENL than the tested variational methods. The computation time of all the tested methods is recorded in Table 1. As can be seen, for all scenes SAR images, the proposed method has the least time costs in the tested methods.

    4 Conclusions

    A variational model with a nonconvex nonsmoothLpnorm regularization is, introduced to suppress speckle noise for SAR image. By using theLp(0<p <1)regularizer, the proposed model can obtain the most suitable sparsity with SAR image. Compared with existing depeckling methods, the proposed model is more robust in preserving neat edges and recovering homogeneous regions. An effective algorithm based on variable-splitting and ADMM is also proposed to solve the model, which has smaller computational complexity.Intensive experimental results demonstrate that the new nonconvex nonsmooth model is superior to other stateof-the-art approaches qualitatively and quantitatively.In the future, more application withLpregularizer in other fields will be explored. For example,Lpregularizer is extended for mesh and point cloud denoising.

    美女黄网站色视频| 欧美高清成人免费视频www| 国产精品国产高清国产av| 全区人妻精品视频| 午夜日韩欧美国产| 少妇的丰满在线观看| tocl精华| 嫩草影院入口| tocl精华| 亚洲一区高清亚洲精品| 成人18禁在线播放| 91九色精品人成在线观看| 亚洲电影在线观看av| 亚洲自拍偷在线| 日韩成人在线观看一区二区三区| 国产高清激情床上av| 久久中文看片网| 国产91精品成人一区二区三区| 国产精品av视频在线免费观看| 一a级毛片在线观看| 国产高清激情床上av| 亚洲18禁久久av| 欧美日韩中文字幕国产精品一区二区三区| 极品教师在线免费播放| 免费搜索国产男女视频| 欧美黑人巨大hd| 黄片大片在线免费观看| 美女高潮的动态| 小蜜桃在线观看免费完整版高清| 日本五十路高清| 国产av不卡久久| 日韩亚洲欧美综合| 国产精品野战在线观看| 村上凉子中文字幕在线| 午夜福利免费观看在线| 热99re8久久精品国产| 成人一区二区视频在线观看| 男人舔奶头视频| 麻豆国产97在线/欧美| 真人一进一出gif抽搐免费| 午夜久久久久精精品| 亚洲av二区三区四区| 国产主播在线观看一区二区| 男女视频在线观看网站免费| 欧美大码av| 黄色成人免费大全| 色老头精品视频在线观看| 婷婷丁香在线五月| 午夜亚洲福利在线播放| 欧美性猛交黑人性爽| av在线天堂中文字幕| 观看美女的网站| 午夜福利在线观看吧| 在线免费观看不下载黄p国产 | 国产精品女同一区二区软件 | 午夜精品在线福利| 天堂av国产一区二区熟女人妻| 老汉色∧v一级毛片| 波多野结衣高清作品| 一级作爱视频免费观看| 国产精品电影一区二区三区| 国产爱豆传媒在线观看| 免费看美女性在线毛片视频| 99久久综合精品五月天人人| 麻豆成人av在线观看| 婷婷六月久久综合丁香| 久久午夜亚洲精品久久| 色综合婷婷激情| 国产精品影院久久| 女人十人毛片免费观看3o分钟| 精品日产1卡2卡| 欧美日韩瑟瑟在线播放| 他把我摸到了高潮在线观看| 国产真实乱freesex| 脱女人内裤的视频| 亚洲真实伦在线观看| a级毛片a级免费在线| 少妇裸体淫交视频免费看高清| 成人高潮视频无遮挡免费网站| 成人精品一区二区免费| 精品福利观看| 亚洲精品日韩av片在线观看 | 搡老妇女老女人老熟妇| 一级作爱视频免费观看| 制服人妻中文乱码| 少妇高潮的动态图| 午夜福利18| 丰满人妻一区二区三区视频av | 色综合欧美亚洲国产小说| 亚洲午夜理论影院| 亚洲精品在线美女| 国产真实伦视频高清在线观看 | 99视频精品全部免费 在线| 欧美乱码精品一区二区三区| 熟女电影av网| 亚洲 国产 在线| 久久精品国产自在天天线| 国产欧美日韩精品亚洲av| 国产精品 国内视频| 特大巨黑吊av在线直播| 小蜜桃在线观看免费完整版高清| 黄色日韩在线| 日本黄色视频三级网站网址| 久久精品国产清高在天天线| 亚洲av电影在线进入| 成人无遮挡网站| 两人在一起打扑克的视频| 亚洲av成人精品一区久久| 18+在线观看网站| 欧美日韩瑟瑟在线播放| 动漫黄色视频在线观看| 精品人妻1区二区| 亚洲av成人av| 国产精品久久视频播放| 日韩欧美国产在线观看| 亚洲专区国产一区二区| 一进一出好大好爽视频| 亚洲精品久久国产高清桃花| 国产综合懂色| 亚洲国产高清在线一区二区三| 18禁国产床啪视频网站| 亚洲精品久久国产高清桃花| 日本一本二区三区精品| 国产极品精品免费视频能看的| 日本精品一区二区三区蜜桃| 好男人在线观看高清免费视频| 一级毛片女人18水好多| 日韩欧美 国产精品| 亚洲精品粉嫩美女一区| 日韩有码中文字幕| 国产亚洲精品综合一区在线观看| 亚洲精品一区av在线观看| 欧美一区二区亚洲| 亚洲欧美精品综合久久99| 色老头精品视频在线观看| 久久婷婷人人爽人人干人人爱| 久久精品91无色码中文字幕| 级片在线观看| 国产99白浆流出| 国产一区二区激情短视频| 美女 人体艺术 gogo| 亚洲中文日韩欧美视频| 无遮挡黄片免费观看| 日本a在线网址| 亚洲男人的天堂狠狠| 在线a可以看的网站| 岛国视频午夜一区免费看| 久久久国产成人免费| 亚洲中文日韩欧美视频| 村上凉子中文字幕在线| 亚洲七黄色美女视频| 亚洲国产精品久久男人天堂| 女同久久另类99精品国产91| www.999成人在线观看| av女优亚洲男人天堂| 国产伦精品一区二区三区四那| 欧美又色又爽又黄视频| 床上黄色一级片| 亚洲av一区综合| 一级黄片播放器| 午夜日韩欧美国产| 欧美+亚洲+日韩+国产| 90打野战视频偷拍视频| 99久久精品国产亚洲精品| 欧美高清成人免费视频www| 午夜福利在线在线| 舔av片在线| 在线免费观看不下载黄p国产 | 18美女黄网站色大片免费观看| 亚洲国产中文字幕在线视频| 国产精品乱码一区二三区的特点| 国产成人系列免费观看| 深爱激情五月婷婷| 色视频www国产| 好看av亚洲va欧美ⅴa在| 亚洲精品一区av在线观看| 最近视频中文字幕2019在线8| aaaaa片日本免费| 小蜜桃在线观看免费完整版高清| 成人国产一区最新在线观看| 国产精品日韩av在线免费观看| 国产真实乱freesex| 99热精品在线国产| 欧美日韩黄片免| 99热只有精品国产| 青草久久国产| 亚洲精品乱码久久久v下载方式 | www.999成人在线观看| 国产淫片久久久久久久久 | 国语自产精品视频在线第100页| 天堂动漫精品| 久久久国产成人精品二区| 久久香蕉精品热| 国产一区二区在线av高清观看| 欧美一级毛片孕妇| 欧美日韩综合久久久久久 | 观看免费一级毛片| 99久久久亚洲精品蜜臀av| 一夜夜www| 观看免费一级毛片| 亚洲国产精品sss在线观看| 亚洲精品久久国产高清桃花| 午夜日韩欧美国产| 精品国产美女av久久久久小说| 麻豆国产av国片精品| 欧美绝顶高潮抽搐喷水| 久久久国产精品麻豆| 国产久久久一区二区三区| 国产高潮美女av| 亚洲av第一区精品v没综合| 中文在线观看免费www的网站| 中文字幕av成人在线电影| 免费人成视频x8x8入口观看| 亚洲午夜理论影院| 免费电影在线观看免费观看| 99久久综合精品五月天人人| 悠悠久久av| а√天堂www在线а√下载| 久久久精品大字幕| 搡女人真爽免费视频火全软件 | 九九在线视频观看精品| 18禁美女被吸乳视频| 免费观看精品视频网站| 久久久成人免费电影| 精品无人区乱码1区二区| 变态另类成人亚洲欧美熟女| 国产黄色小视频在线观看| 亚洲av成人精品一区久久| 97人妻精品一区二区三区麻豆| 欧美乱妇无乱码| 免费看光身美女| 天堂√8在线中文| 成人亚洲精品av一区二区| 国内少妇人妻偷人精品xxx网站| 岛国在线免费视频观看| 中文字幕av在线有码专区| 久久精品国产亚洲av香蕉五月| 欧美色视频一区免费| 757午夜福利合集在线观看| 久久香蕉国产精品| 国产 一区 欧美 日韩| 2021天堂中文幕一二区在线观| 一本久久中文字幕| 激情在线观看视频在线高清| 欧美性猛交╳xxx乱大交人| 最新美女视频免费是黄的| 亚洲国产精品sss在线观看| 国产淫片久久久久久久久 | 久久久久久九九精品二区国产| 欧美在线一区亚洲| 国产伦在线观看视频一区| 波多野结衣高清作品| 国产精品久久电影中文字幕| 美女大奶头视频| 可以在线观看的亚洲视频| 亚洲精品一卡2卡三卡4卡5卡| 一个人免费在线观看的高清视频| 免费在线观看日本一区| 在线免费观看的www视频| 免费看日本二区| ponron亚洲| 欧美xxxx黑人xx丫x性爽| 欧美乱码精品一区二区三区| 欧美一区二区国产精品久久精品| 国产高清videossex| 少妇人妻一区二区三区视频| 亚洲成a人片在线一区二区| 国产一区二区三区视频了| 欧美黑人巨大hd| 国产精品亚洲美女久久久| 一二三四社区在线视频社区8| svipshipincom国产片| 人人妻人人澡欧美一区二区| 少妇人妻精品综合一区二区 | 国产野战对白在线观看| 成人性生交大片免费视频hd| 精品一区二区三区人妻视频| 色精品久久人妻99蜜桃| 国产精品国产高清国产av| 舔av片在线| 免费在线观看日本一区| 五月玫瑰六月丁香| 中文字幕人妻熟人妻熟丝袜美 | 午夜精品一区二区三区免费看| eeuss影院久久| 国产中年淑女户外野战色| 久久精品91蜜桃| 母亲3免费完整高清在线观看| 中文资源天堂在线| 中文字幕熟女人妻在线| a级一级毛片免费在线观看| 免费电影在线观看免费观看| 日韩欧美国产在线观看| 欧美午夜高清在线| 黄色丝袜av网址大全| 成人三级黄色视频| 日本黄色片子视频| 国产野战对白在线观看| 亚洲人成伊人成综合网2020| 亚洲精品亚洲一区二区| 国产麻豆成人av免费视频| 精品国产超薄肉色丝袜足j| 69av精品久久久久久| 亚洲av不卡在线观看| 男人舔奶头视频| 久久久国产成人免费| 久久香蕉精品热| 久久亚洲真实| 国产精品1区2区在线观看.| 欧美日韩乱码在线| 欧美绝顶高潮抽搐喷水| 性色av乱码一区二区三区2| 天堂网av新在线| 国产蜜桃级精品一区二区三区| 亚洲欧美精品综合久久99| 欧美日本亚洲视频在线播放| 国产日本99.免费观看| 99久久久亚洲精品蜜臀av| 男人的好看免费观看在线视频| 老熟妇乱子伦视频在线观看| 久久亚洲真实| 变态另类成人亚洲欧美熟女| 成人无遮挡网站| 亚洲色图av天堂| 国产一区二区三区在线臀色熟女| 天堂网av新在线| 啦啦啦免费观看视频1| 精品国产美女av久久久久小说| 嫩草影视91久久| 欧美一区二区国产精品久久精品| 亚洲人与动物交配视频| 在线观看舔阴道视频| 精品国产三级普通话版| 男女视频在线观看网站免费| 真实男女啪啪啪动态图| 欧美+亚洲+日韩+国产| 岛国在线免费视频观看| 精品午夜福利视频在线观看一区| 国产精品久久久久久人妻精品电影| 亚洲久久久久久中文字幕| 激情在线观看视频在线高清| 女生性感内裤真人,穿戴方法视频| 狂野欧美激情性xxxx| 黄色日韩在线| 九九久久精品国产亚洲av麻豆| 很黄的视频免费| 久久香蕉精品热| 91久久精品国产一区二区成人 | 免费在线观看影片大全网站| 69人妻影院| 天堂网av新在线| 最新中文字幕久久久久| 日韩有码中文字幕| 国产精品98久久久久久宅男小说| 亚洲av日韩精品久久久久久密| 国内久久婷婷六月综合欲色啪| 久久欧美精品欧美久久欧美| 日韩av在线大香蕉| 久久久精品大字幕| 日韩 欧美 亚洲 中文字幕| 无人区码免费观看不卡| 女同久久另类99精品国产91| 香蕉丝袜av| 啦啦啦韩国在线观看视频| 黄色女人牲交| 国产69精品久久久久777片| av在线蜜桃| 亚洲中文字幕一区二区三区有码在线看| 久久久久久久久久黄片| 国产av不卡久久| 深爱激情五月婷婷| 久久精品91无色码中文字幕| 久久久国产成人免费| 色视频www国产| 国产极品精品免费视频能看的| 久久精品91无色码中文字幕| 欧美日本视频| 国产91精品成人一区二区三区| 国产探花在线观看一区二区| 国产男靠女视频免费网站| 亚洲欧美日韩高清专用| 老司机在亚洲福利影院| 淫秽高清视频在线观看| 国产在线精品亚洲第一网站| 少妇人妻一区二区三区视频| 国产麻豆成人av免费视频| 99视频精品全部免费 在线| 丰满人妻一区二区三区视频av | 熟女人妻精品中文字幕| 18+在线观看网站| 少妇人妻一区二区三区视频| 国产成人aa在线观看| 亚洲中文字幕日韩| 日韩av在线大香蕉| 亚洲欧美激情综合另类| 九色国产91popny在线| 内射极品少妇av片p| 欧美三级亚洲精品| 美女大奶头视频| 亚洲精品国产精品久久久不卡| 亚洲黑人精品在线| 18禁黄网站禁片午夜丰满| 久久伊人香网站| 小蜜桃在线观看免费完整版高清| 国产精品98久久久久久宅男小说| 此物有八面人人有两片| 久久久成人免费电影| 偷拍熟女少妇极品色| 男人的好看免费观看在线视频| 熟女少妇亚洲综合色aaa.| 99国产极品粉嫩在线观看| av女优亚洲男人天堂| 搞女人的毛片| 午夜福利免费观看在线| 国产在线精品亚洲第一网站| 国产精品久久久久久精品电影| 日本黄色片子视频| 精品国产超薄肉色丝袜足j| 久久亚洲真实| 国产亚洲精品综合一区在线观看| 久久精品国产自在天天线| 国产精品99久久99久久久不卡| 黄色视频,在线免费观看| 精品国内亚洲2022精品成人| 香蕉av资源在线| 老司机福利观看| 97碰自拍视频| 99riav亚洲国产免费| 真人做人爱边吃奶动态| 成人三级黄色视频| 中国美女看黄片| 美女被艹到高潮喷水动态| 欧美日本亚洲视频在线播放| 老鸭窝网址在线观看| 日韩大尺度精品在线看网址| 国产真人三级小视频在线观看| 亚洲人与动物交配视频| 国产精品电影一区二区三区| 久久久久国内视频| 欧美色视频一区免费| 两个人看的免费小视频| 成人精品一区二区免费| 亚洲一区二区三区色噜噜| 亚洲精华国产精华精| 又黄又粗又硬又大视频| 国产三级黄色录像| 桃色一区二区三区在线观看| 亚洲av中文字字幕乱码综合| 亚洲中文字幕日韩| 男女做爰动态图高潮gif福利片| 少妇裸体淫交视频免费看高清| 热99re8久久精品国产| 国产激情欧美一区二区| 999久久久精品免费观看国产| 国产免费av片在线观看野外av| 国产高清有码在线观看视频| 欧美丝袜亚洲另类 | 国产午夜福利久久久久久| 99久久精品热视频| 久久6这里有精品| 久久草成人影院| 一本综合久久免费| 久久久久久九九精品二区国产| 一二三四社区在线视频社区8| 黄片大片在线免费观看| 中文在线观看免费www的网站| 波野结衣二区三区在线 | 老汉色av国产亚洲站长工具| 黄片大片在线免费观看| 国产色爽女视频免费观看| 亚洲人成网站在线播放欧美日韩| 国产免费av片在线观看野外av| 亚洲精品影视一区二区三区av| 亚洲男人的天堂狠狠| 亚洲色图av天堂| 九九久久精品国产亚洲av麻豆| 欧美成人a在线观看| 国产久久久一区二区三区| 国语自产精品视频在线第100页| 搡女人真爽免费视频火全软件 | 亚洲最大成人中文| 国产一区在线观看成人免费| 精品免费久久久久久久清纯| 首页视频小说图片口味搜索| 99久久久亚洲精品蜜臀av| 90打野战视频偷拍视频| 很黄的视频免费| 亚洲无线观看免费| 免费看a级黄色片| 国产黄色小视频在线观看| 国产v大片淫在线免费观看| 欧美激情久久久久久爽电影| 久久精品夜夜夜夜夜久久蜜豆| 国产精品 国内视频| 日韩欧美国产在线观看| 国产午夜福利久久久久久| 亚洲国产欧洲综合997久久,| 在线观看免费午夜福利视频| 午夜视频国产福利| 日本五十路高清| 亚洲av第一区精品v没综合| 亚洲久久久久久中文字幕| av天堂中文字幕网| 亚洲国产欧洲综合997久久,| 18禁黄网站禁片午夜丰满| 久久久久免费精品人妻一区二区| 无遮挡黄片免费观看| 欧美zozozo另类| 午夜久久久久精精品| 12—13女人毛片做爰片一| or卡值多少钱| 欧美极品一区二区三区四区| 国产老妇女一区| 变态另类丝袜制服| 美女高潮的动态| 国产精品98久久久久久宅男小说| 免费电影在线观看免费观看| 成人性生交大片免费视频hd| 国产熟女xx| av欧美777| 尤物成人国产欧美一区二区三区| 91麻豆精品激情在线观看国产| 一本精品99久久精品77| 精品国产美女av久久久久小说| 毛片女人毛片| 91九色精品人成在线观看| 在线观看一区二区三区| 美女cb高潮喷水在线观看| 午夜视频国产福利| 国产不卡一卡二| 男人的好看免费观看在线视频| 午夜视频国产福利| 国产不卡一卡二| 亚洲欧美日韩高清专用| 国产午夜精品论理片| 国产精品久久久久久精品电影| 在线观看日韩欧美| 国内精品一区二区在线观看| 在线免费观看的www视频| 亚洲欧美激情综合另类| 网址你懂的国产日韩在线| 床上黄色一级片| 成熟少妇高潮喷水视频| 老汉色∧v一级毛片| 制服丝袜大香蕉在线| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 色精品久久人妻99蜜桃| 国产精品野战在线观看| 男人舔女人下体高潮全视频| 麻豆国产av国片精品| 99国产精品一区二区三区| 国产成年人精品一区二区| 性欧美人与动物交配| 亚洲电影在线观看av| 免费观看人在逋| 亚洲av成人精品一区久久| 亚洲自拍偷在线| 国产视频内射| 我的老师免费观看完整版| а√天堂www在线а√下载| 中文字幕久久专区| 国产国拍精品亚洲av在线观看 | 色老头精品视频在线观看| 国内毛片毛片毛片毛片毛片| 看黄色毛片网站| 日韩精品中文字幕看吧| 精品免费久久久久久久清纯| 国产精品亚洲美女久久久| 天天添夜夜摸| 无限看片的www在线观看| or卡值多少钱| 夜夜躁狠狠躁天天躁| 亚洲成人中文字幕在线播放| 欧美日韩福利视频一区二区| 一个人看的www免费观看视频| 嫩草影院精品99| 午夜精品一区二区三区免费看| 色噜噜av男人的天堂激情| 午夜激情福利司机影院| 成人特级黄色片久久久久久久| 一夜夜www| 欧美高清成人免费视频www| 深夜精品福利| 国产久久久一区二区三区| 亚洲美女黄片视频| 真人一进一出gif抽搐免费| 国产乱人伦免费视频| 欧美一区二区亚洲| 丁香六月欧美| 18禁国产床啪视频网站| 一卡2卡三卡四卡精品乱码亚洲| 久久久久亚洲av毛片大全| 成年人黄色毛片网站| 免费av不卡在线播放| 欧美成狂野欧美在线观看| 日本免费一区二区三区高清不卡| 欧美日韩福利视频一区二区| 久久欧美精品欧美久久欧美| 成年免费大片在线观看| 精品久久久久久,| 99热这里只有精品一区| 国产蜜桃级精品一区二区三区| 真实男女啪啪啪动态图| АⅤ资源中文在线天堂| 国产伦精品一区二区三区四那| 亚洲av日韩精品久久久久久密| 午夜免费男女啪啪视频观看 | 欧美日韩中文字幕国产精品一区二区三区| 日日摸夜夜添夜夜添小说| 欧美一区二区国产精品久久精品| 久久久久免费精品人妻一区二区| 午夜福利免费观看在线| 免费一级毛片在线播放高清视频| АⅤ资源中文在线天堂| 国产成人a区在线观看|