• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    THE GLOBAL EXISTENCE AND A DECAY ESTIMATE OF SOLUTIONS TO THE PHAN-THEIN-TANNER MODEL*

    2022-06-25 02:12:44RuiyingWEI位瑞英

    Ruiying WEI (位瑞英)

    School of Mathematics and Statistics,Shaoguan University,Shaoguan 512005,China

    E-mail:weiruiying521@163.com

    Yin LI (李銀)?

    Faculty of Education,Shaoguan University,Shaoguan 512005,China

    E-mail:liyin2009521@163.com

    Zheng-an YAO (姚正安)

    Department of Mathematics,Sun Yat-sen University,Guangzhou 510275,China

    E-mail:mcsyao@mail.sysu.edu.cn

    Abstract In this paper,we study the global existence and decay rates of strong solutions to the three dimensional compressible Phan-Thein-Tanner model.By a refined energy method,we prove the global existence under the assumption that the H3 norm of the initial data is small,but that the higher order derivatives can be large.If the initial data belong to homogeneous Sobolev spaces or homogeneous Besov spaces,we obtain the time decay rates of the solution and its higher order spatial derivatives.Moreover,we also obtain the usual Lp-L2(1≤p≤2) type of the decay rate without requiring that the Lp norm of initial data is small.

    Key words Phan-Thein-Tanner model;global existence;time decay rates

    1 Introduction

    The theory of the Phan-Thein-Tanner model has recently gained quite some attention,and is derived from network theory for polymeric fluid.This type of fluid is described by the following set of equations:

    The unknownsρ,u,τ,pare the density,velocity,stress tensor and scalar pressure of the fluid,respectively.D(u) is the symmetric part of?u;that is,

    Q(τ,?u) is a given bilinear form

    where Ω(u) is the skew-symmetric part of?u,namely,

    μ>0 is the viscosity coefficient andμ1is the elastic coefficient.aandμ2are associated with the Debroah number(which indicates the relation between the characteristic flow time and elastic time[2]).λ∈[-1,1]is a physical parameter;we call the system a co-rotational case whenλ=0.b≥0 is a constant related to the rate of creation or destruction for the polymeric network junctions.

    To complete system (1.1),the initial data are given by

    Let us review some previous works about model (1.1) and related models.If we ignore the stress tensor,(1.1) reduces to the compressible Navier-Stokes (NS) equations.The convergence rates of solutions for the compressible Navier-Stokes equations to the steady state have been investigated extensively since the first global existence of small solutions inH3was improved upon by Matsumura and Nishida[21,22].When the initial perturbation is (ρ0-1,u0)∈Lp∩HN(N≥3) withp∈[1,2],theL2optimal decay rate of the solution to the NS system is

    For the small initial perturbation belonging toH3only,Matsumura[20]employed the weighted energy method to show theL2decay rates.Ponce[27]obtained the optimalLpconvergence rate.In[29],Schonbek and Wiegner studied the large time behavior of solutions to the Navier-Stokes equation inHm(Rn) for alln≤5.In order to establish optimal decay rates for the higher order spatial derivatives of solutions,for when the initial perturbation is bounded in thenorm instead of theL1-norm,Guo and Wang[12]used a general energy method to develop the time convergence rates for 0≤l≤N-1.In addition,the decay rate of solutions to the NS system was investigated in[5,33](see also the references therein).

    Ifb=0,the system (PTT) reduces to the famous Oldroyd-B model (see[25]),which has been studied widely.Most of the results on Oldroyd-B fluids are about the incompressible model.C.Guillopé and J.C.Saut[10,11]proved the existence of local strong solutions and the global existence of one dimensional shear flows.Later,the smallness restriction on the coupling constant in[10]was removed by Molinet and Talhouk[23].In[19],F(xiàn).Lin,C.Liu and P.Zhang proved local existence and global existence (with small initial data) of classical solutions for an Oldroyd system without an artificially postulated damping mechanism.Similar results were obtained in several papers by virtue of different methods;see Z.Lei,C.Liu and Y.Zhou[17],T.Zhang and D.Fang[38],Y.Zhu[41].D.Fang and R.Zi[6]proved the global existence of strong solutions with a class of large data.

    On the other hand,there are relatively few results for the compressible model.Lei[16]proved the local and global existence of classical solutions for a compressible Oldroyd-B system in a torus with small initial data.He also studied the incompressible limit problem and showed that the compressible flows with well-prepared initial data converge to incompressible ones when the Mach number converges to zero.The case of ill-prepared initial data was considered by Fang and Zi[8]in the whole space Rd,d≥2.Recently,the smallness restriction on a coupling constant was removed by Zi in[39].On the other hand,for suitable Sobolev spaces,F(xiàn)ang and Zi[7]obtained the unique local strong solution with the initial density vanishing from below and a blow-up criterion for this solution.Zhou,Zhu and Zi[40]proved the existence of a global strong solution provided that the initial data are close to the constant equilibrium state in theH2-framework and obtained the convergence rates of the solutions.For the compressible Oldroyd type model based on the deformation tensor,see the results[14,18,28,37]and references therein.

    In this paper,we focus on the PTT model (b0).To our knowledge,there are a lot of numerical results about the PTT model (see,[1,9,26]).Recently,[4]proved that the strong solution in critical Besov spaces exists globally when the initial data are a small perturbation over and around the equilibrium.[3]proved that the strong solution will blow up in finite time and proved the global existence of a strong solution with small initial data.However,to our knowledge,there are few results on the compressible PTT model,especially regarding the large-time behavior.Compared with the incompressible models,the compressible equations of the PTT model are more difficult to deal with because of the strong nonlinearities and interactions among the physical quantities.The main purpose of this paper is to study the global existence and decay rates of smooth solutions for the compressible PTT model.We first establish the global solution of the solutions to (1.1)–(1.2) in the whole space R3near the constant equilibrium state under the assumption that theH3norm of the initial data is small,but the higher order derivatives can be arbitrarily large.Then we establish the large time behavior appealing to the work of Strain et al.[32],Guo et al.[12],Sohinger et al.[30],Wang[36]and Tan et al.[34,35].Moreover,we also obtain the usualLp-L2(1≤p≤2) type of decay rate without requiring that theLpnorm of the initial data is small.

    Throughout the paper,without loss of generality,we setμ=μ1=μ2=a=b=ˉρ=1.Before stating our main results,we explain the notations and conventions used throughout.?lwith an integerl≥0 stands for the any spatial derivatives of orderl.Whenl<0 orlis not a positive integer,?lstands for Λldefined by Λsu:=F-1(|ξ|s(ξ)),whereis the Fourier transform ofuand F-1its inverse.We use(s∈R) to denote the homogeneous Sobolev spaces on R3with the normdefined by,Hs(R3) to denote the usual Sobolev spaces with the norm ‖·‖Hs,andLp(1≤p≤∞) to denote the usualLp(R3) spaces with the norm ‖·‖Lp.Finally,we introduce the homogeneous Besov space,lettingbe a cut-offfunction such thatφ(ξ)=1 with|ξ|≤1,and lettingφ(ξ)≤2 with|ξ|≤2.Letψ(ξ)=φ(ξ)-φ(2ξ) andψj(ξ)=ψ(2-jξ) forj∈Z.Then,by the constructionifξ0,we set,so that fors∈R,we define the homogeneous Besov spaces(RN) with the normby

    We will employ the notationA?Bto mean thatA≤CBfor a universal constantC>0 that only depends on the parameters coming from the problem.For the sake of concision,we write ‖(A,B)‖X:=‖A‖X+‖B‖X.

    ForN≥3,we define the energy functional by

    and the corresponding dissipation rate by

    Now,we state our main result about the global existence and decay properties of a solution to the system (1.1)–(1.2) in the following theorems:

    Theorem 1.1LettingN≥3,and assuming that (ρ0-1,u0,τ0)∈HN,there exists a sufficiently smallδ0>0 such that if E3(0)≤δ0,then the problem (1.1)–(1.2) has a unique global solution (ρ,u,τ)(t) satisfying

    Furthermore,if EN(0)<∞for anyN≥3,then (1.1)–(1.2) admits a unique solution (ρ,u,τ)(t) satisfying

    In addition,if the initial data belong to Negative Sobolev or Besov spaces,based on the regularity interpolation method and the results in Theorem 1.1,we can derive some further decay rates of the solution and its higher order spatial derivatives to systems (1.1)–(1.2).

    Theorem 1.2Under all the assumptions in Theorem 1.1,let (ρ,u,τ)(t) be the solution to the system (1.1)–(1.2) constructed in Theorem 1.1.Suppose that (ρ0-1,u0,τ0)∈-sfor somesfor somes∈(0,].Then we have

    Moreover,fork≥0,ifN≥k+2,it holds that

    Note that the Hardy-Littlewood-Sobolev theorem (cf.Lemma 4.4) implies that forp∈This,together with Theorem 1.2,means that theLp-L2type of decay result follows as a corollary.However,the imbedding theorem cannot cover the casep=1;to amend this,Sohinger-Strain[30]instead introduced the homogeneous Besov spacedue to the fact that the endpoint imbeddingholds (Lemma 4.5).At this stage,by Theorem 1.2,we have the following corollary of the usualLp-L2type of decay result:

    Corollary 1.3Under the assumptions of Theorem 1.2,if we replace theassumption by (?0,u0,τ0)∈Lpfor somep∈[1,2],then,for any integerk≥0,ifN≥k+2,the following decay result holds:

    The rest of our paper is organized as follows:in Section 2,we establish the refined energy estimates for the solution and derive the negative Sobolev and Besov estimates.Furthermore,we use this section to prove Theorem 1.1.Finally,we prove Theorem 1.2 in Section 3.

    2 The Global Existence of Solution

    In this section,we are going to prove our main result.The proof of local well-posedness for PTT is similar to the Oldroyd-B model (see[7,13]),so we omit the details here.Theorem 1.1 will be proved by combining the local existence of (?,u,τ) to (1.1)–(1.2) and some a priori estimates as well as the communication argument.We first reformulate system (1.1).We set?=ρ-1.Then the initial value problem (1.1)–(1.2) can be rewritten as

    where the nonlinear termsSi(i=1,2,3) are defined as

    For simplicity,in what follows,we setp′(1)=1;that isγ=1.

    Then,we will derive the nonlinear energy estimates for system (2.1).Hence,we assume that,for sufficiently smallδ>0,

    First of all,by (2.4) and Sobolev’s inequality,we obtain that

    Hence,we immediately have that

    2.1 Energy estimates

    Before establishing the global existence of the solution under the assumption of (2.4),we derive the basic energy estimates for the solution to systems (2.1)–(2.2).We begin with the standard energy estimates.

    Lemma 2.1If

    then,for any integersk≥0 andt≥0,we have that

    ProofFor (2.1) on?,u,andτ,respectively,we get

    We shall estimate each term on the right hand side of (2.8).First,for the termM1,it is obvious that

    We integrate by parts and by Lemma 4.3 and Hlder’s inequality to get that

    Summing up the estimates forM1–M9,we deduce (2.7),which yields the desired result. □

    Lemma 2.2Letting all of the assumptions in Lemma 2.1 be in force,for anyk≥0,it holds that

    ProofFor any integerk≥0,by the?l(l=k+1,k+2) energy estimate,for (2.1) on?,u,andτ,respectively,we get that

    We shall estimate each term on the right hand side of (2.19).First,for the termI1,ifl=1,we further obtain that

    Ifl≥2,then employing the Leibniz formula and by Hlder’s inequality we obtain that

    If 0≤s≤[],by using Lemma 4.1,we estimate the first factor in the above to get that

    whereαis defined by

    Hereαis defined by

    Combining (2.20)–(2.23),and by Cauchy’s inequality,we deduce that

    For the termI2,employing Lemma 4.2,we infer that

    For the termI3,

    If 0≤s≤[],by using Lemma 4.1,we estimate the first factor in the above to get that

    whereαis defined by

    Since 0≤s≤[],we have that

    whereαis defined by

    Combining (2.27)–(2.28) and by using Cauchy’s inequality,we deduce that

    Now,we estimate the termI4.Ifl=1,we integrate by parts and use Lemma 4.2 and Hlder’s inequality to get that

    Ifl≥2,we integrate by parts and employ the Leibniz formula and Hlder’s inequality to obtain

    whereαis defined by

    whereαis defined by

    Combining (2.30)–(2.33),we deduce that

    Next,we estimate the termI5.Ifl=1,we integrate by parts and use Lemma 4.3 and Hlder’s inequality to get that

    Ifl≥2,we integrate by parts to find that

    whereαis defined by

    whereαis defined by

    Combining (2.35)–(2.38),we deduce that

    We now estimate the termI6.Ifl=1,by Hlder’s inequality we get that

    Ifl≥2,we integrate by parts and employ the Leibniz formula and Hlder’s inequality to obtain that

    whereαis defined by

    whereαis defined by

    Combining (2.41)–(2.43),we deduce that

    We now estimate the termI7.Using Lemma 4.2 and Hlder’s inequality,we get that

    Similarly toI1,we can bound

    We now estimate the termI9.Ifl=1,we further obtain that

    Ifl≥2,by Hlder’s inequality,we get that

    If 0≤s≤[],by using Lemma 4.1,we estimate the first factor in the above to get that

    whereαis defined by

    Since 0≤s≤[],we have that

    whereαis defined by

    Combining (2.47)–(2.50),we deduce that

    Summing up the estimates forI1–I9,i.e.,(2.24),(2.25),(2.29),(2.34),(2.39),(2.44),(2.45),(2.46) and (2.51),we deduce (2.18),which yields the desired result. □

    We now recover the dissipative estimates of?by constructing some interactive energy functionals in the following lemma:

    Lemma 2.3Let all of the assumptions in Lemma 2.1 be in force.Then,for anyk≥0,it holds that

    ProofApplying?l(l=k,k+1) to (2.1)2,multiplying?l+1?,and integrating by parts,we get that

    For the first term on the left-hand side of (2.53),by (2.1)1and integrating by parts for both thet-andx-variables,we may estimate

    Now,we concentrate our attention on estimating the termsJ1–J9. First,employing Cauchy’s inequality,it holds that

    Moreover,taking into account (2.27)–(2.28),we are in a position to obtain that

    Similarly to (2.30)–(2.33),using Hlder’s inequality,Lemma 4.1 and Lemma 4.3,the termsJ5,J6can be estimated as follows:

    Furthermore,taking into account (2.35)–(2.38),applying Hlder’s inequality,Lemma 4.1 and Lemma 4.3,we obtain that

    Similarly to the estimates of (2.42)–(2.43),we further obtain that

    Finally,similarly toI9,by integration by parts and Lemma 4.1,we get that

    Putting these estimates into (2.55),and summing up withl=k,k+1,we finally obtain that

    Thus,we have completed the proof of Lemma 2.2. □

    2.2 Negative Sobolev estimates

    In this subsection,we will derive the evolution of the negative Sobolev norms and Besov norms of the solution.In order to estimate the nonlinear terms,we need to restrict ourselves to the fact thatFirst,for the homogeneous Sobolev space,we will establish the following lemma:

    Lemma 2.4Fors,we have that

    ProofApplying Λ-sto (2.1),and multiplying the resulting identities by Λ-s?,Λ-suand Λ-sτ,respectively,summing up them and then integrating over R3by parts,we get that

    IfsThen,using Lemma 4.4,together with Hlder’s and Young’s inequalities,we obtain that

    Similarly,we can bound the termsK2–K5by

    Hence,plugging the estimates (2.67)–(2.75) into (2.66),we deduce (2.64).

    Now ifswe shall estimate the right-hand side of (2.66) in a different way.Sinces∈,we have thatThen,by Lemmas 4.5 and 4.1,we obtain that

    Similarly,we can bound the remaining terms by

    Hence,plugging estimates (2.76)–(2.84) into (2.66),we deduce (2.65). □

    2.3 Negative Besov estimates

    We replace the homogeneous Sobolev space by the homogeneous Besov space.Now,we will derive the evolution of the negative Besov norms of the solution (?,u,τ) to (2.1)–(2.2).More precisely,we have

    Lemma 2.5Let all of the assumptions in Lemma 2.1 hold.Then,fors∈(0,],we have that

    ProofApplying thejenergy estimate of (2.1) with a multiplication of 2-2sjand then taking the supremum overj∈Z,we infer that

    According to Lemma 4.5 and (2.87),the remaining proof of Lemma 2.5 is exactly the same with the proof of Lemma 2.4,except that we allow thats=and replace Lemma 4.4 with Lemma 4.5,and the-snorm by thenorm. □

    Next,we will combine all the energy estimates that we have derived in order to prove Theorem 1.1;the key point here is that we only assume that theH3norm of initial data is small.

    ProofWe first close the energy estimates at theH3-level by assuming thatpE3(t)≤δis sufficiently small.From Lemma 2.2,takingk=0,1 in (2.18) and summing up,we deduce that,for anyt∈[0,T],

    From this,together with Lemma 2.1,we deduce that,for anyt∈[0,T],

    In addition,taking thek=0,1 in (2.52) of Lemma 2.3 and summing up,we obtain that

    Taking into account the smallness ofδ,by a linear combination of (2.89) and (2.90),we deduce that there exists an instant energy functional~E3(t) equivalent to E3(t) such that

    By a standard continuity argument,we then close the a priori estimates if we assume,at the initial time,that(0)≤δ0is sufficiently small.This concludes the unique global smallsolution.

    From the global existence of thesolution,we shall deduce the global existence of theNsolution.ForN≥3,t∈[0,∞],applying Lemma 2.2 and takingk=0,1,...,N-2,we infer that

    From this,together with Lemma 2.1,we deduce that

    Furthermore,by Lemma 2.3,and takingk=0,1,...,N-2,we have that

    By a linear combination of (2.93) and (2.94),we infer that there exists an instant energy functionalN(t) taht is equivalent to EN(t) such that

    3 Convergence Rate of the Solution

    Having in hand the conclusion of Theorem 1.1,Lemma 2.4 and Lemma 2.5,we now proceed to prove the various time decay rates of the unique global solution to (2.1)–(2.2).

    Proof of Theorem 1.2In what follows,for convenience of presentation,we define a family of energy functionals and the corresponding dissipation rates as

    Taking into accounts Lemmas 2.1–2.3,we have that,fork-0,1,...,N-2,

    By a linear combination of (3.3) and (3.4),sinceδis small,we deduce that there exists an instant energy functionalthat is equivalent tosuch that

    Similarly,applying Lemma 4.7,fors>0 andk+s≥0,we have that

    As a consequence,from (3.6)–(3.7),it follows that

    This proves the decay (1.7).Regarding (1.8),applying?kto (2.1)3and multiplying the resulting identity by?kτ,then integrating over R3,we have that

    For the termP1,similarly as toI7,using (1.7),we deduce that

    Similarly as forP1,the termP2can be estimated as

    For the termP3,similarly as toI9,we deduce that

    Combining (3.10)–(3.12),we deduce from (3.9) that

    This,together with Gronwall’s inequality,implies (1.8).

    Finally,we turn back to the proof of (1.5) and (1.6).First,we propose to prove (1.5) by Lemma 2.4.However,we are not able to prove it for allsat this moment,so we must distinguish the argument by the value ofs.First,this is trivial for the cases=0,then,fors,integrating (2.64) in time,and by (1.3),we obtain that

    Thus,integrating (2.65) in time fors∈(,1) and applying (3.14) yields that

    In the last inequality,we used the fact thats∈(,1),so the time integral is finite.By Cauchy’s inequality,this implies (1.5) fors∈(,1).From this,we also verify (1.7) fors∈(,1).Finally,lettings∈[1,),we chooses0such thats-<s0<1.Then (?0,u0,τ0)∈-s0,and from (1.7),it holds that

    fork≥0 andN≥k+2.Therefore,similarly to (3.15),using (3.16) and (2.65) fors∈(1,),we conclude that

    Here,we have taken into account the fact that,so the time integral in (3.17) is finite.This implies (3.14) for,and thus we have proved (1.7) for.The rest of the proof is exactly same as above;we only need to replace Lemma 4.6 and Lemma 2.4 by Lemma 4.7 and Lemma 2.5,respectively.Then we can deduce (1.6) fors.For the sake of brevity,we omit the details here.Thus,we have completed the proof of Theorem 1.2. □

    4 Appendix:Analysis Tools

    In this subsection we collect some auxiliary results.First,we will extensively use the Sobolev interpolation of the Gagliardo-Nirenberg inequality.

    Lemma 4.1([24]) Letting 0≤m,α≤l,we have that

    where 0≤θ≤1 andαsatisfies that

    Here,whenp=∞,we require that 0<θ<1.

    We recall the following commutator estimate:

    Lemma 4.2([15]) Lettingm≥1 be an integer and defining the commutator

    We now recall the following elementary but useful inequality:

    Lemma 4.3([36]) Assume that ‖?‖L∞≤1 andp>1.Letg(?) be a smooth function of?with bounded derivatives of any order.Then,for any integerm≥1,we have that

    Ifs∈[0,),the Hardy-Littlewood-Sobolev theorem implies the followingLptype inequality:

    Lemma 4.4([31]) Let.Then

    In addition,fors∈(0,],we will use the following result:

    Lemma 4.5([12]) Let.Then,

    We will employ the following special Sobolev interpolation:

    Lemma 4.6([37]) Lettings≥0 andl≥0,we have that

    Lemma 4.7([30]) Lettings≥0 andl≥0,we have that

    欧美在线黄色| 日本 欧美在线| 夜夜夜夜夜久久久久| 国内精品久久久久精免费| 国产精品亚洲一级av第二区| 色综合亚洲欧美另类图片| 制服丝袜大香蕉在线| 亚洲成人久久爱视频| av黄色大香蕉| 九九在线视频观看精品| 99久久精品热视频| 一个人免费在线观看电影| 午夜激情福利司机影院| 夜夜躁狠狠躁天天躁| 在线a可以看的网站| 精华霜和精华液先用哪个| 久久久精品欧美日韩精品| 亚洲最大成人手机在线| 日韩欧美国产在线观看| 一级黄色大片毛片| 国产精品av视频在线免费观看| 亚洲欧美日韩卡通动漫| 性欧美人与动物交配| 亚洲av中文字字幕乱码综合| 97碰自拍视频| 免费看美女性在线毛片视频| 99久久综合精品五月天人人| 手机成人av网站| 国产成人系列免费观看| 制服丝袜大香蕉在线| 亚洲成a人片在线一区二区| 免费一级毛片在线播放高清视频| 此物有八面人人有两片| 欧美日韩中文字幕国产精品一区二区三区| 51国产日韩欧美| 国产探花在线观看一区二区| 成人国产一区最新在线观看| 精品久久久久久久毛片微露脸| 亚洲成人久久爱视频| 99热精品在线国产| 三级国产精品欧美在线观看| 亚洲av日韩精品久久久久久密| 欧美日韩一级在线毛片| 怎么达到女性高潮| 亚洲成人久久性| 五月玫瑰六月丁香| 久久久色成人| 亚洲av中文字字幕乱码综合| 欧美又色又爽又黄视频| 亚洲狠狠婷婷综合久久图片| 成年女人毛片免费观看观看9| 国产成+人综合+亚洲专区| 最好的美女福利视频网| 少妇裸体淫交视频免费看高清| 99热6这里只有精品| 看片在线看免费视频| 久久久久久人人人人人| 国产一区二区激情短视频| 麻豆成人午夜福利视频| 国产精品电影一区二区三区| 午夜免费成人在线视频| 欧美一区二区亚洲| 美女高潮的动态| 熟妇人妻久久中文字幕3abv| 久久亚洲精品不卡| 亚洲五月天丁香| 国内久久婷婷六月综合欲色啪| 国产精品1区2区在线观看.| 男女做爰动态图高潮gif福利片| 免费搜索国产男女视频| 国产精品 欧美亚洲| 亚洲av二区三区四区| 久久婷婷人人爽人人干人人爱| 最近最新免费中文字幕在线| 天堂网av新在线| 99久久久亚洲精品蜜臀av| АⅤ资源中文在线天堂| 国产美女午夜福利| 午夜视频国产福利| 午夜福利18| 欧美日韩乱码在线| 特大巨黑吊av在线直播| 激情在线观看视频在线高清| 国产一区二区在线观看日韩 | 亚洲成a人片在线一区二区| 韩国av一区二区三区四区| 日本与韩国留学比较| 免费大片18禁| 法律面前人人平等表现在哪些方面| 白带黄色成豆腐渣| www.色视频.com| 国产成人影院久久av| 黑人欧美特级aaaaaa片| 国产免费一级a男人的天堂| 少妇的逼好多水| 久99久视频精品免费| 精品久久久久久久人妻蜜臀av| 午夜福利在线在线| 18禁美女被吸乳视频| 99热这里只有精品一区| 夜夜看夜夜爽夜夜摸| 亚洲av成人av| 夜夜夜夜夜久久久久| 天天一区二区日本电影三级| 美女高潮喷水抽搐中文字幕| 国产成人啪精品午夜网站| 少妇高潮的动态图| 免费av毛片视频| 国产亚洲av嫩草精品影院| 怎么达到女性高潮| 日韩精品青青久久久久久| 日韩欧美一区二区三区在线观看| 久久久成人免费电影| 午夜免费观看网址| 国产欧美日韩精品亚洲av| 观看美女的网站| 国产亚洲精品久久久com| 毛片女人毛片| 国产精华一区二区三区| 日韩欧美在线二视频| 全区人妻精品视频| 国产三级黄色录像| 日本黄色片子视频| 欧美日韩精品网址| 久久这里只有精品中国| 亚洲成av人片免费观看| 色综合婷婷激情| 在线视频色国产色| 中亚洲国语对白在线视频| xxx96com| 无遮挡黄片免费观看| 色播亚洲综合网| 久久国产精品人妻蜜桃| 国产乱人视频| 一夜夜www| 国产av一区在线观看免费| 亚洲人成网站在线播放欧美日韩| 亚洲乱码一区二区免费版| 亚洲欧美日韩无卡精品| 色在线成人网| 国产精品三级大全| 噜噜噜噜噜久久久久久91| 午夜福利在线观看吧| 日韩欧美国产在线观看| 一进一出抽搐gif免费好疼| 国产精品女同一区二区软件 | 午夜免费激情av| 国产激情欧美一区二区| 亚洲国产精品sss在线观看| 最近最新免费中文字幕在线| 精品久久久久久久人妻蜜臀av| 美女大奶头视频| 18美女黄网站色大片免费观看| 99久久成人亚洲精品观看| 1000部很黄的大片| 51午夜福利影视在线观看| 精品久久久久久久久久久久久| 两个人的视频大全免费| 偷拍熟女少妇极品色| 国产精品久久电影中文字幕| 亚洲精品亚洲一区二区| 男女视频在线观看网站免费| 欧美高清成人免费视频www| 精华霜和精华液先用哪个| 午夜免费激情av| 18+在线观看网站| 国内揄拍国产精品人妻在线| 狂野欧美白嫩少妇大欣赏| 岛国在线观看网站| 国产精品一区二区三区四区久久| 婷婷丁香在线五月| 悠悠久久av| 在线观看美女被高潮喷水网站 | 成人精品一区二区免费| 啦啦啦免费观看视频1| 亚洲五月婷婷丁香| 成人永久免费在线观看视频| 十八禁网站免费在线| 首页视频小说图片口味搜索| 人妻夜夜爽99麻豆av| 免费看美女性在线毛片视频| 欧美最黄视频在线播放免费| 黄色女人牲交| 成人鲁丝片一二三区免费| 久久国产精品影院| 九九热线精品视视频播放| 亚洲久久久久久中文字幕| av在线蜜桃| 18禁美女被吸乳视频| 亚洲久久久久久中文字幕| 成人国产综合亚洲| 国产一级毛片七仙女欲春2| 亚洲av美国av| 99国产精品一区二区蜜桃av| 国产欧美日韩一区二区精品| 国产又黄又爽又无遮挡在线| 黄色日韩在线| 国产蜜桃级精品一区二区三区| 91久久精品国产一区二区成人 | 两性午夜刺激爽爽歪歪视频在线观看| 精品人妻1区二区| 嫩草影院精品99| 午夜激情福利司机影院| 亚洲av中文字字幕乱码综合| 老熟妇仑乱视频hdxx| 国产黄a三级三级三级人| 国产欧美日韩一区二区精品| 免费av不卡在线播放| 琪琪午夜伦伦电影理论片6080| 婷婷丁香在线五月| 亚洲专区中文字幕在线| 欧美成人a在线观看| 国产av麻豆久久久久久久| 国产精品香港三级国产av潘金莲| 国产成人av教育| 精品福利观看| 制服丝袜大香蕉在线| 亚洲av成人精品一区久久| 亚洲成人精品中文字幕电影| 亚洲成人久久爱视频| 亚洲av二区三区四区| 综合色av麻豆| 国产色婷婷99| 久久99热这里只有精品18| 美女 人体艺术 gogo| 又紧又爽又黄一区二区| 欧美性感艳星| 看片在线看免费视频| 久久精品国产亚洲av香蕉五月| 一级黄片播放器| 一区二区三区激情视频| 亚洲av熟女| 午夜视频国产福利| 亚洲,欧美精品.| www国产在线视频色| 精品一区二区三区人妻视频| 成人无遮挡网站| 99久久99久久久精品蜜桃| 久久99热这里只有精品18| 在线看三级毛片| 亚洲成人免费电影在线观看| 一个人观看的视频www高清免费观看| 麻豆一二三区av精品| 久久99热这里只有精品18| 欧美色欧美亚洲另类二区| 午夜福利在线观看免费完整高清在 | 亚洲一区二区三区色噜噜| 精品免费久久久久久久清纯| 日日摸夜夜添夜夜添小说| 他把我摸到了高潮在线观看| 亚洲av不卡在线观看| ponron亚洲| 中亚洲国语对白在线视频| 亚洲国产日韩欧美精品在线观看 | 9191精品国产免费久久| 国产私拍福利视频在线观看| 精品99又大又爽又粗少妇毛片 | 悠悠久久av| 亚洲精华国产精华精| 少妇的逼水好多| 色吧在线观看| 黄色丝袜av网址大全| 精品久久久久久,| 久9热在线精品视频| 婷婷亚洲欧美| 欧美成人性av电影在线观看| 午夜视频国产福利| 亚洲av成人av| 国产成人a区在线观看| 日韩 欧美 亚洲 中文字幕| 国产麻豆成人av免费视频| 久久久久国产精品人妻aⅴ院| 欧美性猛交黑人性爽| 尤物成人国产欧美一区二区三区| 欧美日韩黄片免| 国产精品,欧美在线| 久久久久久国产a免费观看| 精品免费久久久久久久清纯| 美女 人体艺术 gogo| 亚洲午夜理论影院| 在线观看66精品国产| 色哟哟哟哟哟哟| 男女做爰动态图高潮gif福利片| 最近最新免费中文字幕在线| 淫妇啪啪啪对白视频| 日韩免费av在线播放| 听说在线观看完整版免费高清| 特大巨黑吊av在线直播| 一级黄色大片毛片| 亚洲熟妇熟女久久| 久久久久性生活片| 色老头精品视频在线观看| 国产主播在线观看一区二区| 桃红色精品国产亚洲av| 国产欧美日韩精品一区二区| 欧美日本亚洲视频在线播放| 国产精品 国内视频| 啦啦啦观看免费观看视频高清| 男女午夜视频在线观看| 久久天躁狠狠躁夜夜2o2o| 久久久久久久亚洲中文字幕 | 亚洲无线观看免费| 国产精品久久久久久亚洲av鲁大| 男女下面进入的视频免费午夜| 国产精品爽爽va在线观看网站| x7x7x7水蜜桃| 成人国产综合亚洲| 88av欧美| 99热6这里只有精品| 国产毛片a区久久久久| 久久精品国产清高在天天线| 久久久色成人| 亚洲一区二区三区不卡视频| 99久久精品热视频| 亚洲国产色片| 国产精品99久久久久久久久| 久久精品夜夜夜夜夜久久蜜豆| 久久久色成人| 成人永久免费在线观看视频| 久久中文看片网| 夜夜夜夜夜久久久久| 好男人电影高清在线观看| 午夜福利在线观看吧| 成人国产综合亚洲| 久久久久久久精品吃奶| 欧美激情久久久久久爽电影| 最近最新中文字幕大全免费视频| 色老头精品视频在线观看| 亚洲av一区综合| 久久久久久久久中文| 亚洲精品粉嫩美女一区| 窝窝影院91人妻| 老汉色av国产亚洲站长工具| 免费观看精品视频网站| 男女床上黄色一级片免费看| 久久久精品大字幕| 97超视频在线观看视频| 最新美女视频免费是黄的| 国产免费av片在线观看野外av| 色av中文字幕| 国内揄拍国产精品人妻在线| 亚洲第一电影网av| 午夜免费观看网址| 久久国产精品人妻蜜桃| 美女高潮喷水抽搐中文字幕| 国内精品久久久久精免费| 97超视频在线观看视频| 淫妇啪啪啪对白视频| 岛国视频午夜一区免费看| 日韩欧美国产在线观看| 国产精品免费一区二区三区在线| xxx96com| 国产欧美日韩精品亚洲av| 国产成人av激情在线播放| 精品乱码久久久久久99久播| 亚洲av成人精品一区久久| 午夜免费观看网址| 亚洲人成网站高清观看| 欧美黑人欧美精品刺激| 国产精品一区二区免费欧美| АⅤ资源中文在线天堂| 99精品在免费线老司机午夜| 久久久国产精品麻豆| 亚洲av中文字字幕乱码综合| 噜噜噜噜噜久久久久久91| 色综合婷婷激情| a级毛片a级免费在线| 麻豆一二三区av精品| 色综合站精品国产| 欧美高清成人免费视频www| 精品久久久久久久毛片微露脸| 在线国产一区二区在线| av在线天堂中文字幕| 99在线人妻在线中文字幕| 久久草成人影院| 黄色丝袜av网址大全| 日韩欧美在线乱码| 脱女人内裤的视频| 国产亚洲精品av在线| 精品电影一区二区在线| 综合色av麻豆| 中出人妻视频一区二区| 黄色成人免费大全| 国产蜜桃级精品一区二区三区| 99riav亚洲国产免费| 日日摸夜夜添夜夜添小说| 村上凉子中文字幕在线| 亚洲精华国产精华精| 国产伦精品一区二区三区四那| 成人三级黄色视频| 给我免费播放毛片高清在线观看| 91在线观看av| 久久亚洲精品不卡| 黄色片一级片一级黄色片| 手机成人av网站| 国产一区二区激情短视频| 99久国产av精品| 国产精品久久久久久久电影 | 一级黄色大片毛片| 久久久久久久午夜电影| 婷婷丁香在线五月| 一区二区三区高清视频在线| 亚洲七黄色美女视频| 99热这里只有是精品50| 日本五十路高清| 18美女黄网站色大片免费观看| 丁香六月欧美| av欧美777| 在线观看免费午夜福利视频| 欧美激情久久久久久爽电影| 九九久久精品国产亚洲av麻豆| 日韩有码中文字幕| 国产精品99久久99久久久不卡| 欧美性猛交黑人性爽| 亚洲久久久久久中文字幕| 精品人妻偷拍中文字幕| 亚洲黑人精品在线| 国产精品野战在线观看| 九九久久精品国产亚洲av麻豆| 中文字幕精品亚洲无线码一区| 亚洲色图av天堂| a级毛片a级免费在线| 校园春色视频在线观看| 999久久久精品免费观看国产| av在线天堂中文字幕| 午夜久久久久精精品| 婷婷精品国产亚洲av在线| 欧美黑人巨大hd| 国产av一区在线观看免费| 国产一级毛片七仙女欲春2| 欧美一区二区国产精品久久精品| 欧美日韩精品网址| 一进一出好大好爽视频| 在线观看免费午夜福利视频| 久久久久国产精品人妻aⅴ院| 国产高清视频在线观看网站| 日韩有码中文字幕| 欧美最新免费一区二区三区 | 999久久久精品免费观看国产| 听说在线观看完整版免费高清| 亚洲av不卡在线观看| 全区人妻精品视频| 国产成人福利小说| 久久草成人影院| 熟女电影av网| 亚洲狠狠婷婷综合久久图片| 亚洲avbb在线观看| 国产一区二区三区视频了| 国产精品自产拍在线观看55亚洲| 欧美国产日韩亚洲一区| 人妻夜夜爽99麻豆av| 国内毛片毛片毛片毛片毛片| 高清在线国产一区| 老熟妇仑乱视频hdxx| 听说在线观看完整版免费高清| 中文在线观看免费www的网站| 精品人妻偷拍中文字幕| 全区人妻精品视频| www.色视频.com| 国产美女午夜福利| 搞女人的毛片| 国产欧美日韩一区二区三| 国产真实乱freesex| 国产精品乱码一区二三区的特点| 国产精品一及| 很黄的视频免费| 婷婷亚洲欧美| 亚洲内射少妇av| 中出人妻视频一区二区| 午夜福利在线观看免费完整高清在 | 男女之事视频高清在线观看| 一本精品99久久精品77| 日本免费一区二区三区高清不卡| 两个人视频免费观看高清| 男女那种视频在线观看| 美女大奶头视频| 禁无遮挡网站| 成人永久免费在线观看视频| 天堂动漫精品| 91麻豆av在线| 老汉色∧v一级毛片| 亚洲欧美一区二区三区黑人| 国产精品一区二区免费欧美| 日本五十路高清| 亚洲最大成人手机在线| 伊人久久精品亚洲午夜| 在线免费观看的www视频| e午夜精品久久久久久久| 波野结衣二区三区在线 | 国产精品嫩草影院av在线观看 | 在线视频色国产色| 一本一本综合久久| 欧美精品啪啪一区二区三区| 国产av不卡久久| 蜜桃久久精品国产亚洲av| 午夜福利高清视频| 免费搜索国产男女视频| 人人妻人人看人人澡| 国产免费av片在线观看野外av| 午夜激情欧美在线| 变态另类成人亚洲欧美熟女| 免费观看人在逋| 亚洲在线自拍视频| 中文字幕人成人乱码亚洲影| 午夜免费激情av| 天天一区二区日本电影三级| 中文字幕人妻丝袜一区二区| 亚洲精品456在线播放app | 一本久久中文字幕| 在线十欧美十亚洲十日本专区| 亚洲国产欧美人成| 在线播放国产精品三级| 久久国产乱子伦精品免费另类| 久久午夜亚洲精品久久| 亚洲最大成人中文| 九色成人免费人妻av| 亚洲国产精品久久男人天堂| 色在线成人网| 99在线视频只有这里精品首页| 免费无遮挡裸体视频| 亚洲av电影在线进入| 国产又黄又爽又无遮挡在线| 3wmmmm亚洲av在线观看| 免费在线观看成人毛片| 悠悠久久av| 亚洲精品久久国产高清桃花| 特级一级黄色大片| 淫秽高清视频在线观看| 国产成人av激情在线播放| 啦啦啦免费观看视频1| 欧美中文日本在线观看视频| 99国产极品粉嫩在线观看| 欧美成狂野欧美在线观看| 国产精品99久久99久久久不卡| 18禁美女被吸乳视频| 欧美日本视频| 国产黄a三级三级三级人| 亚洲人成网站在线播| 亚洲国产精品sss在线观看| 免费在线观看成人毛片| 成人av一区二区三区在线看| 成人无遮挡网站| 国产精品一区二区三区四区免费观看 | 亚洲一区二区三区色噜噜| 老鸭窝网址在线观看| 熟妇人妻久久中文字幕3abv| 亚洲无线在线观看| 国产激情欧美一区二区| 天堂动漫精品| 精品一区二区三区av网在线观看| 国产精品一及| av黄色大香蕉| 香蕉av资源在线| 午夜久久久久精精品| 91麻豆精品激情在线观看国产| 亚洲av不卡在线观看| 久久精品国产自在天天线| 可以在线观看的亚洲视频| 婷婷精品国产亚洲av| 国产精品 国内视频| 亚洲最大成人中文| 亚洲美女视频黄频| 国产精品亚洲av一区麻豆| 亚洲精品在线观看二区| 欧美黄色淫秽网站| 亚洲国产精品sss在线观看| 一卡2卡三卡四卡精品乱码亚洲| 中文字幕人成人乱码亚洲影| 99久久成人亚洲精品观看| 免费电影在线观看免费观看| 国产色爽女视频免费观看| 黄片小视频在线播放| 亚洲av成人精品一区久久| 久久精品影院6| 黑人欧美特级aaaaaa片| 中文字幕人妻丝袜一区二区| 精品久久久久久久人妻蜜臀av| 乱人视频在线观看| 特级一级黄色大片| 欧美成人a在线观看| 国产精品久久久久久久电影 | 国产一级毛片七仙女欲春2| 欧美日韩福利视频一区二区| 女人高潮潮喷娇喘18禁视频| 欧美一级毛片孕妇| 免费av毛片视频| 亚洲在线自拍视频| or卡值多少钱| 欧美激情久久久久久爽电影| 性色avwww在线观看| av在线蜜桃| 两人在一起打扑克的视频| 欧美在线黄色| 亚洲国产精品久久男人天堂| 国产成年人精品一区二区| 国产激情欧美一区二区| 国产精品女同一区二区软件 | 少妇人妻精品综合一区二区 | 久久精品国产99精品国产亚洲性色| 午夜福利欧美成人| 天堂影院成人在线观看| 有码 亚洲区| 91九色精品人成在线观看| 欧美黑人巨大hd| 亚洲一区二区三区色噜噜| 欧美色欧美亚洲另类二区| 午夜a级毛片| 国产成人av激情在线播放| 精品久久久久久久毛片微露脸| 熟妇人妻久久中文字幕3abv| 母亲3免费完整高清在线观看| 欧美三级亚洲精品| 欧美日韩一级在线毛片| 亚洲av成人不卡在线观看播放网| 色综合欧美亚洲国产小说|