• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    BOUNDEDNESS AND ASYMPTOTIC STABILITY IN A PREDATOR-PREY CHEMOTAXIS SYSTEM WITH INDIRECT PURSUIT-EVASION DYNAMICS*

    2022-06-25 02:12:38ShuyanQIU邱蜀燕

    Shuyan QIU (邱蜀燕)

    School of Sciences,Southwest Petroleum University,Chengdu 610500,China

    E-mail:shuyanqiu0701@126.com

    Chunlai MU (穆春來(lái))

    College of Mathematics and Statistics,Chongqing University,Chongqing 401331,China

    E-mail:clmu2005@163.com

    Hong YI (易紅)

    School of Mathematics and Statistics,Chongqing Technology and Business University,Chongqing 400067,China

    E-mail:honghongyi1992@126.com

    Abstract This work explores the predator-prey chemotaxis system with two chemicals in an arbitrary smooth bounded domain Ω?Rn under homogeneous Neumann boundary conditions.The parameters in the system are positive.We first prove that if n≤3,the corresponding initial-boundary value problem admits a unique global bounded classical solution,under the assumption that χ,ξ,μi,ai,αi and βi(i=1,2) satisfy some suitable conditions.Subsequently,we also analyse the asymptotic behavior of solutions to the above system and show that · when a1<1 and both are sufficiently large,the global solution (u,v,w,z) of this system exponentially converges to as t→∞;· when a1>1 and is sufficiently large,the global bounded classical solution (u,v,w,z) of this system exponentially converges to as t→∞;·when a1=1 and is sufficiently large,the global bounded classical solution (u,v,w,z) of this system polynomially converges to (0,,1,0) as t→∞.

    Key words Chemotaxis;predator-prey;boundedness;stabilization

    1 Introduction

    Chemotaxis,the sustained migration of cells in the direction of an increasing concentration of chemoattractant or decreasing concentration of chemorepellent,has been a significant mechanism in terms of accounting for various biological phenomena (for instance,the aggregation of bacteria,cancer invasion,wound healing,the migration of immune cell)[9,13,26–28].In this work,we will focus on the analysis of solutions to the predator-prey chemotaxis model with two signals;this is a mixed quasi-monotonic system for reaction functions as well as a combination of chemoattraction and chemorepulsion.More specifically,the predator-prey chemotaxis model with indirect pursuit-evasion dynamics reads as

    where Ω?Rn(n≥1) is a bounded domain with a smooth boundary,andrepresents the derivative with respect to the outer normal of?Ω.The parametersχ,ξ,μi,ai,αiandβi(i=1,2) are positive.This model describes the spatio-temporal evolution of two populations in which individuals move according to random diffusion,and in which chemotactically directed motion leads to an interaction in a circular manner.Hereu(x,t) denotes the density of prey populations,which move away from the higher concentration ofv(x,t),the latter being produced by a second species (predator),the density of which is mathematically represented byw(x,t).The individuals of this second population themselves adapt their movement along the concentration gradients of a second signal,with densityz(x,t),secreted by the first species (prey).The kinetic terms of the first and the third equations model a predator-prey interaction.The size ofαiandβi(i=1,2) describe the decay and production of the chemical substance,respectively.For more details on the physical background,we refer the reader to[2]and the references therein.

    Well-known as the Keller-Segel model,the prototype of the attractive chemotaxis system,in its general form,is given by

    Over the past four decades,a vast amount of mathematical analysis has focused on things such as global boundedness,stabilization,blowup,traveling waves,pattern formations,critical mass phenomenon and critical sensitivity exponents based on the existence of a Lyapunov functional (see e.g.[10,15,31,35–39]).

    Another delicate chemorepulsion system reads as

    Questions concerning the global existence of classical solutions in two dimensions and weak solutions in three and four dimensions have been investigated for this system[7].In addition,Tao[29]showed the global existence and asymptotic behavior of solutions to (1.3) with nonlinear chemosensitivity in a higher-dimensional space.

    After the pioneering works above,a two-species chemotaxis model with one chemical,which is a generalized problem of the KS model,

    with coefficientsa1,α,μi,βi(i=1,2)>0 andχ,ξ,a2∈R,was proposed by Tello-Winkler[32]and was extensively investigated by many authors[3,16,19–21,23,42,44].As with model (1.4) withχ,ξ,a2>0,it is known that sufficiently largeμ1andμ2ensure the global existence of solutions whenn≤2,and the asymptotic behavior of the classical solution was also established in[3].Later,Mizukami[19,20]extended these results to more particular situations.For higher dimensionsn≥3,similar results can be found in[16,42,44].Moreover,for when the chemotactic sensitivitiesχ,ξdepend on the chemical concentrationw,the global existence and solvability for the chemotaxis system are presented in[19,21,23,44].On the other hand,for the case ofχ,a2<0 andξ>0,it is proven in[8,11]that model (1.4) possesses a unique global classical solution ifn≤3 andχ,ξ,μi,ai,αiandβi(i=1,2) satisfy some suitable conditions.Moreover,the authors also showed the asymptotic stabilization of an arbitrary global bounded solution to the system:whena1<1 and bothμi(i=1,2) are sufficiently large,inL∞(Ω) ast→∞;whena1≥1 andμ2is sufficiently large,.For the parabolic-parabolic-elliptic model (1.4),we refer to[6,17,22,25]and the references therein.

    Now we come back to the reaction-diffusion model (1.1) for predator-prey interaction,featuring both prey and predator taxis mediated by two signals.There is an important mathematical difference between the known system (1.2) and (1.1) in the sense that the former exists as a useful Lyapunov functional,while the latter helps to deal with the complex interactions ofu,v,w,zand to establish such a functional.

    To motivate our study,we recall some related works in this filed.For when model (1.1) is without kinetic terms (i.e.,μ1=μ2=0),the authors in[30]explored the global boundedness and finite time blow-up for the parabolic-elliptic-parabolic-elliptic case.Similar results were also investigated in[43].Moreover,for the fully parabolic case,[41]showed that (1.1) withχ<0 possesses a global bounded solution under the conditions thatbeing suitably small.In the attraction-attraction caseχ<0,the results in presence of Lotka-Volterra competitive kinetics have been presented in[5,14,34,46,48].For instance,whenn=2,Black[5]established a global classical solution to system (1.1) witha2<0.The large time behavior of an arbitrary global bounded solution was also discussed for ifare large enough.Recently,the authors in[14]obtained the existence of global bounded solutions to model (1.1) whenμ1,μ2are sufficiently large in three dimensional space.For more related results,we refer readers to[12,24,40].However,to the best of our knowledge,problem (1.1),involving competition,cooperation and predator-prey dynamics,seems not yet to have been investigated.

    Motivated by the above studies[8,11,16,18],in this paper,we focus on the global dynamical properties of (1.1) under some explicit conditions regarding the parametersχ,ξ,μi,ai,αiandβi(i=1,2) whenn≤3.Compared with the works[8]and[18],the difficulties in our case come from the fact that the signalsvandzin (1.1) are indirectly produced by the predatorwand the preyu,respectively and the competitive mechanism is more complicated,which makes the calculations more delicate.

    Throughout this text,to investigate the global dynamical properties,we assume that the initial datau0,v0,w0,z0satisfy

    The first of our main results asserts the global existence of bounded solutions and is stated as follows:

    Theorem 1.1Let Ω?R2be an arbitrary bounded domain with smooth boundary,and letχ,ξ,μi,ai,αiandβi(i=1,2) be positive constants satisfying 4μ1a1>μ2a22.Then,for any initial value (u0,v0,w0,z0) satisfying (1.5),problem (1.1) has a unique global classical solution (u,v,w,z).Furthermore,there exists some constantC>0 that is independent oftsuch that

    Remark 1.2In Theorem 1.2 of[34],the global boundedness of solutions to the twocompeting-species chemotaxis system (1.1) in two dimensional space was presented without any restrictions onμi,ai(i=1,2).The reason for this is that

    hence we can derive theL2-estimates ofuandw.

    Remark 1.3In an arbitrary smooth bounded domain,whenn=1,we can obtain a similar result by a similar process as to that in the proof of Theorem 1.1 without any restrictions onχ,ξ,μi,ai,αiandβi(i=1,2).

    In the three dimensional space,the boundedness property also holds.

    Theorem 1.4Let Ω?R3be an arbitrary bounded domain with smooth boundary,and letμ1,μ2,a1,a2,αiandβi(i=1,2) be positive constants satisfyingα1,α2≥and

    Then,for any initial value (u0,v0,w0,z0) fulfilling (1.5),problem (1.1) possesses a unique global classical solution (u,v,w,z) which is bounded in the sense that (1.6) holds.

    Remark 1.5The inequalities (1.7)–(1.9) can hold by settingμ1=μ2=α1=α2=β1=χ=ξ=0.02.

    Remark 1.6We remark that Theorem 1.1 and Theorem 1.4 also hold for chemo-attraction or chemo-repulsion,i.e.,χξ<0.Moreover,it is easy to find that ifμ1a1=μ2a2=β1=β2=1,then conditions (1.8) and (1.9) are consistent with (1.5) in[18].

    By some adaptation of the approaches invented in[8,18],the main results in what follows describe the asymptotic behavior and convergence rates for the global bounded solutions.

    Theorem 1.7Let Ω?Rn(n≤3) be a bounded domain with a smooth boundary.Suppose thatμ1,μ2,a2,α1,α2,β1,β2>0 and 0<a1<1 satisfy the relations

    and the (u,v,w,z) is the global bounded classical solution of (1.1) with the initial data (u0,v0,w0,z0) satisfying (1.5).Then there exists constantC1>0 andι1>0 independent oftsuch that

    Theorem 1.8Let Ω?Rn(n≤3) be a bounded domain with a smooth boundary,and letμ1,μ2,a2,α1,α2,β1,β2>0 anda1≥1.Suppose that (u,v,w,z) is the global bounded classical solution of (1.1) with the initial data (u0,v0,w0,z0) satisfying (1.5).Then the following properties hold:

    (1) Ifa1>1 and

    then there are constantC2>0 andι2>0 independent oftsuch that,for allt>0,

    (2) Ifa1=1 and (1.13) holds,then there exist constantsC3>0 andι3>0 independent oftsuch that,for allt>0,

    Remark 1.9In the higher dimensions (n>3),we can get the same conclusions as in Theorem 1.7 and Theorem 1.8,based on establishing the boundedness of a solution to (1.1).

    The plan of the rest of this paper is organized as follows:in Section 2,we collect some basic properties of the local solvability and establish the some important estimates for the solution to system (1.1).In Section 3,we focus our attention on the global bounded solutions of (1.1) whenn=2 andn=3.In this section,crucial steps in the proof of Theorem 1.1 consist of establishingL2-estimates ofuandw.To this end,we invoke the conditionto guarantee the boundedness ofwhich is different from the argument in the proof of Theorem 1.2 in[34].Then,we complete the proof by settingp=1 andn=2 in Lemma 2.5.Similarly,the idea for the proof of Theorem 1.4 is to prove the bounde forTo achieve this,we give a suitable upper bound of the coupled functional

    which technically deals with the termsΩuw(|?v|2+|?z|2).These thereby-obtained boundednesses,in conjunction with some suitable bootstrap arguments,result in our conclusion.In the final section,we mainly study the global asymptotic behavior of solutions and the convergence of equilibria to model (1.1) by some energy-type functionals similar to[3,34].

    2 Preliminaries

    Here,we first state the existence of a unique local-in-time classical solution to (1.1) in a follow lemma:

    Lemma 2.1Let Ω?Rn(n≥1) be a smoothly bounded domain,and letχ,ξ,μi,ai,αiandβi(i=1,2) be positive constants.Assume that the initial data (u0,v0,w0,z0) satisfies (1.5).Then there existTmax∈(0,∞]and uniquely local non-negative classical functions

    which solves (1.1) classically in Ω×[0,Tmax) for allt>0.Moreover,ifTmax<∞,then we have

    ProofDenotingU=(u,v,w,z)∈R4,then system (1.1) can be written as

    According to similar discussions in[1],we obtain (2.1) and (2.2) immediately.Moreover,the nonnegativity ofu,v,w,zcan be checked by the maximum principle. □

    We now state the following properties on the total mass ofu,win (1.1):

    Lemma 2.2Letn≥1.The unique solution (u,v,w,z) of (1.1) satisfies

    wheremi>0(i=1,2,3).

    ProofIntegrating the sum ofμ2a2times the first equation andμ1a1times the third equation in (1.1) over Ω,we use Young’s inequality to estimate that

    for allt∈(0,Tmax).Settingy(t):=c1:=min{μ1,μ2},we havey′(t)+c1y(t)≤μ1μ2(a1+a2)|Ω|,which implies (2.4) and (2.5) by an ODE comparison principle.

    Moreover,integrating identity (2.7) on (t,t+1) and using (2.4)–(2.5) yields that

    This implies (2.6),by denoting□

    For further a priori estimates from the properties asserted from Lemma 2.2,we give the following auxiliary conclusion which was stated in[3]:

    Lemma 2.3LetT>0 and assume thaty∈C1((0,T))∩C0([0,T)) satisfies

    with somea>0 andf∈C0([0,T)) for which there is a constantb>0 such that

    Here,we derive the bounds for ‖?v‖L2(Ω),‖?z‖L2(Ω)and the spatio-temporalL2-estimate of Δv+Δz,which are crucial in our later proof.

    Lemma 2.4Let (u,v,w,z) be a solution of (1.1).Then there are constantsKi(i=1,2,3)>0 independent oftsuch that

    ProofWe test the second equation of model (1.1) with-Δvand integrate it by parts to obtain

    Hence,Lemmas 2.2 and 2.3 imply that there exists a constantK1>0 such thaty(t)≤K1.We can apply similar steps for the fourth equation of (1.1) to verify the bound forIt remains to prove (2.10).Indeed,by integrating (2.12) over (t,t+1),we have

    which,together with the bound forand Lemma 2.2,entails the boundedness ofSimilarly,we can derive the spatio-temporalL2-estimate of Δzand thereby complete the proof. □

    To prove global existence and boundedness in the casen≤3,we exploit the following statement on the extensibility and regularity of solutions known to be bounded inL∞((0,Tmax);Lp(Ω)) for somep>:

    Lemma 2.5Let Ω?Rn(n≥1) be a bounded domain with a smooth boundary and let (u,v,w,z) be the solution of (1.1).Suppose that there exists a numberp≥1 andp>for which

    Furthermore,there areθ∈(0,1) andC>0 such that

    ProofOne can prove this lemma by a similar argument as to that in the proof of Lemma 2.6 in[3],hence,we omit the details here. □

    3 Boundedness

    In this section,we focus on investigating the global boundedness of solutions to (1.1) in two or three dimensional space.

    3.1 Boundedness of n≤2

    To prove Theorem 1.1,we shall derive theL2-estimates ofu,w.

    Lemma 3.1Let Ω?R2be a bounded domain with a smooth boundary,and letχ,ξ,μi,ai,αiandβi(i=1,2)>0 satisfyThen there is a constantC>0 such that the solution of (1.1) satisfies

    ProofTesting the first equation in (1.1) byuand integrating it over Ω,we derive that

    for allt∈(0,Tmax).Applying Hlder’s inequality,we deduce that

    for allt∈(0,Tmax).Here,we further use the Gagliardo-Nirenberg inequality to estimate that

    wherec1is a positive constant.This implies that

    for allt∈(0,Tmax),with somec2>0.Then,we rewrite (3.2) as

    for allt∈(0,Tmax).A similar argument as to that used for the above inequalities entails that

    for allt∈(0,Tmax),with somec3>0.Collecting (3.6) and (3.7),we find that

    for allt∈(0,Tmax),withc4:=max{2c2,2c3}andc5:=2c2+2c3.Then,we use Young’s inequality to obtain that

    for allt∈(0,Tmax).In view ofit follows Young’s inequality again that there exists a constantc6>0 such that

    for allt∈(0,Tmax).Hence,we conclude that

    for allt∈(0,Tmax),withc7:=c5+c6.From Lemma 2.4,one can findc8>0 such that

    and fixingt∈(0,Tmax),we can get from Lemma 2.2 that there existst0∈[0,Tmax) such thatt-1≤t0≤tand

    Then,integrating (3.10) on (t0,t),and combining (3.11) and (3.12),it holds that

    due tot≤t0+1.The proof is completed. □

    Proof of Theorem 1.1Using Lemma 2.5 withp=2 and Lemma 3.1 whenn=2,the results of Theorem 1.1 are proved immediately.In particular,forn=1,we can apply Lemma 2.2 and Lemma 2.5 withp=1 to obtain the same conclusion. □

    3.2 Boundedness of n=3

    In this subsection,we shall present the proofs for Theorem 1.4.To begin with,some differential inequalities for the coupled functional in (1.16) are stated as follows:

    Lemma 3.2Letn=3,χ,ξ,μi,ai,αiandβi(i=1,2)>0.Then the solution (u,v,w,z) of (1.1) fulfills that

    ProofTo achieve inequality (3.13),we take theL2inner product of the first and third equations in (1.1) with 2uand 2w,respectively,and apply Young’s inequality to estimate

    for allt∈(0,Tmax).Collecting the sum of (3.14) and (3.15) implies that

    Then,we invoke Young’s inequality again to derive that

    which,along with (3.16),implies (3.13). □

    Lemma 3.3Letn=3,χ,ξ,μi,ai,αiandβi(i=1,2)>0.Then the solution (u,v,w,z) of (1.1) satisfies

    ProofBy a straightforward computation regarding the second equation in (1.1),we invoke the identityto get that

    for allt∈(0,Tmax).Recalling the inequality|Δv|2≤3|D2v|2and using Young’s inequality,one can see that

    for allt∈(0,Tmax).Hence,(3.18) can be proved by collecting the above inequalities.Moreover,we can obtain (3.19) by a discussion similar to that in the proof of (3.18). □

    Lemma 3.4Letn=3,χ,ξ,μi,ai,αiandβi(i=1,2)>0.Then the solution (u,v,w,z) of (1.1) fulfills that

    ProofEvaluating the derivative ofwe use the identity?v·again to estimate that

    By another application of Young’s inequality,it holds that,for allt∈(0,Tmax),

    For the third term on the right hand side of (3.22),it follows from the nonnegativity ofuandwthat

    The above results lead to inequality (3.20).For (3.21),we can verify things in a similar fashion.□

    Upon a linear combination of (3.13),(3.18)–(3.19) and (3.20)–(3.21),we now carry out the following inequality:

    Lemma 3.5Letn=3,χ,ξ,μi,ai,αiandβi(i=1,2)>0.Then the solution (u,v,w,z) of (1.1) fulfills,for allt∈(0,Tmax),that

    Proof(3.23) results from (3.13),(3.18)–(3.19) and (3.20)–(3.21),by a direct calculation. □

    With Lemma 3.5 in hand,we now estimate the boundedness of

    Lemma 3.6Supposing that the conditions of Theorem 1.4 hold,there exists a constantC>0 such that the solution of (1.1) satisfies

    Next,we use the Gagliardo-Nirenberg inequality and Young’s inequality to obtain that

    with somec1,c2>0.Similarly,we have

    with somec3>0.Hence,with these estimates,we recall Young’s inequality again to derive that

    Hence,we can derive that

    which,together with Young’s inequality,revealsy′(t)+y(t)≤c10for allt∈(0,Tmax).Then,we obtain from an ODE comparison thaty(t)≤c11for allt∈(0,Tmax),wherec11:=max{y(0),c10}.This implies (3.24). □

    Proof of Theorem 1.4In view of Lemma 2.3 and Lemma 3.6,we attain the desired result of Theorem 1.4 by an aregument similar as to that for the proof of Theorem 1.1. □

    4 Stabilization

    In this section,we investigate the asymptotical behavior of solutions to (1.1).To this end,we shall prepare some basic results.

    Lemma 4.1(See[4]) Suppose thatf:[1,∞)→R is a uniformly continuous nonnegative function and thatdsexists.Then

    We next present a lemma which plays an important role in the proofs of Theorems 1.7 and 1.8.

    Lemma 4.2Let∈R4be any solution of

    and let (u,v,w,z) be a global bounded classical solution to (1.1).Assume that there are two decreasing functionsg1(t) andg2(t) on[t0,∞) for somet0>0 such that

    Then there exists a positive constantCsuch that,for allt>t0+2,

    ProofThis lemma can be proved by the same arguments as those used in Lemma 3.6 in[3]. □

    4.1 Global stability of (u*,v*,w*,z*):Proof of Theorem 1.7

    In this subsection,we shall show that if 0<a1<1,and bothare appropriately large,then the bounded solution (u,v,w,z) will stabilize to the constant stationary solution (u*,v*,w*,z*) defined in (1.12).To achieve this,we next derive the key estimate for the proof of Theorem 1.7 as follows:

    Lemma 4.3Let (u,v,w,z) be a global bounded classical solution of (1.1) and 0<a1<1.If the conditions (1.10) hold,then there exist?1,?2>0 andε1>0 such that functionsE1andF1,defined by

    which implies that the following asymptotic behavior holds:

    Then,by a similar argument as to that in Lemma 3.2 of[3],we can obtain the nonnegativity ofA1(t) andB1(t),and hence thatE1(t)≥0.With the definition ofA1(t),B1(t) andC1(t),it follows from a straightforward calculation that

    Collecting (4.5)–(4.8),we obtain that,for allt>0,

    Next,we invoke Young’s inequality to estimate that

    Inserting the above inequalities into (4.9),one has that

    From the definition of?1,?2,we can choose suitableε1>0 in order to complete the proof of (4.3).Furthermore,we define the functionHence,it follows from (4.3) that(t)≤-ε1F1(t)≤-ε1f1(t),which,along withE1(t)≥0,reveals that

    Using the regularity ofu,v,w,zand the fact thatf1(t) is uniformly continuous on[1,∞),we infer from Lemma 3.1 of reference[3]that

    Furthermore,it follows from (2.15) that,fort>1,u(·,t),v(·,t),w(·,t),z(·,t) are bounded in the spaceW1,∞(Ω).Then we can apply the Gagliardo-Nirenberg inequality ‖φ‖L∞(Ω)≤?φ∈W1,∞(Ω) tou(·,t)-u*,w(·,t)-w*,v(·,t)-v*andz(·,t)-z*,respectively,to achieve (4.4). □

    Proof of Theorem 1.7DefineH(s):=s-y*lns(s>0) with a constanty*>0.Then,one can derive that

    which,together with (4.4),implies that

    for allt>t0>0.Hence,by the definitions ofE1(t) andF1(t),we have thatE1(t)≤c1F1(t) for somec1>0 and allt>t0.Plugging this into (4.3) yields thatfort>t0.This results infor allt>t0,withc2,Combining (4.11) with (4.12),there is a constantc3>0 such that

    for allt>t0.Moreover,one can findc4>0 such that

    for allt>t0+1.Finally,an application of Lemma 4.2 implies that (1.11) holds. □

    4.2 Global stability of (0,,1,0):Proof of Theorem 1.8

    In this case,applying an approach similar to that of Subsection 4.1,we shall prove that ifa1≥1 and ifis appropriately large,then the bounded solution (u,v,w,z) will converge to the constant stationary solution (0,,1,0).

    Lemma 4.4Let (u,v,w,z) be a global bounded classical solution of (1.1) and leta1≥1.If condition (1.13) holds,then there are?3,?4>0 andε2>0 such that functionsE2andF2,defined by

    ProofThe nonnegativity ofE2(t) is obvious.From (1.13),we find (η3∈(0,1) clos)e to 1 such thatHence,we can choosesuch thatE2(t) is rewritten as

    where we used Young’s inequality.Then,inserting the above estimates into (4.17),we get that

    Using the argument for the proof of Lemma 4.3 can verify (4.15) and (4.16). □

    Proof of Theorem 1.8(1)Sinceby invoking ideas similar to those used in deriving the previous estimates,we recall (4.16) to obtain that

    Then,combining the definitions ofE2(t) andF2(t) with the right inequalities of (4.19) and (4.20) yields that there existsc1>0 such that,t>t0,which implies that

    Due toa1>1,without loss of generality,we pickε2<μ1(a1-1) and insert (4.21) into (4.15) to estimate that

    Consequently,we infer that there existc2>0 and>0 such thatfor allt>t0.Therefore,with the left inequalities of (4.19),(4.20) entails that

    for allt>t0,wherec3,c4>0 are constants,and there is a constantc5>0 such that

    for allt>t0+1.In view of Lemma 4.2,we assert that there existC1>0 andι2>0 independent oftsuch that (1.14) holds. □

    Proof of Theorem 1.8(2)Whena1=1,the termuin (4.15) will disappear.Note that (4.19) and (4.20) also hold.In addition,in view of the definition ofE2(t),F(xiàn)2(t) and inequality (4.20),we know from Hlder’s inequality and the boundedness of (u,v,w,z) that

    with some constantsc6,c7,c8,c9,c10>0.This,along with (4.15),yields that there is a positive constantc11such thatTherefore,we assert thatfort>t0withc12>0.Then,we know,by (4.19) with (4.20),that

    for allt>t0+1.Furthermore,using Lemma 4.2 again can achieve (1.15).This completes the proof. □

    午夜激情av网站| 99九九线精品视频在线观看视频| 日本爱情动作片www.在线观看| av播播在线观看一区| 国产又色又爽无遮挡免| 麻豆乱淫一区二区| 欧美另类一区| 免费av中文字幕在线| 一级a做视频免费观看| 亚洲一区二区三区欧美精品| 久久鲁丝午夜福利片| 少妇高潮的动态图| 伦理电影大哥的女人| 久久久久久久久久人人人人人人| 另类亚洲欧美激情| 国产伦理片在线播放av一区| 精品人妻在线不人妻| 秋霞伦理黄片| 免费看av在线观看网站| 妹子高潮喷水视频| 婷婷色av中文字幕| 欧美丝袜亚洲另类| 国产精品久久久久久久久免| 青青草视频在线视频观看| 国产视频首页在线观看| 亚洲精品国产色婷婷电影| 亚洲一区二区三区欧美精品| 日本与韩国留学比较| 国产黄频视频在线观看| 黄片无遮挡物在线观看| 在线观看免费日韩欧美大片 | 精品久久久久久电影网| 日韩中字成人| 国产精品秋霞免费鲁丝片| 国产精品一国产av| 人人妻人人澡人人爽人人夜夜| 免费黄色在线免费观看| 狂野欧美白嫩少妇大欣赏| 成年av动漫网址| 麻豆乱淫一区二区| 婷婷成人精品国产| 欧美成人精品欧美一级黄| 欧美日韩亚洲高清精品| 十八禁高潮呻吟视频| 一级爰片在线观看| 一个人免费看片子| tube8黄色片| 在线观看人妻少妇| 亚洲欧美色中文字幕在线| 国产精品麻豆人妻色哟哟久久| 中文字幕制服av| 久久久久久人妻| 亚洲少妇的诱惑av| 男人添女人高潮全过程视频| 免费人成在线观看视频色| 美女中出高潮动态图| 久久婷婷青草| 国产日韩一区二区三区精品不卡 | 纵有疾风起免费观看全集完整版| 久久久国产精品麻豆| 精品酒店卫生间| 国产高清不卡午夜福利| 亚洲欧美一区二区三区黑人 | 国产精品一区www在线观看| 久久人人爽人人片av| 建设人人有责人人尽责人人享有的| 最近2019中文字幕mv第一页| 亚洲精品第二区| 18禁动态无遮挡网站| 女性被躁到高潮视频| 夜夜骑夜夜射夜夜干| 亚洲成人手机| av电影中文网址| 黄色视频在线播放观看不卡| 欧美成人午夜免费资源| 91成人精品电影| 国产亚洲av片在线观看秒播厂| 秋霞伦理黄片| 欧美激情国产日韩精品一区| 大香蕉久久网| 精品国产露脸久久av麻豆| 夜夜看夜夜爽夜夜摸| 永久免费av网站大全| 欧美精品一区二区免费开放| 3wmmmm亚洲av在线观看| 极品人妻少妇av视频| 高清av免费在线| 中国国产av一级| 久久99热这里只频精品6学生| 一二三四中文在线观看免费高清| 91久久精品国产一区二区成人| 日日爽夜夜爽网站| 久久综合国产亚洲精品| 一二三四中文在线观看免费高清| 亚洲四区av| 韩国av在线不卡| 中文字幕免费在线视频6| 亚洲国产精品国产精品| 免费黄频网站在线观看国产| 日韩视频在线欧美| 国产精品不卡视频一区二区| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 国产色婷婷99| 免费看不卡的av| 人人妻人人爽人人添夜夜欢视频| 国产成人精品在线电影| 欧美日韩一区二区视频在线观看视频在线| 国产成人精品无人区| 91久久精品电影网| 两个人的视频大全免费| 成人手机av| 日韩制服骚丝袜av| 国产国拍精品亚洲av在线观看| 亚洲av电影在线观看一区二区三区| 日日爽夜夜爽网站| 简卡轻食公司| 国产精品蜜桃在线观看| 新久久久久国产一级毛片| 久热这里只有精品99| 国产欧美亚洲国产| 国产男女超爽视频在线观看| 伊人亚洲综合成人网| 亚洲一区二区三区欧美精品| 精品国产一区二区久久| 国产精品国产三级国产av玫瑰| 午夜久久久在线观看| 大香蕉久久成人网| 久久国产精品大桥未久av| 永久免费av网站大全| 如日韩欧美国产精品一区二区三区 | 国产淫语在线视频| 熟女av电影| 亚洲精品美女久久av网站| 寂寞人妻少妇视频99o| 街头女战士在线观看网站| 人人妻人人澡人人看| 一本—道久久a久久精品蜜桃钙片| 国产精品三级大全| 午夜福利视频精品| 国内精品宾馆在线| 国产精品一二三区在线看| 黑人巨大精品欧美一区二区蜜桃 | 国产无遮挡羞羞视频在线观看| 极品少妇高潮喷水抽搐| 亚洲人成网站在线观看播放| 女性生殖器流出的白浆| 亚洲精品亚洲一区二区| 亚洲美女视频黄频| 黑人猛操日本美女一级片| 午夜免费鲁丝| 国产精品熟女久久久久浪| 亚洲国产成人一精品久久久| 国产免费又黄又爽又色| 欧美激情国产日韩精品一区| 精品熟女少妇av免费看| 曰老女人黄片| 国语对白做爰xxxⅹ性视频网站| 人妻系列 视频| 久久久久久人妻| 秋霞伦理黄片| 国产成人精品在线电影| 男女啪啪激烈高潮av片| 国产欧美日韩综合在线一区二区| 久久久国产一区二区| 男男h啪啪无遮挡| 久久人人爽人人片av| 午夜影院在线不卡| 精品人妻在线不人妻| 老司机影院毛片| 婷婷色麻豆天堂久久| 日日撸夜夜添| 人人妻人人添人人爽欧美一区卜| 99九九在线精品视频| 99热6这里只有精品| 国产爽快片一区二区三区| 国产淫语在线视频| 日本免费在线观看一区| av.在线天堂| 久久久久久久久久久久大奶| 菩萨蛮人人尽说江南好唐韦庄| 国产亚洲最大av| 一本大道久久a久久精品| 丰满饥渴人妻一区二区三| 中文字幕人妻熟人妻熟丝袜美| 午夜精品国产一区二区电影| 秋霞伦理黄片| 亚洲av二区三区四区| 18在线观看网站| 黑人高潮一二区| 日本av手机在线免费观看| 下体分泌物呈黄色| 日日啪夜夜爽| 亚洲国产日韩一区二区| 2022亚洲国产成人精品| 99热网站在线观看| 18禁在线播放成人免费| 国内精品宾馆在线| 久久精品国产a三级三级三级| 蜜桃在线观看..| 国产熟女欧美一区二区| 久久精品久久久久久噜噜老黄| 制服人妻中文乱码| 国产精品一区www在线观看| 伊人久久国产一区二区| 久久久久久久久久成人| 国产成人精品久久久久久| 精品国产乱码久久久久久小说| 久久ye,这里只有精品| 免费日韩欧美在线观看| 乱人伦中国视频| 人妻制服诱惑在线中文字幕| 日产精品乱码卡一卡2卡三| 欧美精品国产亚洲| 亚洲成人手机| 欧美日韩亚洲高清精品| 国产成人午夜福利电影在线观看| 美女大奶头黄色视频| 十分钟在线观看高清视频www| 少妇猛男粗大的猛烈进出视频| 成人二区视频| 亚洲欧美成人精品一区二区| 天天躁夜夜躁狠狠久久av| 国产精品国产三级国产av玫瑰| 毛片一级片免费看久久久久| 亚洲精品中文字幕在线视频| 国产又色又爽无遮挡免| 夜夜看夜夜爽夜夜摸| 色吧在线观看| 久久青草综合色| 青春草国产在线视频| 久热这里只有精品99| 国产免费福利视频在线观看| 美女国产视频在线观看| 啦啦啦视频在线资源免费观看| 国产精品久久久久久久久免| 麻豆成人av视频| 永久免费av网站大全| 亚洲综合色惰| 亚洲欧美日韩卡通动漫| 一边摸一边做爽爽视频免费| 两个人免费观看高清视频| 国产免费福利视频在线观看| 亚洲国产av影院在线观看| 日本av手机在线免费观看| 在线观看www视频免费| 中国美白少妇内射xxxbb| 人成视频在线观看免费观看| 大片电影免费在线观看免费| 中文字幕精品免费在线观看视频 | 国产欧美日韩一区二区三区在线 | 日韩三级伦理在线观看| 久久久久久伊人网av| 日日爽夜夜爽网站| 晚上一个人看的免费电影| 久久精品国产亚洲av涩爱| 国产精品一国产av| av天堂久久9| 99热这里只有是精品在线观看| 国产又色又爽无遮挡免| 一级,二级,三级黄色视频| 亚洲av男天堂| 最近手机中文字幕大全| 中文字幕制服av| kizo精华| 美女大奶头黄色视频| 高清av免费在线| a 毛片基地| 久久国产精品男人的天堂亚洲 | 免费高清在线观看日韩| 亚洲av成人精品一二三区| 亚洲成人一二三区av| 久久狼人影院| 交换朋友夫妻互换小说| 国产国拍精品亚洲av在线观看| 亚洲av免费高清在线观看| 国产色爽女视频免费观看| 熟女电影av网| 中国三级夫妇交换| 一本大道久久a久久精品| 国产免费又黄又爽又色| 大话2 男鬼变身卡| 99热网站在线观看| 99久久精品国产国产毛片| 在线观看免费视频网站a站| 亚洲激情五月婷婷啪啪| 国产精品免费大片| 男人爽女人下面视频在线观看| 久久婷婷青草| 男女啪啪激烈高潮av片| 欧美性感艳星| 国产精品久久久久久精品古装| 伊人久久精品亚洲午夜| 少妇被粗大猛烈的视频| 免费观看性生交大片5| 免费黄网站久久成人精品| 国产免费现黄频在线看| 国产成人免费观看mmmm| 欧美 亚洲 国产 日韩一| 欧美xxxx性猛交bbbb| 午夜免费男女啪啪视频观看| 日韩av不卡免费在线播放| 亚洲情色 制服丝袜| 欧美3d第一页| 九草在线视频观看| 日本wwww免费看| 欧美日韩国产mv在线观看视频| 精品亚洲成国产av| 在线看a的网站| 久久人人爽人人爽人人片va| 99热6这里只有精品| 欧美+日韩+精品| 午夜av观看不卡| 啦啦啦中文免费视频观看日本| 国产欧美日韩一区二区三区在线 | 国产综合精华液| 三上悠亚av全集在线观看| 亚洲经典国产精华液单| 又大又黄又爽视频免费| 亚洲婷婷狠狠爱综合网| av在线老鸭窝| 国产成人精品无人区| 国产亚洲午夜精品一区二区久久| 国产黄色视频一区二区在线观看| 精品人妻在线不人妻| 久久99精品国语久久久| 综合色丁香网| 香蕉精品网在线| 18+在线观看网站| 22中文网久久字幕| 国产高清国产精品国产三级| 欧美丝袜亚洲另类| 国产探花极品一区二区| 亚洲欧洲国产日韩| 国产免费一区二区三区四区乱码| av在线老鸭窝| 久久久亚洲精品成人影院| 一级二级三级毛片免费看| 啦啦啦啦在线视频资源| 亚洲精品美女久久av网站| 亚洲av成人精品一二三区| 夜夜骑夜夜射夜夜干| 午夜免费观看性视频| 中文欧美无线码| 男男h啪啪无遮挡| 欧美一级a爱片免费观看看| 亚洲激情五月婷婷啪啪| 精品少妇久久久久久888优播| 三上悠亚av全集在线观看| 你懂的网址亚洲精品在线观看| 欧美少妇被猛烈插入视频| 欧美亚洲日本最大视频资源| 99精国产麻豆久久婷婷| 久久久精品94久久精品| 成人二区视频| 免费av不卡在线播放| 精品久久国产蜜桃| 韩国av在线不卡| 夫妻性生交免费视频一级片| 亚洲av福利一区| 国产亚洲一区二区精品| 看十八女毛片水多多多| 啦啦啦在线观看免费高清www| 少妇 在线观看| 亚洲在久久综合| 最近最新中文字幕免费大全7| 国产精品99久久99久久久不卡 | 欧美三级亚洲精品| 成人漫画全彩无遮挡| 久久精品国产a三级三级三级| 高清黄色对白视频在线免费看| 国国产精品蜜臀av免费| 999精品在线视频| 日本免费在线观看一区| 久久ye,这里只有精品| 老熟女久久久| 交换朋友夫妻互换小说| 一级二级三级毛片免费看| 九九爱精品视频在线观看| 国产白丝娇喘喷水9色精品| 免费不卡的大黄色大毛片视频在线观看| 国产 精品1| www.av在线官网国产| 国产亚洲欧美精品永久| 妹子高潮喷水视频| 99国产综合亚洲精品| 国产片内射在线| 伊人久久国产一区二区| 亚洲精品日韩在线中文字幕| 日日爽夜夜爽网站| 在线观看人妻少妇| 免费高清在线观看视频在线观看| av卡一久久| 一级毛片aaaaaa免费看小| 26uuu在线亚洲综合色| 春色校园在线视频观看| 80岁老熟妇乱子伦牲交| 欧美bdsm另类| 日韩 亚洲 欧美在线| 女性生殖器流出的白浆| 啦啦啦在线观看免费高清www| 18禁观看日本| 天天躁夜夜躁狠狠久久av| 中文字幕av电影在线播放| 亚洲人成网站在线观看播放| 五月伊人婷婷丁香| 国产精品嫩草影院av在线观看| 不卡视频在线观看欧美| 九色成人免费人妻av| 乱人伦中国视频| 国产精品一区二区三区四区免费观看| 日本wwww免费看| 最近的中文字幕免费完整| 波野结衣二区三区在线| 激情五月婷婷亚洲| 内地一区二区视频在线| 亚洲精品日韩在线中文字幕| 一区二区三区免费毛片| 男人添女人高潮全过程视频| 观看av在线不卡| 老司机影院成人| 女人久久www免费人成看片| 中国国产av一级| 国产一区有黄有色的免费视频| 精品久久久久久久久亚洲| 水蜜桃什么品种好| 国产高清不卡午夜福利| 国产精品女同一区二区软件| 国产精品麻豆人妻色哟哟久久| 国产熟女午夜一区二区三区 | 亚洲,欧美,日韩| 大片电影免费在线观看免费| 纯流量卡能插随身wifi吗| 欧美亚洲 丝袜 人妻 在线| 五月天丁香电影| 五月开心婷婷网| 久久ye,这里只有精品| 亚洲第一av免费看| 免费播放大片免费观看视频在线观看| 欧美日韩av久久| 国产成人精品在线电影| 国产视频首页在线观看| 亚洲欧美色中文字幕在线| 只有这里有精品99| 99久久精品国产国产毛片| 性高湖久久久久久久久免费观看| 91久久精品国产一区二区三区| 亚洲第一av免费看| 人人妻人人澡人人看| 欧美精品亚洲一区二区| 日韩熟女老妇一区二区性免费视频| 久久午夜综合久久蜜桃| 精品亚洲成国产av| 日本色播在线视频| 亚洲精品第二区| 日本黄大片高清| 在线观看免费高清a一片| 另类亚洲欧美激情| 七月丁香在线播放| 亚洲人与动物交配视频| 欧美最新免费一区二区三区| 亚洲国产精品一区三区| 校园人妻丝袜中文字幕| 高清不卡的av网站| 精品人妻在线不人妻| 18禁裸乳无遮挡动漫免费视频| 女的被弄到高潮叫床怎么办| 纵有疾风起免费观看全集完整版| 99九九在线精品视频| 看免费成人av毛片| 久久久国产一区二区| 日日啪夜夜爽| av免费观看日本| 久久99热6这里只有精品| 母亲3免费完整高清在线观看 | 赤兔流量卡办理| 亚洲精品色激情综合| 久久久久久久久久久丰满| av福利片在线| 国产视频内射| 婷婷色麻豆天堂久久| 亚洲四区av| 肉色欧美久久久久久久蜜桃| 久久久久久久精品精品| 免费看不卡的av| 夫妻午夜视频| 男女无遮挡免费网站观看| 国产成人91sexporn| 精品99又大又爽又粗少妇毛片| 国产精品偷伦视频观看了| 97精品久久久久久久久久精品| 成年美女黄网站色视频大全免费 | 成人免费观看视频高清| 99九九线精品视频在线观看视频| 国产午夜精品一二区理论片| 少妇的逼好多水| 成人综合一区亚洲| 一本色道久久久久久精品综合| 亚洲图色成人| av福利片在线| 香蕉精品网在线| 成人手机av| 国产日韩欧美视频二区| 交换朋友夫妻互换小说| 女性被躁到高潮视频| 国产精品久久久久久久电影| 午夜老司机福利剧场| 免费大片黄手机在线观看| 欧美性感艳星| 尾随美女入室| 中国国产av一级| 考比视频在线观看| 一级毛片电影观看| 国产av一区二区精品久久| 国产男女内射视频| av线在线观看网站| 日韩不卡一区二区三区视频在线| 蜜桃国产av成人99| 街头女战士在线观看网站| 建设人人有责人人尽责人人享有的| a级毛片在线看网站| 亚洲国产精品成人久久小说| 亚洲欧美一区二区三区黑人 | 国产精品久久久久久久电影| 久久午夜福利片| 人妻制服诱惑在线中文字幕| 日本av手机在线免费观看| 精品人妻熟女毛片av久久网站| 制服人妻中文乱码| 国产成人一区二区在线| 成人漫画全彩无遮挡| 蜜桃在线观看..| 国产亚洲最大av| 18+在线观看网站| 国产精品一区二区在线不卡| 午夜免费男女啪啪视频观看| 久久久精品94久久精品| 久久这里有精品视频免费| 大片电影免费在线观看免费| 美女中出高潮动态图| 免费不卡的大黄色大毛片视频在线观看| 精品亚洲乱码少妇综合久久| 精品国产一区二区久久| 欧美成人午夜免费资源| 美女国产视频在线观看| 乱人伦中国视频| 日本vs欧美在线观看视频| 精品亚洲成国产av| 一本色道久久久久久精品综合| 国产精品麻豆人妻色哟哟久久| 亚洲精品乱久久久久久| videos熟女内射| 777米奇影视久久| 日韩电影二区| 一级片'在线观看视频| 国产淫语在线视频| 啦啦啦在线观看免费高清www| 国产欧美日韩综合在线一区二区| 蜜桃国产av成人99| 婷婷色综合大香蕉| 欧美日韩亚洲高清精品| 午夜福利网站1000一区二区三区| 国产亚洲精品久久久com| av.在线天堂| av女优亚洲男人天堂| 亚洲激情五月婷婷啪啪| a级毛色黄片| av播播在线观看一区| 国产亚洲一区二区精品| 亚洲精品自拍成人| 在现免费观看毛片| 99re6热这里在线精品视频| 久久精品久久久久久噜噜老黄| 国产成人aa在线观看| 五月开心婷婷网| 久久久国产一区二区| 亚洲成人一二三区av| 美女脱内裤让男人舔精品视频| 亚洲欧洲精品一区二区精品久久久 | 国产欧美亚洲国产| 国产av国产精品国产| 免费av不卡在线播放| 一本大道久久a久久精品| 天天操日日干夜夜撸| 麻豆精品久久久久久蜜桃| 欧美日韩在线观看h| 久久久久久人妻| 爱豆传媒免费全集在线观看| 久久精品久久久久久久性| 69精品国产乱码久久久| 欧美丝袜亚洲另类| 精品国产乱码久久久久久小说| av线在线观看网站| 国产一区亚洲一区在线观看| h视频一区二区三区| 美女xxoo啪啪120秒动态图| 伊人久久精品亚洲午夜| 亚洲欧美日韩卡通动漫| 成人亚洲欧美一区二区av| 夜夜骑夜夜射夜夜干| 欧美精品人与动牲交sv欧美| 国产精品一二三区在线看| 哪个播放器可以免费观看大片| 狠狠精品人妻久久久久久综合| 国产伦精品一区二区三区视频9| 久久久国产欧美日韩av| 精品久久国产蜜桃| 久久精品国产亚洲av涩爱| 大片免费播放器 马上看| 制服丝袜香蕉在线| 久久精品夜色国产| 亚洲色图 男人天堂 中文字幕 | 午夜91福利影院| 免费观看在线日韩| 97精品久久久久久久久久精品| 欧美精品一区二区免费开放|