• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    THE SYSTEMS WITH ALMOST BANACH-MEAN EQUICONTINUITY FOR ABELIAN GROUP ACTIONS*

    2022-06-25 02:12:06BinZHU朱斌
    關(guān)鍵詞:朱斌

    Bin ZHU (朱斌)

    College of Mathematics and Statistics,Chongqing University,Chongqing 401331,China

    E-mail:binzhucqu@163.com

    Xiaojun HUANG (黃小軍)?

    College of Mathematics and Statistics,Chongqing University,Chongqing 401331,China

    Chongqing Key Laboratory of Analytic Mathematics and Applications,Chongqing University,Chongqing 401331,China

    E-mail:hxj@cqu.edu.cn

    Yuan LIAN (連媛)

    Department of Mathematics,Taiyuan Normal University,Jinzhong 030619,China

    E-mail:Andrea@tynu.edu.cn

    Abstract In this paper,we present the concept of Banach-mean equicontinuity and prove that the Banach-,Weyl-and Besicovitch-mean equicontinuities of a dynamic system of Abelian group action are equivalent.Furthermore,we obtain that the topological entropy of a transitive,almost Banach-mean equicontinuous dynamical system of Abelian group action is zero.As an application of our main result,we show that the topological entropy of the Banach-mean equicontinuous system under the action of an Abelian groups is zero.

    Key words Abelian group action;Banach mean equicontinuous;Banach mean density;independence set

    1 Introduction

    Ergodic theory and topological dynamics are two branches of the modern theory of dynamical systems.The first,though not in its broadest definition,deals with group actions on a probability measure space in a measure-preserving way;the second deals with the action of groups on a compact metric space as groups of homeomorphisms.In this paper,we discuss problems that exist under the framework of countable group action on the compact metric spaces which constitute the fundamental objects of study in the field of dynamical systems.

    It is well known that equicontinuous systems have simple dynamical behaviors.A dynamical system is called equicontinuous if the collection of maps defined by the action of the group is a uniformly equicontinuous family.Equicontinuous systems are dynamically the‘simplest’ones;in fact,there is a complete classification of equicontinuous minimal systems.

    Mean equicontinuity has attracted interest in recent years due to its connections with the ergodic properties of measurable dynamical systems,i.e.dynamical systems equipped with an invariant probability measure.In particular,it has been shown that using a measure theoretic version of mean equicontinuity,one can characterize when a measure-preserving system has a discrete spectrum[12]and when the maximal equicontinuous factor is actually an isomorphism[5,17].

    The concept of mean equicontinuity comes in two variants:one is called Weyl-mean equicontinuity and the other Besicovitch-mean equicontinuity.The concepts of Weyl-and Besi-covitchmean equicontinuity were introduced in[17]for Z-actions.In fact,in this case the notion of Besicovich-mean equicontinuity is immediately seen to be equivalent to the concept of mean Lyapunov-stability,which was already introduced in 1951 by Fomin[9]in the context of Zactions with a discrete spectrum.Later,a first systematic treatment was carried out by Auslander[1].

    Answering an open question in[24],it was proved by Li,Tu and Ye in[17]that every invariant measure of a mean equicontinuous system of integer group action has a discrete spectrum.Localizing the notion of mean equicontinuity,they introduced notions of almost mean equicontinuity and almost Weyl-mean equicontinuity.In[17]they proved that a system with the former property may have positive entropy while a system with the latter property must have zero entropy.

    Concerning abelian group action,mean equicontinuity and its relation to the spectral theory of dynamical systems (in particular,to discrete spectrum) has been studied by various groups[11–13].In the minimal case and as regards the action of the Abelian group,F(xiàn)uhrmann,Grger and Lenz[11]concluded that mean equicontinuity is equivalent to a discrete spectrum with continuous eigenfunctions.

    Inspired by these previous papers,we will discuss the dynamical properties of countable Abelian group action systems.In this paper,we introduce the concept of Banach-mean equicontinuity regarding group action dynamical systems;this is broader than Weyl-and Besicovitchmean equicontinuity,and not limited to the dynamical systems of amenable group actions.Moreover,we prove that the above three concepts are equivalent when the dynamic system is an Abelian group action.Furthermore,we introduce the concept of almost Banach-mean equicontinuity for a countable Abelian group action system and obtain the following main result:

    Theorem 1.1LetGbe a countably in finite Abelian group,letXbe a compact metric space without isolated points,and let the actionGXbe transitive.If the actionGXis almost Banach-mean equicontinuous,then

    As an application of our main result,we prove that the topological entropy of the Banachmean equicontinuous system under the action of an Abelian groups is zero.

    Theorem 1.2LetGbe a countably in finite Abelian group,letXbe a compact metric space,and letGXbe a continuous action.IfGXis Banach-mean equicontinuous,then

    The paper is organized as follows:we begin in Section 2 by recalling some basic notations,definitions and results regarding group action systems.In Section 3 we relate the concept and basic propositions of the amenable group.Section 4 is devoted to the concepts of Banach-,Besicovitch-and Weyl-mean equicontinuity for amenable group actions.In this section we prove that the three concepts are equivalent when the dynamic system is an Abelian group action system.In Section 5 we introduce the concept of the Wely-mean sensitivity of an amenable group action system.In this section,we obtain a dichotomy result related to Wely-mean equicontinuity and Weyl-mean sensitivity for when a dynamical system is transitive.In Section 6,we give the proof of our main results.Finally,in Section 7,we apply our main result to prove the topological entropy of the Banach-mean equicontinuous system under the action of an Abelian group is zero.

    2 Preliminaries

    In this section,we recall some basic notations,definitions,and results.We refer the reader to the textbook[21]for information on group action.

    By referring to an action of the groupGwith identityeon a setX,we mean a mapα:G×X→Xsuch that,writing the first argument as a subscript,αs(αt(x))=αst(x) andαe(x)=xfor allx∈Xands,t∈G.Most of the time we will write the action aswith the image of a pair (s,x) written assx.For a setA?Xands∈Gandx∈,Xwe write

    TheG-orbit of a pointx∈Xis the setGx.

    In this paper,we call a topological spaceXequipped with a continuous actionGXthe group action system,and denote it by (X,G).

    Definition 2.1The actionGXis (topologically) transitive if,for all nonempty open setsU,V?X,there exists ans∈Gsuch thatsU∩V?.The pointx∈Xis transitive ifDenote by Tran (X,G) the set of all transitive points.

    The following proposition in[21]suggested that,whenXis metrizable,transitivity can be thought of as a generic version of minimality in the sense of a Baire category:

    Proposition 2.2([21,Proposition 7.9]) Suppose thatXis metrizable.Then the following are equivalent:

    1.the actionGXis transitive;

    2.there is a dense orbit;

    3.the set of points inXwith dense orbit is a denseGδ.

    Definition 2.3A pointx∈Xis recurrent if for every neighbourhoodUofx,the set{s∈G:sx∈U}is in finite.Denote by Re (X,G) the set of all recurrent points.

    Proposition 2.4([21,Proposition 7.11]) Suppose that the actionGXis transitive and thatXis metrizable and has no isolated points.Then the set of recurrent points inXis a denseGδ.

    Definition 2.5LetXbe a set.A collection{(Ai,1,...,Ai,k):i∈I}ofk-tuples of subsets ofXis said to be independent iffor every nonempty finite setF?Iandω∈{1,...,k}F.

    Definition 2.6LetGXbe an action and A=(A1,...,Ak) a tuple of subsets ofX.We say that a setJ?Gis an independence set for A if the collection{(s-1A1,...,s-1Ak):s∈J}is independent.

    Definition 2.7LetGbe a group.Denote by Fin (G) the family of all non-empty finite subsets ofG.LetE?Gbe a subset ofG.The upper Banach density ofEis defined as

    The lower Banach density ofEis given by BD*(E)=1-BD*(GE).

    Clearly one has BD*(E)≤BD*(E).If BD*(E)=BD*(E),then we say that there exists the Banach density ofEand denote it by BD (E).

    From the above definitions it is easy to see that the Banach upper density has a right shift invariant property.For the sake of completeness,we give a proof here.

    Proposition 2.8BD*(Es)=BD*(E) for anys∈GandEsubset of G.

    ProofBy the symmetry of the pair of setsEsandE,it is sufficient to prove that BD*(Es)≤BD*(E).LetFbe any nonempty finite subset ofG.From the definition of the Banach upper density ofEs,one has

    The arbitrariness ofFimplies that BD*(Es)≤BD*(E).Hence the proposition is obtained.□

    It is not difficult to observe the following result:

    Lemma 2.9LetF,F(xiàn)1,F(xiàn)2be subsets ofGands∈G.Then,

    1.ifF1has a Banach density of one andF1?F2,then so doseF2;

    2.ifFhas a Banach density of one,thenGFis a set of Banach density zero;

    3.ifF1andF2have a Banach density of one,then so doesF1∩F2;

    4.ifFhas a Banach density of one,then so doesFs.

    3 Amenable Group

    This section is devoted to the class of amenable groups.This is a class of groups that plays an important role in many areas of mathematics,such as ergodic theory,harmonic analysis,dynamical systems,geometric group theory,probability theory and statistics.

    LetGbe a group.A mean for G on?∞(G) is a unital positive linear functionσ:?∞(G)→C (unital means thatσ(1)=1).The meanσis left invariant ifσ(sf)=σ(f) for alls∈Gandf∈?∞(G),where (sf)(t)=f(s-1t) for allt∈G.

    Definition 3.1The groupGis said to be amenable if there is a left invariant mean on?∞(G).

    The above definition of a countable amenable groupGis equivalent to the existence of a sequence of finite subsets{Fn}ofGwhich is asymptotically invariant,i.e.,

    wheregFn={gf:f∈Fn},|·|denotes the cardinality of a set,and Δ is the symmetric difference.Such a sequence is called a (left) F?lner sequence.

    The class of amenable groups contains,in particular,all finite groups,all Abelian groups and,more generally,all solvable groups.In this paper,we need the following theorem:

    Theorem 3.2([6,Theorem 4.6.1]) Every Abelian group is amenable.

    Definition 3.3LetFandAbe nonempty finite subsets ofG.We say thatAis (F,ε)-invariant if|s∈A:Fs?A|≥(1-ε)|A|.

    Definition 3.4Letfbe a real-valued function on the set of all finite subsets ofG.We say thatf(A) converges to a limitLasAbecomes more and more invariant if,for everyε>0,there are a finite setF?Gand aδ>0 such that|f(A)-L|<εfor every nonempty (F,δ)-invariant finite setA?G.

    Theorem 3.5([21,Theorem 4.38]) Suppose thatGis amenable.Letφbe a[0,∞)-valued function on the set of all finite subsets ofGsuch that

    1.φ(As)=φ(A) for all finiteA?Gands∈G;

    2.φ(A∪B)≤φ(A)+φ(B) for all finiteA,B?G(subadditivity).Thenφ(A)/|A|converges to a limit asAbecomes more and more invariant.

    LetGXbe an action and A=(A1,...,Ak) a tuple of subsets ofX.It is readily seen that the function

    on the collection of nonempty finite subsets ofGsatisfies the two conditions in Theorem 3.5,so that the quantityφA(F)/|F|converges asFbecomes more and more invariant (Definition 3.4),and the limit is equal to infFφA(F)/|F|whereFranges over all nonempty finite subsets ofG.

    Definition 3.6For a finite tuple A=(A1,...,Ak) of subsets ofX,we define the independence densityI(A) of A to be the above limit.

    Proposition 3.7([21,Proposition 12.7]) Let A=(A1,...,Ak) be a tuple of subsets ofXand letd>0.Then the following are equivalent:

    1.I(A)≥d;

    2.there are a F?lner sequence{Fn}and an independence setJfor A such that

    In what follows,we recall some notions which were introduced in[20].

    LetE?G.The upper asymptotic density ofEwith respect to a F?lner sequence F={Fn}n∈N,denoted by(E),is defined by

    Similarly,the lower asymptotic density ofEwith respect to a F?lner sequence F={Fn}n∈N,denoted by(E),is defined by

    One may say thatEhas an asymptotic densitydF(E) ofEwith respect to a F?lner sequence,wheredF(E) is equal to this common value.

    Let{Fn}n∈Nbe a F?lner sequence of the amenable groupGandE?G.For the upper Banach density ofEplease refer to Definition 2.7.Meanwhile,we have the following formula for the properties of upper Banach density (see[8,Lemma 2.9]):

    As for the relationship between upper Banach density and upper asymptotic density,we have the following formula (see[4,Lemma 3.3]):

    Here the supremum is taken over all F?lner sequences F={Fn}n∈NofG.

    Throughout this paper,Gis a countable amenable group andGXis a continuous action on a compact metric space.We write△k(X) for the diagonal{(x,...,x):x∈X}inXk.

    Definition 3.8We call a tuplex=(x1,...,xk)∈Xkan IE-tuple (or IE-pair ifk=2) if,for every product neighbourhoodU1×...×Ukofx,the tuple (U1,...Uk) has positive independence density.We denote the set of IE-tuples of lengthkby IEk(X,G).

    In this paper,we need the following theorem:

    Theorem 3.9([21,Theorem 12.19]) IE2(X,G)Δ2(X) is nonempty if and only ifhtop(X,G)>0.

    4 Besicovitch-,Weyl-and Banach-Mean Equicontinuity

    In a 2005 study of a dynamical system with bounded complexity (defined by using the mean metrics),Huang,Li,Thouvenot,Xu and Ye[18]introduced a notion called“equicontinuity in the mean”.In 2015,Li,Tu and Ye[17]showed that for a minimal system,the notions of mean equicontinuity and equicontinuity in the mean are equivalent for Z-actions.The concepts of Besicovitch-and Weyl-mean equicontinuity were introduce,in[17]for Z-actions,and in[11]for amenable actions.

    In this paper,we give a notion of Banach-mean equicontinuity on a dynamical system for a group action.For countable amenable group action systems,we show that two concepts,Weyland Banach-mean equicontinuity are equivalent.By the results of[11],we also know that the concepts of Besicovitch-,Weyl-and Banach-mean equicontinuity are the same for Abelian group action systems.

    Definition 4.1LetGbe a discrete group and let Fin (G) be the family of all non-empty finite subsets ofG.LetXbe a compact metric space with metricd.Forx,y∈X,we denote

    We say that the actionGXis Banach-mean equicontinuous or simply B-mean equicontinuous if,for anyε>0,there existsδ>0 such that(x,y)<εwheneverd(x,y)<δforx,y∈X.

    A pointx∈Xis called a Banach-mean equicontinuous point if,for for every∈>0,there existsδ>0 such that,for everyy∈B(x,δ),

    We say that the actionGXis almost Banach-mean equicontinuous if the group action system (X,G) has at least one Banach-mean equicontinuous point.

    By the compactness ofX,it is easy to see that the actionGXis Banach-mean equicontinuous if and only if every point inXis a Banach-mean equicontinuous point.

    Definition 4.2LetGbe an amenable group and F={Fn}n∈Nbe a F?lner sequence ofG.We say that the actionGXis Besicovitch-F-mean equicontinuous if,for everyε>0,there existsδ>0 such that

    for allx,y∈Xwithd(x,y)<δ.The dependence on the F?lner sequence immediately motivates the next definition.We say that the actionGXis Weyl-mean equicontinuous if,for everyε>0,there existsδ>0 such that,for allx,y∈Xwithd(x,y)<δ,we have

    A pointx∈Xis called a Weyl-mean equicontinuous point if,for for every∈>0,there existsδ>0 such that,for everyy∈B(x,δ),

    We say that the actionGXis almost Weyl-mean equicontinuous if the group action system (X,G) has at least one Weyl-mean equicontinuous point.

    Before we can proceed,a few comments are in order.First,note thatFandDare pseudometric.Moreover,as is not hard to see,DisG-invariant;that is,D(gx,gy)=D(x,y) for allx,y∈Xandg∈G.

    In what follows,for the amenable group action system,we will see that the Banach pseudometric(·,·) is equal to the Wely pseudometricD(·,·).

    Theorem 4.3LetGbe a countable amenable group,letXbe a compact metric space and letGXbe a group action.Then

    ProofLetx,y∈X.First,we show that

    Letε>0.From the definition of(x,y),there is a nonempty finite subsetF∈Fin (G) such that

    Let{Fn}n∈Nbe a F?lner sequence ofG.In what follows we will show that

    Takeg∈G.For everyh∈Fn,one has

    Thus it follows that

    We denote thatα(h,t)=d((thg)x,(thg)y) forh∈Fnandt∈F.Then the above inequality can be re-written as

    It is clear that there ist′∈Fsuch that

    Therefore,we get

    which implies that

    Note that

    where diam (X) is the diameter of the compact metric space (X,d).SinceFnis a F?lner sequence,we have that

    From the arbitrariness of the F?lner sequence{Fn},we get

    where the supremum is taken over all F?lner sequences ofG;that is

    The arbitrariness ofεimplies that

    Suppose thatD(x0,y0)(x0,y0) for somex0,y0∈X.In what follows,we will obtain a contradiction.

    We choose two real numbersη1,η2∈R,such that

    Let{Fn}n∈Nbe a F?lner sequence of the amenable groupG.Note thatFnis a nonempty finite subset ofGfor eachn∈N.From the definition of(x0,y0),we have

    Thus,for eachn∈N,there existsgn∈Gsuch that

    SetHn=Fngn.Since F′:={Hn}n∈Nis also a (left) F?lner sequence ofG,we get that

    This is a contradiction.Hence the theorem is proved. □

    From the above Theorems,it follows that the concepts of Banach-and Weyl-mean equicontinuity are equivalent for the amenable group action system.

    Corollary 4.4LetGbe a countable amenable group,letXbe a compact metric space let andGXbe a group action.ThenGXis Banach-mean equicontinuous if and only ifGXis Weyl-mean equicontinuous.

    According to the theorem on the independence of F?lner sequences for an amenable group in[11,Theorem 1.3,p.6],we can get the following result:

    Theorem 4.5LetGbe a countable Abelian group andGXbe a dynamical system.Then the following three statements are equivalent:

    1.GXis Banach-mean equicontinuous;

    2.GXis Weyl-mean equicontinuous;

    3.GXis Besicovitch-F-mean equicontinuous for some left F?lner sequence F.

    LetGbe a countable amenable group and letGXbe a group action.Let E denote the set of all Weyl-mean equicontinuous points of the group action system (X,G).For everyε>0,let

    For the Weyl-mean equicontinuous points we have the following proposition:

    Proposition 4.6LetGbe a countable amenable group,letGXbe a group actionand letε>0.Then Eεis open andsEε/2?Eεfor alls∈G.Moreover,is aGδsubset ofX.

    ProofLetx∈Eε.Chooseδ>0 satisfying the condition from the definition of Eεforx.Fixy∈B(x,δ/2).Ifz,w∈B(y,δ/2),thenz,w∈B(x,δ),soD(z,w)<ε.This shows thatB(x,δ/2)?Eε,and hence,Eεis open.

    Lets∈G.Suppose thatx∈sEε/2,sos-1x∈Eε/2.Chooseδ>0 satisfying the condition from the definition of Eε/2fors-1x;that is,for ally,z∈B(s-1x,δ),one hasD(y,z)<ε/2.By the continuity of the maps-1,there existsη>0 such thatd(s-1y,s-1x)<δfor anyy∈B(x,η).

    Letu,v∈B(x,η).Thens-1u,s-1v∈B(s-1x,δ).

    Let F={Fn}n∈Nbe any F?lner sequence ofG.Note that Fs={Fns}n∈Nis also a (left) F?lner sequence ofG.Thus,we have

    The arbitrariness of the F?lner sequence F indicates thatD(u,v)≤ε/2<ε,which implies thatx∈Eε.Hence we getsEε/2?Eε.

    Ifx∈Xbelongs to all E,then clearly,x∈E.

    Conversely,ifx∈E andm≥1,there existsδ>0 such thatD(x,y)<1/2mfor ally∈B(x,δ).Ify,z∈B(x,δ),then

    Thusx∈.Therefore we get.Hence,the proof is completed. □

    5 Weyl-Mean Sensitivity

    LetXbe a compact metric space.Recall that a subset ofXis called residual if it contains the intersection of a countable collection of dense open sets.By the Baire category theorem,a residual set is also dense inX.

    Definition 5.1LetGXbe a continuous action and letx∈Xbe a point.We say that the pointxis a Weyl-mean sensitive point if there existsδ>0 such that,for everyε>0,there isy∈B(x,ε) satisfying

    For the definition of the functionD(·,·),please refer to (4.1).

    We say that the actionGXis Weyl-mean sensitive if every pointx∈Xis a Weyl-mean sensitive point.

    Proposition 5.2LetGbe a countable amenable group and letXbe a compact metric space.LetGXbe a transitive action.Then,

    1.The set of Weyl-mean equicontinuous points is either empty or residual.If,in addition,the actionGXis almost Weyl-mean equicontinuous,then every transitive point is Weylmean equicontinuous.

    2.If the actionGXis minimal and almost Weyl-mean equicontinuous,then it is Weyl-mean equicontinuous.

    ProofIf Eεis empty for someε>0,then the set of Weyl-mean equicontinuous points E is empty.

    Now,we assume that every Eεis nonempty.Then,for eachε>0,Eεis a nonempty open subset ofX.In what follows we show that every Eεis dense.LetUbe any nonempty open subset ofX.By the transitivity of the actionGX,noting that Eε/2is a nonempty open subset ofXand considering Proposition 4.6,there existss∈Gsuch that ?U∩sEε/2?U∩Eε.

    Hence E is either empty or residual,by the Baire Category Theorem.

    If E is residual,then every Eεis open and dense.Letx∈Xbe a transitive point andε>0.Then there exists some elements∈Gsuch thatsx∈Eε/2,and,by Proposition 4.6,x∈s-1Eε/2?Eε.Thusx∈E. □

    Proposition 5.3LetGbe a countable amenable group and letXbe a compact metric space.LetGXbe a continuous action.If there existsδ>0 such that for every non-empty open subsetUofXthere arex,y∈UsatisfyingD(x,y)>δ,Then the group actionGXis Weyl-mean sensitive.

    ProofSuppose that there existsδ>0 such that for any nonempty open subsetUofX,there areu,v∈UsatisfyingD(u,v)>δ.

    Letx∈Xandε>0.ThenB(x,ε)? andB(x,ε) is open subset ofX.Then there existy,z∈B(x,ε)?XsatisfyingD(y,z)>δ.

    Proposition 5.4LetGbe a countable amenable group and letXbe a compact metric space.Let the actionGXbe transitive.If there exists a transitive point which is a Weyl-mean sensitive point,then the actionGXis Weyl-mean sensitive.

    ProofLetx∈Xbe a Weyl-mean sensitivity point.Thus there existsδ>0 such that,for everyε>0,there isy∈B(x,ε) satisfyingD(x,y)>δ.

    Take a nonempty open subsetUofX.Sincexis a transitive point,there existss∈Gsuch thatsx∈U;that is,x∈s-1U.Furthermore,ass-1Uis open,there is∈>0 such thatB(x,∈)?s-1U;that is,sB(x,∈)?U.By the assumption thatxis a Weyl-mean sensitivity point,there existsy∈B(x,∈) satisfying thatD(x,y)>δ.By the definition ofD(x,y),there is a (left) F?lner sequence F={Fn}n∈NofGsuch thatDF(x,y)>δ.

    Letu=sx,v=sy.Noting that Fs-1={Fns-1}n∈Nis also a (left) F?lner sequence andu,v∈U,then

    Therefore the actionGXis Weyl-mean sensitive,by Proposition 5.3. □

    Theorem 5.5LetGbe a countable amenable group and letXbe a compact metric space.If the actionGXis transitive,then the actionGXis either almost Weyl-mean equicontinuous or Weyl-mean sensitive.

    ProofLetx∈Xbe a transitive point.Ifxis a Weyl-mean sensitivity point,then the actionGXis Weyl-mean sensitive,by Proposition 5.4.Ifxis not a Weyl-mean sensitive point,then it is a Weyl-mean equicontinuous point.Thus the actionGXis almost Weylmean equicontinuous. □

    Corollary 5.6LetGbe a countable amenable group and letXbe a compact metric space.LetGXbe a minimal system.Then the actionGXis either Weyl-mean sensitive or Weyl-mean equicontinuous.

    6 The Proof of Main Theorem

    To prove our main theorem we need some preparation.For the following result,please see[17,Proposition 5.8]:

    Proposition 6.1Let (X,β,μ) be a probability space,and letbe a sequence of measurable sets withμ(Ei)≥a>0 for some constantaand anyi∈N.Then,for anyk≥1 and∈>0,there isN=N(a,k,∈) such that,for any tuple{s1<s2<...<sn}withn≥N,there exist 1≤t1<...<tk≤nwith

    Let (X,d) be a compact metric space,with Borelσ-algebra B.Denote by M (X) the space of Borel probability measures onX.Our main interest is the weak-*topology of space M (X).This is standard (see Pathasarathy[22]).

    Theorem 6.2LetXbe compact metric space and let{μn}be a sequence of probability measures in M (X).Letμ∈M (X).Then the following statements are equivalent:

    1.{μn}converges toμwith weak-*topology in M (X);

    In order to obtain our results,we need the following fundamental fact:

    Fact 6.3Let{an}and{bn}be two sequences of real numbers.Suppose thatexists and thatis finite.Then

    The next result is the well-known Furstenberg corresponding principle[10]of the amenable group version.

    Proposition 6.4LetGbe a countable amenable group and letFbe a subset ofGwith BD*(F)>0.Then for anyk≥1 and∈>0,there isN=N(BD*(F),k,∈) such that,for anyn≥Nand any tuple{s1,s2,...,sn}?G,there exist{1≤t1<t2<...<tk≤n}such that

    ProofLetK={0,1}be a finite alphabet.We define the map Σ:G×KG→KGby Σ(g,x):=x°Rgfor allg∈G andx∈KG.HereRg:G→Gis defined byRg(h):=hgfor allh∈G.Lets∈Gandx∈KG.Thussx(g)=x(gs) for allg∈G.

    Takeξ∈KGsatisfyingξ(s)=0 for alls∈Fandξ(s)=1 for alls∈GF.Denote by

    It is clear thatXis a compact metric space.Meanwhile,it follows that the set{s∈G:ξ(s)=0}=Fhas positive upper Banach density.

    Let{Hn}be a (left) F?lner sequence forG.By a formula of upper Banach density (see[8,Lemma 2.9]),we have that

    Letκ>0.For the above limit equation,there isN1∈N such that,for everyn≥N1,one has that

    Thus,for eachn≥N1,there isgn∈Gsuch that

    SetFn=Hngnfor alln∈N.Then{Fn}n∈Nis a (left) F?lner sequence with

    Define a sequence of probability measures in M (X) as

    whereδsξis Dirac measure at the pointsξinX.

    Since M (X) is a compact metrizable space (see Theorem 6.3 in[22],p43),there exists a subsequence{μnl}l∈Nthat converges to a probability measureνwith weak-*topology in M (X);that is,

    In what follows we will show thatνis aG-invariant probability measure;that is,ν=gνfor eachg∈G.

    Letg∈G.From (3) of Theorem 6.2,it is easy to check that

    ClaimFor any Borel setBofX,one has that

    In fact,since{Fnl}l∈Nis a F?lner sequence ofG,we have that

    Hence the claim is obtained.

    Now we will prove thatgν=ν.LetCbe any closed subset ofX.From (6.3),F(xiàn)act 6.3 and (3) of Theorem 6.2,we have tnat

    Applying (3) of Theorem 6.2 again,we getCombining this with (6.2),we have thatgν=ν.Thusνis aG-invariant measure.

    Denote byethe unit element of the groupG.We defineA(0)={η∈KG:η(e)=0}∩X.Since{η∈KG:η(e)=0}is a clopen subset ofKG,it follows thatA(0) is a clopen subset ofX.Therefore the boundary ofA(0) is a empty set;that is,?(A(0))=?.From (5) of Theorem 6.2,we have that

    Note thatsξ∈A(0)?ξ(s)=0?s∈F,so,by (6.1),we get tnat

    SinceGis countable,we listGasDenote thatA(0) for eachi∈N.Owing toνbeingG-invariant,we deduce that=ν(A(0))=BD*(F) for eachi∈N.

    Letk≥1 and∈>0.From Proposition 6.1,there isN=N(BD*(F),k,∈) such that,for anyn≥Nand any tuple{s1,s2,...,sn}?G,there exist{1≤t1<t2<...<tk≤n}satisfying

    SinceA(0) is a clopen subset ofX,the setBis also clopen inX.Therefore,the boundary ofBis an empty set;that is,?(B)=?.Thus,by equation (3.1) and (5) of Theorem 6.2,we have

    Applying (6.4),(6.5) and (6.6),we get

    Hence the proposition is obtained. □

    Lemma 6.5LetGbe a countably in finite amenable group,letSbe a subset ofGwith BD*(S)>0,and letW?Gbe an in finite set (i.e.|W|=∞).Then there are two distinct elementsl1,l2∈Wsuch that

    as in Proposition 6.4,for the tuple{s1,s2,...,sn}?Wwithn≥N,there exist 1≤t1<t2≤nsuch that

    Letl1=st1andl2=st2.Then the proof is completed. □

    The main result in this section is

    Theorem 6.6LetGbe a countably in finite Abelian group and letXbe a compact metric space without isolated points.Suppose that the actionGXis transitive.Ifhtop(X,G)>0,then the actionGXis Weyl-mean sensitive.

    ProofIt suffices to prove that there exists a transitive pointx0which is not a Weyl-mean equicontinuous point,by Proposition 5.4.

    AsGis Abelian,the groupGis an amenable group.Sincehtop(X,G)>0,and by Theorem 3.9 and Definition 3.8,there exists an IE pair (x1,x2)∈IE2(X,G)△2(X) satisfying,for any nonempty open neighborhoodV1×V2?(x1,x2),that A′.=(V1,V2) has positive independent density,i.e.,

    whereφA′(F)=max{|F∩J|:Jis an independent set for A′},andFranges over all nonempty finite subsets ofG.Sincex1x2,we choose two open setsUi(i=1,2) which are in the neighborhood ofxiwith

    Here A=(U1,U2).Thus,by Proposition 3.7 and (3.1),there exists an independent setJfor A such that

    SinceGXis transitive andXhas no isolated points,by Propositions 2.2 and 2.4,we know that the set Tran (X,G) of points inXwith dense orbit and the set Re (X,G) of recurrent points are both denseGδsets ofX.Applying the Baire category theorem,we have that Tran (X,G)∩Re (X,G) is also a denseGδset ofX,which means that we have Tran (X,G)∩Re (X,G)?.

    Letx0∈Tran (X,G)∩Re (X,G).In what follows,we will show thatx0is not a Weyl-mean equicontinuous point.

    For eachδ>0,denote that

    The cardinality of the setG(x0,B(x0,δ)) is in finite becausex0is a recurrent point.

    Takem0∈N satisfying

    Hereδ0is defined as in (6.7).Recall that,from (4.3),

    The rest of the proof we will establish the following assertion:

    Claimx0E1/m0.

    Suppose that

    Then there existsδ*>0 depending onx0andm0such that

    Recall that BD*(J)>0 for the independent setJfor A.It follows from Lemma 6.5 that there are two distinct elements,

    LetHbe a maximal subset ofwith the property that,for every pairg,s∈Handgs,φ(g)∩φ(s)=?(Zorn’s Lemma guarantees the existence of the setH).Now we claim that

    Indeed,ifφ(g*)∩φ(h0)? for someh0∈H,then,by the above argument,we know thatwhich contradicts the fact thatHence,by (6.13),we deduce that the setH∪{g*}satisfies the property that,for every pairg,s∈H∪{g*}andgs,φ(g)∩φ(s)=?.Noting thatg*Handwe can see that this contradicts the fact that the setHis a maximal subsetwith such a property.

    Hence,we get

    According to Proposition 2.8 and the fact thatGis abelian,one has that

    Combining this with (6.14),it follows that

    Therefore,we have

    Recall thatGis an amenable group asGis abelian and Theorem 3.2.By (3.1),we know that

    where the supremum is taken over all F?lner sequences F={Fn}n∈NofG.Thus,by (6.15) and (6.16),there is a F?lner sequence{Fn}ofGsatisfying

    Therefore,there exists a subsequenceof N such thatmn<mn+1,mn≥nand

    We denote thatJ1=l1Hand thatJ2=l2H.Sincewe immediately haveJ1∪J2?J.Furthermore,we have thatJ1∩J2=?.Indeed,ifJ1∩J2?,then there areh1,h2∈Hsuch thatl1h1=l2h2.Asl1l2,it follows thath1h2.Note that

    Thusφ(h1)∩φ(h2)? andh1h2∈H,which contradicts the definition ofH.Hence,J1∩J2=?.

    Letn∈N.Inequality (6.17) implies thatFmn∩H?.Denote that

    Then we define the mapsψi:Tn→Ji(i=1,2) as follows:

    It is easy to see that

    From the definition of the independent set ofJfor A=(U1,U2)(see Definition 2.5 and Definition 2.6),we get that

    Moreover,for eachg∈Tn,sinceGis abelian,one has that

    Combining this with 6.18 and withGbeing an Abelian group,we get that

    Therefore,we obtain that,for eachg∈Tn,

    Recall thatd(U1,U2)>2δ0.Hence,one has

    Therefore,we have

    Denote that

    Since{Fn}n∈Nis a F?lner sequence of the Abelian groupG,F(xiàn)′is also a F?lner sequence ofG.Inequality (6.22) shows that

    Meanwhile,the above inequality implies thatl1x0l2x0.

    Recall that,from (6.12) and (6.11),

    This contradicts inequality (6.10).Hence we obtain that

    Recall that E denotes the set of all Weyl-mean equicontinuous points of the group action system (X,G).From Proposition 4.6,we know that

    By (6.25) and (6.26),we get

    Therefore,x0is not a Weyl-mean equicontinuous point ofGX.Therefore,x0is a Weylmean sensitive point ofGX.By the assumption thatGXis transitive and Proposition 5.4,we deduce thatGXis Weyl-mean sensitive.

    Hence,the theorem is proved. □

    Proof of Theorem 1.1The proof follows from Theorem 6.6,Theorem 5.5,Theorem 3.2 and Theorem 4.3. □

    7 An Application

    In order to get our result,we need to establish the following concepts and theorems:

    Definition 7.1([21]) By a p.m.p.(probability-measure-preserving) action ofG,we mean an action ofGon a standard probability space (X,μ) by measure-preserving transformations.In this case,we will combine the notation and simply writeG(X,μ).

    Given an actionGXon a compact metric spaceX,we say that a setA?XisGinvariant ifGA=A,which is equivalent toGA?A.When the action is probability-measure preserving andAis a measurable set,we interpretG-invariance to mean thatGA=Amodulo a null set,i.e.,μ(sA△A)=0 for alls∈G.

    Definition 7.2([21]) The actionG(X,μ) is said to be ergodic ifμ(A)=0 or 1 for everyG-invariant measurable setA?X.

    Any dynamical system with an amenable group action admits invariant probability measures and the ergodic measures can be shown to be the extremal points of the set of invariant probability measures (see,for example,the monographs[7,25]).Let M (X),MG(X) and M(X) denote the sets of all Borel probability measures onX,theG-invariant regular Borel probability measures onX,and the ergodic measures in MG(X),respectively.

    Proposition 7.3([21,Proposition 2.5]) For a p.m.p.actionG(X,μ),the following are equivalent:

    1.the action is ergodic;

    2.μ(A)=0 or 1 for every measurable setA?XsatisfyingsA=Afor alls∈G(i.e.,G-invariance in the strict sense);

    3.for all setsA,B?Xof positive measure,there is ans∈Gsuch thatμ(sA∩B)>0.

    Now,we recall the concept of amenable measure entropy (see[16]and[21]).

    LetGbe a amenable group and letG(X,μ) be a p.m.p.action.Let

    be a finite partition ofXand letFbe a nonempty finite subset ofG.Setting PFfor the join

    whereFranges over nonempty finite subsets ofGand

    The entropy of the actionG(X,μ) is

    where P ranges over all finite partitions ofX.

    The support of a measureμ∈M (X),denoted by supp (μ),is the smallest closed subsetCofXsuch thatμ(C)=1(see[23]);that is,

    The following fact is well known:

    Fact 7.4We have that

    Topological entropy is related to measure entropy by the variational principle which asserts that for a continuous map on a compact metric space,the topological entropy equals the supremum of the measure entropy taken over all the invariant probability measures.The following is a statement of the variational principle of the version of the amenable group action that we need in this paper:

    Theorem 7.5([19,Theorem 5.2]) (Variational principle of topological entropy) LetGbe an amenable group and letXbe a compact metric space.Then

    As an application of our main result,we have

    Theorem 7.6LetGbe a countable Abelian group,letXbe a compact metric space,and letGXbe a continuous action.IfGXis Banach-mean equicontinuous,then

    ProofLetμbe an ergodic invariant measure on the actionGX.Denote byX0=supp (μ) the support of the ergodic invariant measureμ.It is clear thatX0is aG-invariant closed subset ofXand thatG(X0,μ) is also ergodic.Moreover,we have thathμ(X,G)=hμ(X0,G).

    In what follows we show thathμ(X0,G)=0.

    LetU,Vbe any pair nonempty open sets ofX0.Thenμ(U)μ(V)>0,on account of supp (μ)=X0and Fact 7.4.Thus there is an elements∈Gsuch thatμ(U∩sV)>0 on account ofG(X0,μ) being ergodic and Proposition 7.3;that is,

    Note thatX0is a compact metric space.Hence the actionGX0is topological transitive.

    Now we divide things into two cases to complete our proof.

    Case 1X0has no isolated points.

    SinceGXis Banach-mean equicontinuous,it is clear thatGX0is also Banach-mean equicontinuous.By Theorem 1.1 and becauseX0has no isolated points,we get that

    Note thatμ|X0is an ergodic measure ofGX0.Then,by Theorem 7.5,we obtain that

    Therefore,we have that

    Recall thatμbe any ergodic invariant measure on the actionGX.Again applying Theorem 7.5,we deduce that

    Case 2X0has isolated points.

    Suppose thatx0∈X0is an isolated point ofX0,so the single point set{x0}is an open set ofX0.LetV?X0be any open set.Since the actionGX0is topological transitive,there iss∈Gsuch thatsx0∈V.This fact implies that the orbit ofx0is dense inX0;that is,

    Note thatx0∈supp (μ) and that the single point set{x0}is an open set.Thus one hasμ({x0})>0.Sinceμ(X0)=1,we deduce that the cardinality of the setGx0is finite (i.e.,|Gx0|<∞).Combining this withwe get that the cardinality of the spaceX0is finite (i.e.,|X0|<∞).By the definition of topological entropy,it is easy to see that

    In what follows,with an argument similar to that in Case 1,we can obtain that

    Hence the theorem is proved. □

    AcknowledgementsThe authors are very grateful to Prof.Hanfeng Li and Prof.Jian Li for their generous sharing of knowledge about the topic.

    猜你喜歡
    朱斌
    憋住的屁到哪去了
    “愚公移山”新篇
    “斗雞眼”
    碎石神掌
    “愚公移山”新篇
    抓人眼球
    呆頭農(nóng)場(chǎng)
    呆頭農(nóng)場(chǎng)
    呆頭農(nóng)場(chǎng)
    呆頭農(nóng)場(chǎng)
    国产高清有码在线观看视频| 亚洲av成人av| 汤姆久久久久久久影院中文字幕 | 在现免费观看毛片| 一区二区三区四区激情视频| 97在线视频观看| 97超视频在线观看视频| 亚洲一级一片aⅴ在线观看| 亚州av有码| 国产欧美另类精品又又久久亚洲欧美| 男女下面进入的视频免费午夜| 看非洲黑人一级黄片| 黄片wwwwww| 成人国产麻豆网| 亚洲av.av天堂| av又黄又爽大尺度在线免费看 | 青青草视频在线视频观看| 久久久久久久午夜电影| 少妇的逼好多水| 爱豆传媒免费全集在线观看| 久久久久久久久久黄片| 国产一区亚洲一区在线观看| 亚洲精品乱久久久久久| 亚洲18禁久久av| 99久久精品热视频| 免费av毛片视频| 男女下面进入的视频免费午夜| 久久久亚洲精品成人影院| 亚洲欧美精品自产自拍| 国产午夜福利久久久久久| 国产精品一区二区在线观看99 | 三级毛片av免费| 1024手机看黄色片| 亚洲av免费高清在线观看| 国产成人a∨麻豆精品| 亚洲av熟女| 天天躁日日操中文字幕| 免费观看人在逋| 九九热线精品视视频播放| 一级二级三级毛片免费看| 日韩欧美三级三区| 亚洲av福利一区| 长腿黑丝高跟| 亚洲av男天堂| 国产黄a三级三级三级人| 青青草视频在线视频观看| 激情 狠狠 欧美| 一区二区三区四区激情视频| 国产精品久久久久久av不卡| 狠狠狠狠99中文字幕| 一二三四中文在线观看免费高清| 最近中文字幕高清免费大全6| 亚洲欧美日韩卡通动漫| 成人午夜高清在线视频| 日韩av在线大香蕉| 丝袜美腿在线中文| 六月丁香七月| 99久久无色码亚洲精品果冻| 欧美xxxx黑人xx丫x性爽| 一区二区三区免费毛片| 久久韩国三级中文字幕| 亚洲aⅴ乱码一区二区在线播放| 好男人视频免费观看在线| 插阴视频在线观看视频| 春色校园在线视频观看| 国产片特级美女逼逼视频| 人妻少妇偷人精品九色| 国产乱来视频区| 国产一级毛片在线| 久久精品国产鲁丝片午夜精品| 又爽又黄a免费视频| 日韩视频在线欧美| 成人美女网站在线观看视频| 一级毛片aaaaaa免费看小| 国产午夜精品一二区理论片| 久久精品熟女亚洲av麻豆精品 | 好男人在线观看高清免费视频| 熟女人妻精品中文字幕| 成人无遮挡网站| 国产精品熟女久久久久浪| 麻豆成人午夜福利视频| 桃色一区二区三区在线观看| 嘟嘟电影网在线观看| 国产91av在线免费观看| 久久人妻av系列| 亚洲在线自拍视频| 精品久久久久久久久久久久久| 男女那种视频在线观看| 久久久久久久国产电影| 国产在视频线精品| 欧美zozozo另类| 天天躁日日操中文字幕| 亚洲va在线va天堂va国产| 18禁裸乳无遮挡免费网站照片| 亚洲欧美清纯卡通| 在线免费十八禁| 中文字幕精品亚洲无线码一区| 国产精品一区www在线观看| 日韩一区二区三区影片| 欧美丝袜亚洲另类| 99热这里只有是精品在线观看| 人妻少妇偷人精品九色| 亚洲欧美清纯卡通| 乱码一卡2卡4卡精品| 日韩中字成人| 男人舔女人下体高潮全视频| 亚洲怡红院男人天堂| 久久久成人免费电影| 黑人高潮一二区| 国产精品,欧美在线| 成年女人永久免费观看视频| 变态另类丝袜制服| 国产亚洲最大av| 久久久久久久午夜电影| 一级二级三级毛片免费看| 精品免费久久久久久久清纯| 91久久精品国产一区二区成人| 一二三四中文在线观看免费高清| 最近手机中文字幕大全| 成人性生交大片免费视频hd| 99热全是精品| 成人亚洲精品av一区二区| 久久精品久久久久久久性| 国产精品爽爽va在线观看网站| 国产精品野战在线观看| 有码 亚洲区| 乱码一卡2卡4卡精品| 一区二区三区四区激情视频| 国产不卡一卡二| 亚洲怡红院男人天堂| 亚洲欧洲日产国产| 欧美性猛交╳xxx乱大交人| 我要搜黄色片| 亚洲欧美日韩卡通动漫| 午夜老司机福利剧场| 国产中年淑女户外野战色| 桃色一区二区三区在线观看| 蜜桃久久精品国产亚洲av| 男女那种视频在线观看| 久久久久久久久久成人| 波野结衣二区三区在线| 欧美精品一区二区大全| 免费看a级黄色片| 看非洲黑人一级黄片| 在线免费观看的www视频| 18禁在线播放成人免费| 亚洲最大成人手机在线| 乱系列少妇在线播放| 亚洲国产成人一精品久久久| 亚洲精品一区蜜桃| 啦啦啦韩国在线观看视频| 久久精品熟女亚洲av麻豆精品 | 男人和女人高潮做爰伦理| 亚洲欧美精品综合久久99| kizo精华| 神马国产精品三级电影在线观看| 有码 亚洲区| 亚洲va在线va天堂va国产| 九九爱精品视频在线观看| 黄色一级大片看看| 亚洲欧美日韩无卡精品| 久久精品国产自在天天线| 国产精品一区二区三区四区久久| 九九热线精品视视频播放| 亚洲av一区综合| 97热精品久久久久久| 午夜精品在线福利| 成年免费大片在线观看| 成年av动漫网址| 日韩欧美在线乱码| 亚洲经典国产精华液单| 国产三级中文精品| 日韩制服骚丝袜av| 国产高清视频在线观看网站| 国产视频首页在线观看| 亚洲精品影视一区二区三区av| 成人性生交大片免费视频hd| 免费黄网站久久成人精品| 一级爰片在线观看| 两性午夜刺激爽爽歪歪视频在线观看| 免费观看在线日韩| 午夜福利在线在线| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 91在线精品国自产拍蜜月| 精品一区二区三区视频在线| 国产精品久久久久久久久免| 十八禁国产超污无遮挡网站| 国产毛片a区久久久久| 日韩欧美 国产精品| 亚洲av.av天堂| 中文字幕熟女人妻在线| 国产人妻一区二区三区在| 99久久成人亚洲精品观看| 亚洲无线观看免费| 最近中文字幕2019免费版| 亚洲自拍偷在线| 99在线人妻在线中文字幕| 嫩草影院入口| 亚洲欧美日韩高清专用| 久热久热在线精品观看| 欧美一级a爱片免费观看看| 亚洲国产精品合色在线| 一区二区三区高清视频在线| 日韩精品有码人妻一区| 狂野欧美激情性xxxx在线观看| 六月丁香七月| 中文字幕精品亚洲无线码一区| 国产av一区在线观看免费| 国产亚洲精品av在线| 日韩欧美 国产精品| 久久久成人免费电影| 欧美性猛交╳xxx乱大交人| 亚洲va在线va天堂va国产| 韩国av在线不卡| 中文在线观看免费www的网站| 夜夜爽夜夜爽视频| 国产精品1区2区在线观看.| 亚洲成人精品中文字幕电影| 亚洲内射少妇av| 亚洲五月天丁香| 亚洲人与动物交配视频| 亚洲天堂国产精品一区在线| 大香蕉久久网| 日本五十路高清| 久久久久久久久大av| 日韩成人av中文字幕在线观看| 亚洲人与动物交配视频| 乱码一卡2卡4卡精品| 亚洲欧美日韩东京热| 久久久久久九九精品二区国产| 菩萨蛮人人尽说江南好唐韦庄 | 亚洲欧美中文字幕日韩二区| 亚洲一区高清亚洲精品| 国产日韩欧美在线精品| 欧美激情久久久久久爽电影| 22中文网久久字幕| 日本黄色片子视频| 国产高清三级在线| 中文字幕av在线有码专区| 欧美区成人在线视频| av国产免费在线观看| 欧美性感艳星| 国产人妻一区二区三区在| 最近最新中文字幕大全电影3| 国产伦理片在线播放av一区| 身体一侧抽搐| 亚洲乱码一区二区免费版| 长腿黑丝高跟| 一区二区三区乱码不卡18| 国产v大片淫在线免费观看| 亚洲欧美成人精品一区二区| 成年女人看的毛片在线观看| 久久精品夜夜夜夜夜久久蜜豆| 男女边吃奶边做爰视频| 日韩欧美精品免费久久| 女人被狂操c到高潮| 免费人成在线观看视频色| 美女脱内裤让男人舔精品视频| 黄片无遮挡物在线观看| 国产亚洲91精品色在线| 一区二区三区免费毛片| 99久国产av精品| 成人午夜精彩视频在线观看| 亚洲电影在线观看av| 亚洲av成人精品一二三区| 亚洲av熟女| 免费看av在线观看网站| 中文字幕av在线有码专区| 免费观看在线日韩| 九九久久精品国产亚洲av麻豆| 日本av手机在线免费观看| 麻豆精品久久久久久蜜桃| 精品久久久噜噜| 亚洲成人av在线免费| www日本黄色视频网| 一级毛片电影观看 | 国产一级毛片在线| 中国美白少妇内射xxxbb| 国产三级中文精品| 国产av不卡久久| 99久国产av精品国产电影| 国产在视频线在精品| 高清视频免费观看一区二区 | 日本-黄色视频高清免费观看| 精品久久久久久久久亚洲| 淫秽高清视频在线观看| 精品一区二区三区视频在线| 观看免费一级毛片| 久久久久国产网址| 人人妻人人澡欧美一区二区| 国产一区二区亚洲精品在线观看| 日韩欧美精品免费久久| 亚洲精品456在线播放app| 中文资源天堂在线| 蜜臀久久99精品久久宅男| 97在线视频观看| 成人av在线播放网站| 国产日韩欧美在线精品| 成年女人看的毛片在线观看| 久久99热这里只有精品18| 91久久精品国产一区二区成人| 久久草成人影院| 尾随美女入室| ponron亚洲| 欧美精品国产亚洲| 性插视频无遮挡在线免费观看| 欧美极品一区二区三区四区| 不卡视频在线观看欧美| 日韩av在线免费看完整版不卡| 久久久精品欧美日韩精品| 午夜精品在线福利| 男女那种视频在线观看| 插逼视频在线观看| 最近最新中文字幕免费大全7| 岛国在线免费视频观看| 啦啦啦啦在线视频资源| 国产伦一二天堂av在线观看| 黄片无遮挡物在线观看| 国产精品精品国产色婷婷| 午夜爱爱视频在线播放| 中文字幕人妻熟人妻熟丝袜美| 一个人看的www免费观看视频| 97人妻精品一区二区三区麻豆| 日本爱情动作片www.在线观看| 99热6这里只有精品| a级一级毛片免费在线观看| 人妻夜夜爽99麻豆av| 少妇的逼好多水| 中文乱码字字幕精品一区二区三区 | 国产女主播在线喷水免费视频网站 | 亚洲第一区二区三区不卡| 亚洲自偷自拍三级| 在线免费观看不下载黄p国产| 91精品一卡2卡3卡4卡| 人人妻人人澡欧美一区二区| 一二三四中文在线观看免费高清| 别揉我奶头 嗯啊视频| 亚洲国产高清在线一区二区三| 爱豆传媒免费全集在线观看| 久久久久网色| 中文资源天堂在线| 3wmmmm亚洲av在线观看| 男女视频在线观看网站免费| 精品人妻一区二区三区麻豆| 麻豆久久精品国产亚洲av| 国产亚洲最大av| 亚洲av电影不卡..在线观看| 精品不卡国产一区二区三区| 久久精品影院6| 国产乱来视频区| 99久久九九国产精品国产免费| 99热网站在线观看| 午夜精品在线福利| kizo精华| 少妇丰满av| 日韩高清综合在线| 亚洲在线自拍视频| 又粗又爽又猛毛片免费看| 国产亚洲精品久久久com| 18+在线观看网站| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 日韩一区二区视频免费看| 国产精品福利在线免费观看| 91久久精品国产一区二区成人| 国产大屁股一区二区在线视频| 欧美又色又爽又黄视频| 免费看美女性在线毛片视频| 婷婷色av中文字幕| 国产精品一区二区在线观看99 | 亚洲欧美精品自产自拍| 国国产精品蜜臀av免费| 三级国产精品片| 成年版毛片免费区| 日韩欧美三级三区| 人妻系列 视频| 国产高清不卡午夜福利| 国产亚洲91精品色在线| 国产精品一二三区在线看| 三级经典国产精品| 国产精品一区二区三区四区久久| 亚洲欧美一区二区三区国产| 国产精品99久久久久久久久| 精品久久久久久电影网 | 美女脱内裤让男人舔精品视频| 麻豆国产97在线/欧美| 免费看日本二区| 中文亚洲av片在线观看爽| 男女国产视频网站| 女的被弄到高潮叫床怎么办| 亚洲国产高清在线一区二区三| 亚洲欧洲日产国产| 18禁动态无遮挡网站| 国内精品一区二区在线观看| 国产成年人精品一区二区| 亚洲一区高清亚洲精品| 一个人看的www免费观看视频| 久久精品影院6| 亚洲精品456在线播放app| 精品熟女少妇av免费看| 国产精品精品国产色婷婷| 国产综合懂色| 日韩精品青青久久久久久| 毛片一级片免费看久久久久| 午夜精品一区二区三区免费看| 亚洲欧美日韩无卡精品| 最近手机中文字幕大全| 尾随美女入室| 一本色道久久久久久精品综合| 一边摸一边做爽爽视频免费| 国产免费现黄频在线看| www.熟女人妻精品国产 | 日韩伦理黄色片| 五月天丁香电影| 女人久久www免费人成看片| 午夜激情久久久久久久| 国产成人欧美| 高清黄色对白视频在线免费看| 日本av手机在线免费观看| tube8黄色片| 黄片无遮挡物在线观看| 久久国内精品自在自线图片| 熟女av电影| 我的女老师完整版在线观看| 一级黄片播放器| 色94色欧美一区二区| 男女高潮啪啪啪动态图| 丝瓜视频免费看黄片| 母亲3免费完整高清在线观看 | 各种免费的搞黄视频| 韩国高清视频一区二区三区| 九九在线视频观看精品| 丰满乱子伦码专区| av在线app专区| 国产黄频视频在线观看| 成人无遮挡网站| 亚洲人成网站在线观看播放| 日本vs欧美在线观看视频| 久久精品久久久久久久性| 日本-黄色视频高清免费观看| 日本爱情动作片www.在线观看| 亚洲三级黄色毛片| av免费观看日本| av女优亚洲男人天堂| 亚洲国产日韩一区二区| 欧美国产精品一级二级三级| 精品酒店卫生间| 一级爰片在线观看| 国产一区二区在线观看日韩| 国产精品99久久99久久久不卡 | 久久午夜福利片| 国产成人午夜福利电影在线观看| 一本—道久久a久久精品蜜桃钙片| 黄网站色视频无遮挡免费观看| 国产成人精品久久久久久| 国产1区2区3区精品| 青春草视频在线免费观看| 菩萨蛮人人尽说江南好唐韦庄| a级毛色黄片| 国产有黄有色有爽视频| 青青草视频在线视频观看| 精品视频人人做人人爽| 亚洲美女视频黄频| 成人二区视频| 人成视频在线观看免费观看| 91精品伊人久久大香线蕉| 尾随美女入室| 午夜激情久久久久久久| 十八禁高潮呻吟视频| 91aial.com中文字幕在线观看| 国产精品久久久久久精品电影小说| 看十八女毛片水多多多| 精品第一国产精品| 亚洲第一av免费看| 亚洲美女视频黄频| 国产69精品久久久久777片| 肉色欧美久久久久久久蜜桃| 久久99热这里只频精品6学生| 欧美变态另类bdsm刘玥| 一本—道久久a久久精品蜜桃钙片| 国产欧美日韩一区二区三区在线| 丝袜人妻中文字幕| 亚洲精品日本国产第一区| 成人亚洲欧美一区二区av| 看免费av毛片| 国产精品国产av在线观看| 亚洲av福利一区| 精品亚洲乱码少妇综合久久| 男人操女人黄网站| 亚洲精品第二区| 好男人视频免费观看在线| 亚洲精品一二三| 多毛熟女@视频| 国产又爽黄色视频| 桃花免费在线播放| 黑人巨大精品欧美一区二区蜜桃 | 一边摸一边做爽爽视频免费| 男的添女的下面高潮视频| 日韩免费高清中文字幕av| 成人亚洲精品一区在线观看| 观看美女的网站| 少妇被粗大的猛进出69影院 | 又黄又粗又硬又大视频| 日本黄色日本黄色录像| 黑人欧美特级aaaaaa片| 亚洲人成网站在线观看播放| 少妇的丰满在线观看| 亚洲精品一区蜜桃| 成人黄色视频免费在线看| 亚洲精品成人av观看孕妇| 国产成人精品无人区| av电影中文网址| 人体艺术视频欧美日本| 毛片一级片免费看久久久久| 国产毛片在线视频| 日本猛色少妇xxxxx猛交久久| 久久久国产欧美日韩av| 搡女人真爽免费视频火全软件| 999精品在线视频| 免费高清在线观看视频在线观看| av女优亚洲男人天堂| 永久网站在线| av国产久精品久网站免费入址| 国产欧美亚洲国产| 久久热在线av| 欧美老熟妇乱子伦牲交| 国产国拍精品亚洲av在线观看| 欧美精品高潮呻吟av久久| 国产精品秋霞免费鲁丝片| 亚洲精品国产av蜜桃| 一区在线观看完整版| 亚洲五月色婷婷综合| 一级,二级,三级黄色视频| 国内精品宾馆在线| 中国美白少妇内射xxxbb| 日韩制服骚丝袜av| 天天躁夜夜躁狠狠躁躁| 边亲边吃奶的免费视频| 久久99热这里只频精品6学生| 久久久久久久久久成人| 欧美性感艳星| 熟女av电影| 久久影院123| 国产精品国产av在线观看| 国国产精品蜜臀av免费| 一区二区日韩欧美中文字幕 | 国产精品一区www在线观看| 亚洲av日韩在线播放| 免费日韩欧美在线观看| 亚洲欧美一区二区三区黑人 | 久久久久网色| 成人毛片60女人毛片免费| 热99国产精品久久久久久7| 欧美日韩一区二区视频在线观看视频在线| 久久韩国三级中文字幕| av有码第一页| 高清不卡的av网站| 黄色配什么色好看| 久久 成人 亚洲| 亚洲精品美女久久久久99蜜臀 | 天美传媒精品一区二区| 99re6热这里在线精品视频| 中文字幕最新亚洲高清| 午夜福利,免费看| 亚洲国产精品一区三区| 伦精品一区二区三区| 国产综合精华液| 精品人妻熟女毛片av久久网站| 人人澡人人妻人| a级片在线免费高清观看视频| 午夜激情久久久久久久| 中文字幕免费在线视频6| 日韩av在线免费看完整版不卡| 中文字幕av电影在线播放| 久久精品熟女亚洲av麻豆精品| 亚洲天堂av无毛| 国产精品一区www在线观看| 成人免费观看视频高清| 在线观看三级黄色| 久久精品久久久久久久性| 日本免费在线观看一区| av不卡在线播放| 国产精品久久久久久久电影| 性色avwww在线观看| 久久久国产精品麻豆| 热re99久久国产66热| 插逼视频在线观看| 曰老女人黄片| 亚洲精品自拍成人| 黄网站色视频无遮挡免费观看| 如日韩欧美国产精品一区二区三区| 如何舔出高潮| 精品一区二区免费观看| tube8黄色片| 91久久精品国产一区二区三区| 在线精品无人区一区二区三| 久久久久久久精品精品| 亚洲久久久国产精品| 国产av国产精品国产| 老司机影院毛片| 老司机亚洲免费影院| 18在线观看网站| 999精品在线视频| 搡女人真爽免费视频火全软件| 久久久a久久爽久久v久久| 国产国拍精品亚洲av在线观看| 午夜视频国产福利| 最近中文字幕高清免费大全6| 成人亚洲欧美一区二区av| 日本欧美国产在线视频| 日韩一本色道免费dvd| 免费看av在线观看网站| 日韩精品有码人妻一区| tube8黄色片| 男女高潮啪啪啪动态图| 在线精品无人区一区二区三|