• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    ABSOLUTE MONOTONICITY INVOLVING THE COMPLETE ELLIPTIC INTEGRALS OF THE FIRSTKIND WITH APPLICATIONS*

    2022-06-25 02:11:42ZhenhangYANG楊鎮(zhèn)杭

    Zhenhang YANG (楊鎮(zhèn)杭)

    Engineering Research Center of Intelligent Computing for Complex Energy Systems of Ministry of Education,North China Electric Power University,Baoding 071003,China Zhejiang Society for Electric Power,Hangzhou 310014,China

    E-mail:yzhkm@163.com

    Jingfeng TIAN (田景峰)?

    Department of Mathematics and Physics,North China Electric Power University,Baoding 071003,China

    E-mail:tianjf@ncepu.edu.cn;tianjfhxm_ncepu@163.com

    Abstract Let K (r) be the complete elliptic integrals of the first kind for r∈(0,1) and Using the recurrence method,we find the necessary and sufficient conditions for the functions (i=1,2,3) to be absolutely monotonic on (0,1).As applications,we establish some new bounds for the ratios and the product of two complete integrals of the first kind,including the double inequalities for r∈(0,1) and p≥13/32,where and θp=2Γ(3/4)4/π2-p.

    Key words Complete elliptic integrals of the first kind;absolute monotonicity;hypergeometric series;recurrence method;inequality

    1 Introduction

    For real numbersa,bandc,with-N∪{0},the Gaussian hypergeometric function is defined as

    forx∈(-1,1),where (a)ndenotes Pochhammer symbol defined by

    forn∈N and (a)0=1 fora0;here(x>0) is the gamma function (see[1,2]).In particular,the functionF(a,b;a+b;x) is called a zero-balanced hypergeometric function[3–5].

    The hypergeometric functionF(a;b;c;x) has the simple differentiation formula

    The behavior of the hypergeometric function close tox=1 is given by[6,Equations (15.1.20),(15.3.3),and (15.3.10)]

    andψ(z)=?!?z)/Γ(z),Re (z)>0 is the psi function,andγis the Euler-Mascheroni constant.

    The complete elliptic integrals K (r) and E (r) of the first and second kind are defined on (0,1) by

    respectively (see[7]).They can also be expressed in terms of the Gaussian hypergeometric function as

    Using the asymptotic formula of (1.2),we have

    A functionfis called absolutely monotonic on the intervalIif it has nonnegative derivatives of all orders in the region;that is,

    A functionfis called completely monotonic onIif it has a derivative of any order onIand satisfies that

    (see[28]).For an even functionfdefined on (-a,a)(a>0),iffis absolutely monotonic on (0,a),then it is completely monotonic on (-a,0),and vice versa.

    In 1990,Anderson,Vamanamurthy and Vuorinen[29,Theorem 2.2]showed that the function(r) is strictly decreasing from (0,1) onto (0,π/2);a generalization of this was presented in[30,Theorem 1.7].In[31],the authors further proved that the functionr(r′)cK (r) is decreasing and concave ifc∈[1/2,2].Yang[32,Proposition]pointed out that the Macruain series of (r′)cK (r) has negative coefficients after a constant term ifc∈[1/2,2](instead of[0,1/2],it is clearly a typo there),without a strict proof.Recently,Richards[33,Lemma 2.3]claimed that this assertion also holds for the zero-balanced hypergeometric functions.

    Motivated by these results,the first aim of this paper is to improve Proposition 1 in[32,Proposition]as Theorem 1.1,and then to give a strict proof by using the recurrence method.

    Theorem 1.1Let

    The function-is absolutely monotonic on (0,1) if and only if 1/4≤p≤1.

    In 2019,Yang and Tian[34]conjectured that the functionfp(x) is log-concave on (0,1) if and only ifp≥7/32;this was recently proven in[35]by Wang et al.Inspired by this,the second aim of this paper is to study the absolute monotonicity of the function

    Our second result reads as follows:

    Theorem 1.2Let the functionFp(x) be defined on (0,1) by (1.8).Then the following statements are true:

    (i)Fp(x) is absolutely monotonic on (0,1) if and only ifp≤0;

    (ii)-(x) is absolutely monotonic on (0,1) if and only ifp≥1/4;

    (iii)-(x) is absolutely monotonic on (0,1) if and only ifp≥7/32;

    (iv)-(x) is absolutely monotonic on (0,1) if and only ifp≥13/64.

    For convenience,we useWnto denote the Wallis ratio:

    Clearly,Wnhas the following properties:

    (i)Wnsatisfies the recurrence relation

    The rest of this paper is organized as follows:in Section 2,we prove Theorem 1.1 by using the recurrence formula given in[32,Lemma 2].In Section 3,we prove Theorem 1.2 by the recurrence method.As applications,we find,in Section 4,some new properties of ratios of two complete elliptic integrals of the first kind;this improves upon some known results.

    2 Proof of Theorem 1

    The following lemma comes from[32,Lemma 2]by replacing (r,p) by

    Lemma 2.1([32,Lemma 2]) Forp∈R,the functionhas the power series representation

    satisfying the recurrence relationa0=1,a1=1/4-pand

    Before stating and proving the next lemma,we recall a class of special polynomials and their sign rule.A polynomial

    is called an negative-positive-type (NP-type) polynomial ifak≥0 for 0≤k≤nandCorrespondingly,-Pn(x) is called a positive-negative-type (PN-type) polynomial (see[36]).According to the sign rule for the NP-type polynomial (see[37,Lemma 2.2],[38,Lemma 4]),there is a uniquex0>0 such thatPn(x)<0 forx∈(0,x0) andPn(x)>0 forx∈(x0,∞).Consequently,for givenx1>0,ifPn(x1)>0,thenPn(x)>0 for allx∈(x1,∞),and ifPn(x1)<0,thenPn(x)<0 for allx∈(0,x1).

    Lemma 2.2Letan=an(p) be defined on[1/4,1]by (2.2).Then the recurrence relation (2.2) can be written as

    ProofAn elementary transformation yields

    gives (2.6).It remains to check thatξn,ηn>0 forn≥4.Since 1/4≤p≤1,the numerator of the expression ofξnis greater than

    forn≥4.The numerator of the expression ofηn,denoted byln(p),is greater than

    Clearly,l4(p) is a PN-type polynomial,which is positive forp∈[0,1],due to the fact thatl4(1)=1>0.This completes the proof. □

    We now give the proof of Theorem 1.1 by the recurrence method.

    Proof of Theorem 1.1 Necessity.It is easy to see that the first necessary condition isa1≤0;that is,p≥1/4.To obtain the second condition,that isp≤1,we consider the sign of(x) asx→1.It is standard that

    Since(x)<0 forx∈(0,1),we deduce that

    which implies that 0≤p≤1.

    Sufficiency.Suppose that 1/4≤p≤1.A straightforward computation gives that

    We show,by contradiction,thatan≤0 for alln≥1.Assume that there exists a positive term in the sequence{an}n≥1.Then all terms are positive after that.Let the first positive term bean0(n0≥4);that is,an≤0 for 1≤n≤n0-1 andan0>0.We now provean>0 forn≥n0by induction.We first show thatan0+1>0 and

    Due toan0>0,an0-1≤0 andαn0+1,βn0+1,ξn0>0 forn0≥4,and by the recurrence relation (2.3),we obtain that

    Assume thatan>0 forn0+1≤n≤m.We now prove thatan+1>0.Combining the relation (2.6) withξk,ηk>0 fork≥4 andak-1>0 forn0+1≤k≤nyields that

    forn0+1≤n≤m.Thus,an>0 for alln≥n0.It then follows that

    forx∈(0,1).On the other hand,from (2.7),we find thatThis yields a contradiction.Consequently,there is no positive term in the sequence{an}n≥1;that is,an≤0 for alln≥1.This completes the proof. □

    3 Proof of Theorem 1.2

    To prove Theorem 1.2,we first give the power series representation of ln

    Lemma 3.1We have

    withb0=ln (π/2),b1=1/4 and forn≥1,

    or,equivalently,

    ProofWe have

    Lettingx=0 givesb0=ln (π/2).Differentiation yields that

    Using the Cauchy product and comparing the coefficients ofxngives

    which implies (3.1) withb1=1/4.

    Applying the third formula of (1.2) to (3.3),we have that

    Using the Cauchy product and comparing the coefficients ofxnagain gives

    which implies (3.2),thereby completing the proof. □

    For later use,we list the values ofbnforn=2,3,4,5 by using recurrence formula (3.1):

    The following lemma reveals the positivity and monotonicity of the sequence{nbn}n≥1:

    Lemma 3.2Letbnbe defined by (3.1).Then,(i)bn>0 for alln≥0;(ii) the sequence{nbn}n≥1is decreasing with

    Proof(i) By the recurrence relation (3.1),we have that

    Eliminatingfrom relations (3.1) and (3.6) yields that

    It is known thatb0=ln (π/2)>0,b1=1/4>0,and an easy verification yields thatb2=7/64>0,b3=13/192>0.Suppose thatbn>0 for 1≤n≤m.Then,by (3.7),we get at once thatbm+1>0.By induction,the first assertion follows.

    (ii) It suffices to prove thatb′n:=(n+1)bn+1-nbn<0 forn≥1.To this end,we use the recurrence relation (3.2) to get that

    Eliminatingfrom the above two relations,we get that

    An easy verification yields that=-1/32<0,and that=-1/64<0.Suppose that0 for 1≤n≤m.Employing the inductive assumption to relation (3.8),we immediately get thatBy induction,we arrive at0 for alln≥1.

    it follows that 1/π≥ε×∞,which is,evidently,a contradiction. Thus there must bewhich completes the proof. □

    With the aid of Lemmas 3.1 and 3.2,we are able to prove Theorem 1.2.

    Proof of Theorem 1.2WriteFp(x) in the form of a power series:

    It follows from Lemma 3.2 thatFp(x) is absolutely monotonic on (0,1) if and only ifp≤.Similarly,(x) is absolutely monotonic on (0,1) if and only if

    Then,due to the fact thatb1=1/4,b2=7/64 andb3=13/192,the second,third and fourth assertions follow,thereby completing the proof. □

    4 Applications

    As applications of our results,we will establish in this section some new properties of ratios and the product of two complete elliptic integrals of the first kind.

    4.1 Monotonicity and inequalities for the ratio K (r)/K ()

    In 1992,Anderson,Vamanamurthy and Vuorinenet[31,Theorem 3.11]proved that the inequalities

    Recently,Alzer and Richards proved that the double inequality

    is valid forr∈(0,1),with the best constantsα=0 andβ=1/2.In this subsection,we will present several improvements to these above mentioned results.

    Proposition 4.1Ifp≥1/4,then the function

    is absolutely monotonic on (0,1).Therefore,the inequalities

    hold forr∈(0,1).

    ProofUsing power series expansion (3.9),we have that

    This shows that-G0(r) is absolutely monotonic on (0,1).

    The first inequality in (4.3) follows from

    The second follows from-G0(r)>b1=1/4,and the third holds due to a elementary inequalitye-x<1/(1+x) forx>-1.The required proof is completed. □

    Remark 4.2We claim that our inequalities (4.3) are better than (4.1).First,our lower bound in (4.3) is clearly better than that in (4.1).Second,the inequalities

    are obviously valid forr∈(0,1).Third,the inequality

    holds forr∈(0,1),due to

    forr∈(0,1).Therefore,our upper bound in (4.3) is also superior to that in (4.1).

    Proposition 4.3Letp≥13/64.The function

    is strictly increasing from (0,1) onto (1,αp),where

    Consequently,it holds that

    forr∈(0,1),where

    The lower and upper bounds in (4.4) are sharp.

    ProofFrom power series expansion (3.9) we have that

    Since,in view of Lemma 3.2 andthe sequenceis strictly increasing forn≥1,we have that

    forn≥3.Also,it is clear that=p-7/32≥0,and if 13/64≤p<7/32,thenhence,

    We thus arrive at[lnHp(r)]′>0 forr∈(0,1).The desired double inequality follows from the monotonicity ofHp(r) on (0,1),which completes the proof. □

    Remark 4.4We claim that the functionsLp(r) andUp(r),defined by (4.5) and (4.6),are decreasing and increasing,respectively,on R.In fact,differentiation yields that

    forr∈(0,1),where the inequality holds due to the fact that

    Similarly,we can prove that

    forr∈(0,1).Takingp=13/64,7/32,1/4in (4.4),we obtain forr∈(0,1) a chain of inequalities:

    Corollary 4.5LetLp(r) andUp(r) be defined by (4.5) and (4.6),respectively.The inequalities

    hold forr∈(0,1) if and only if 13/64≤p≤5/16.

    Proof Necessity.From the proof of Proposition 4.3,we see that

    wherecn(r) is given in (4.7).Then the necessary conditions for inequalities (4.8) to hold forr∈(0,1) follow from the limit relations

    which implies that 13/64≤p≤5/16.

    Sufficiency.The second and third inequalities of (4.8) follow from Proposition 4.3.Due to the monotonicity ofLp(r) andUp(r) with respect top(shown in Remark 4.4),it suffices to show the inequalities

    forr∈(0,1).Differentiation yields that

    forr∈(0,1).This,together withD1(0)=D2(1)=0,gives thatD1(r)>0 andD2(r)<0 forr∈(0,1),which proves the sufficiency.Thus the proof is completed. □

    Remark 4.6By Proposition 4.3 and the proof of the above corollary,both of the functions lnQ5/16(r) andD1(r) are increasing on (0,1);so is

    This gives a strict proof of Conjecture 3.1(2) in[31].

    Finally,we give a refinement of inequalities (4.2).

    Proposition 4.7The inequalities

    hold forr∈(0,1).

    ProofUsing a power series expansion gives

    where,by Lemma 3.2,the inequality holds due tobn>0 forn≥1.This implies that the second inequality in (4.9) holds forr∈(0,1).The first inequality is clearly valid.Applying the identity

    established in (4.3),we arrive at

    which is the third inequality in (4.9).This completes the proof. □

    Remark 4.8It is easy to check that the inequalities in (4.9) are better than (4.2).

    4.2 Absolutely monotonic and completely monotonic involving the ratio K (r′)/K (r)

    The special function

    forr∈(0,1) is called a modulus of the Grtzsch extreme ring,and it is indispensable in the study of quasiconformal distortion[42,43].

    From Theorem 1.2,we see that the function(x)<0 ifp≥13/64 and(x)>0 ifp≤0.Using Hermite-Hadamard inequality,we have that

    forx∈(0,1) withx1/2 andp≥13/64,which is reversed ifp≤0.By the derivative formulas

    Also,it is known that

    Replacing (x,2p) by(r2,p)in the double inequality (4.11),we obtain

    Proposition 4.9Ifp≥13/32=0.406...,then the double inequality

    holds forr∈(0,1) withwhereθpis given by (4.12).This is reversed ifp≤0.

    From the above proposition,we immediately get

    Corollary 4.10Letμ(r) be defined by (4.10).Ifp≥13/32 andq≤0,then the double inequalities

    hold forr.They are reversed forr

    Furthermore,we have the following interesting conclusion:

    Proposition 4.11Ifp≥13/64,then the function

    is absolutely monotonic on (1/2,1),and completely monotonic on (0,1/2);so is-J0(x).

    ProofUsing the power series expansion (3.9),we have that

    Making a change of variablex=(t+1)/2,namely,t=2x-1∈(-1,1),gn(x) can be expressed as

    Then,(i) In the case ofp≥13/64,by Lemma 3.2,it is seen thatforn≥3.Since(t) is even on (-1,1) and(t) is clearly absolutely monotonic on (0,1),so isgn(x) on (1/2,1).Then(t) is completely monotonic on (-1,0),and so isgn(x) on (0,1/2).It then follows thatJp(x) is absolutely monotonic on (1/2,1) and completely monotonic on (0,1/2).

    (ii) In the case ofp=0,we have that

    Sincebn>0 forn≥1,by Lemma 3.2,clearly,the function-J0(x) has the same higher monotonicity asJp(x) forp≥13/64.Thus the proof is finished. □

    Remark 4.12The complete monotonicity has many applications in the gamma,polygamma functions,as is shown in[44–46],and it seems to be rare in hypergeometric functions;and Proposition 4.11 provides an example of precisely this.

    4.3 Bounds for the product K (r) K (r′)

    It was proven in[31,Corollary 3.13]that,forr∈(0,1),

    Another similar inequality,

    forr∈(0,1),appeared in[34,Corollary 2],whereWe now give a double inequality that arises by Theorem 1.2.

    Proposition 4.13The double inequality

    holds forr∈(0,1) if and only ifp≥7/32 andq≤0,where the equalities hold if and only if

    ProofTheorem 1.2 shows thatis convex on (0,1) ifp≤0 and concave ifp≥7/32.By Jessen inequality,we have that

    which,by lettingx=r2,implies that the double inequality (4.15) holds forr∈(0,1) ifp≥7/32 andq≤0.This completes the proof. □

    Remark 4.14Takingq=0 andp=1/4 in (4.15) yields that

    forr∈(0,1).The upper bound in (4.16) is not comparable with those in (4.13) and (4.14),while the lower bound in (4.16) seems to be a newcomer.

    A functionf:(a,∞)→R is said to be superadditive if

    If-fis superadditive,thenfis said to be subadditive on (a,∞)(see[47]).It is known that every convex functionf:[0,∞)→R satisfies a functional inequality

    by Theorem 1.2 we immediately get

    Proposition 4.15The function

    is superadditive (subadditive) on (0,1) ifp≤0(p≥7/32).Or,equivalently,ifp≥7/32 andq≤0,then

    forx,y,x+y∈(0,1).

    5 Conclusions

    In this paper,we found the necessary and sufficient conditions for the functionsFp(x),(x)(i=1,2,3) to be absolutely monotonic on (0,1) by using the recurrence method.Applying Theorem 1.2,we established some new bounds for the ratios and the product of two complete integrals of the first kind.These new bounds improved upon and refined some known results.

    亚洲国产精品999在线| 91久久精品电影网| 熟女电影av网| 波多野结衣高清无吗| 91av网一区二区| 婷婷六月久久综合丁香| 窝窝影院91人妻| 桃红色精品国产亚洲av| 欧美日韩福利视频一区二区| 一级黄片播放器| eeuss影院久久| 午夜福利高清视频| 国内久久婷婷六月综合欲色啪| 啦啦啦观看免费观看视频高清| 国内精品一区二区在线观看| 欧美三级亚洲精品| 99久久久亚洲精品蜜臀av| 亚洲一区二区三区不卡视频| 老司机福利观看| 午夜精品在线福利| 久久婷婷人人爽人人干人人爱| 搡老岳熟女国产| 无遮挡黄片免费观看| 最好的美女福利视频网| 午夜免费成人在线视频| 国产av在哪里看| 午夜福利在线在线| 深夜a级毛片| 久久精品久久久久久噜噜老黄 | 蜜桃亚洲精品一区二区三区| 热99re8久久精品国产| 午夜激情欧美在线| 国产精品久久久久久久久免 | 欧美区成人在线视频| 少妇被粗大猛烈的视频| 老鸭窝网址在线观看| 精品午夜福利视频在线观看一区| 久久久久国产精品人妻aⅴ院| 国内精品美女久久久久久| 国产精品一区二区性色av| 99精品在免费线老司机午夜| 国产av麻豆久久久久久久| a级一级毛片免费在线观看| 精品一区二区三区av网在线观看| 尤物成人国产欧美一区二区三区| 亚洲第一电影网av| 亚洲人成网站高清观看| av黄色大香蕉| 91麻豆av在线| 又爽又黄a免费视频| 午夜久久久久精精品| 国产探花在线观看一区二区| 国内精品久久久久精免费| 国产av麻豆久久久久久久| 中文字幕av在线有码专区| 欧美乱色亚洲激情| 熟女电影av网| 九色成人免费人妻av| 成年人黄色毛片网站| 国产又黄又爽又无遮挡在线| 身体一侧抽搐| 国产国拍精品亚洲av在线观看| 欧美乱妇无乱码| 级片在线观看| 久久久久久九九精品二区国产| 亚洲av成人av| 亚洲人成电影免费在线| 真实男女啪啪啪动态图| 我的老师免费观看完整版| 美女高潮喷水抽搐中文字幕| 成年人黄色毛片网站| 亚洲在线观看片| 亚洲精品在线美女| 久久久久久国产a免费观看| 精品熟女少妇八av免费久了| 91狼人影院| 日本与韩国留学比较| 国产精品精品国产色婷婷| 免费在线观看亚洲国产| 搡老熟女国产l中国老女人| 全区人妻精品视频| 床上黄色一级片| av女优亚洲男人天堂| 啦啦啦韩国在线观看视频| 三级国产精品欧美在线观看| 淫秽高清视频在线观看| 99久国产av精品| 免费av观看视频| 在线a可以看的网站| 亚洲精品亚洲一区二区| 亚洲精华国产精华精| 色视频www国产| 可以在线观看毛片的网站| 一级黄色大片毛片| 一进一出抽搐gif免费好疼| 男女做爰动态图高潮gif福利片| 亚洲最大成人av| 日韩欧美精品免费久久 | 国产黄片美女视频| 亚洲自拍偷在线| 国产精品爽爽va在线观看网站| 制服丝袜大香蕉在线| 18禁黄网站禁片午夜丰满| 精品日产1卡2卡| 日日摸夜夜添夜夜添小说| 国产av麻豆久久久久久久| 18禁在线播放成人免费| 偷拍熟女少妇极品色| 亚洲欧美日韩卡通动漫| 在线免费观看不下载黄p国产 | 99精品久久久久人妻精品| 日韩欧美在线二视频| 黄色日韩在线| 亚洲中文字幕日韩| 欧美一区二区精品小视频在线| 又粗又爽又猛毛片免费看| 免费电影在线观看免费观看| av在线天堂中文字幕| 90打野战视频偷拍视频| 欧美成人a在线观看| 久久久久性生活片| 亚洲三级黄色毛片| 亚洲精品一卡2卡三卡4卡5卡| 99国产极品粉嫩在线观看| 精品午夜福利在线看| 国产精品一区二区三区四区久久| 午夜福利免费观看在线| 午夜福利在线观看吧| 国产69精品久久久久777片| 怎么达到女性高潮| 国产黄片美女视频| 一级a爱片免费观看的视频| 国产精品一及| 观看美女的网站| 能在线免费观看的黄片| 国产大屁股一区二区在线视频| 亚洲,欧美,日韩| 国产一区二区三区视频了| 一级a爱片免费观看的视频| 天堂√8在线中文| 啪啪无遮挡十八禁网站| 桃红色精品国产亚洲av| 可以在线观看的亚洲视频| 久久久久精品国产欧美久久久| 人人妻人人看人人澡| 久久久久久久久久成人| 午夜福利18| 18禁黄网站禁片免费观看直播| 亚洲国产欧洲综合997久久,| 日韩亚洲欧美综合| 老司机福利观看| 久久久久久久久中文| 午夜两性在线视频| 亚洲真实伦在线观看| 久久久久性生活片| 国产伦一二天堂av在线观看| 日韩免费av在线播放| 精品久久久久久久久亚洲 | 天堂√8在线中文| a在线观看视频网站| 成人鲁丝片一二三区免费| 蜜桃久久精品国产亚洲av| 美女被艹到高潮喷水动态| 国产视频一区二区在线看| 黄色女人牲交| 国产黄色小视频在线观看| 亚洲人成伊人成综合网2020| 精品久久久久久成人av| 色5月婷婷丁香| 国产一级毛片七仙女欲春2| 国产男靠女视频免费网站| 久久99热这里只有精品18| 国产一区二区在线av高清观看| 免费搜索国产男女视频| 日韩有码中文字幕| 欧美高清性xxxxhd video| 亚洲中文日韩欧美视频| 精品一区二区三区人妻视频| 亚洲自拍偷在线| 久久久久久大精品| 夜夜爽天天搞| 久久精品国产99精品国产亚洲性色| 免费人成在线观看视频色| 99视频精品全部免费 在线| 免费av毛片视频| 啪啪无遮挡十八禁网站| 国产色婷婷99| 国产精品av视频在线免费观看| 麻豆成人午夜福利视频| 亚洲av五月六月丁香网| 欧美黑人欧美精品刺激| 特大巨黑吊av在线直播| 久久精品人妻少妇| 禁无遮挡网站| 亚洲无线观看免费| 久久久久久久久大av| 日韩有码中文字幕| 熟女电影av网| 51午夜福利影视在线观看| 国产在视频线在精品| 精品人妻偷拍中文字幕| 桃红色精品国产亚洲av| 又黄又爽又免费观看的视频| 一个人免费在线观看的高清视频| 又黄又爽又刺激的免费视频.| 午夜免费成人在线视频| 在现免费观看毛片| 国产乱人伦免费视频| 亚洲熟妇熟女久久| 国产v大片淫在线免费观看| 成年女人看的毛片在线观看| 丝袜美腿在线中文| 搡老熟女国产l中国老女人| 久久久久久久久大av| x7x7x7水蜜桃| 女同久久另类99精品国产91| 舔av片在线| 尤物成人国产欧美一区二区三区| 丁香欧美五月| 国产成人av教育| 精品福利观看| 国产精品女同一区二区软件 | 欧美不卡视频在线免费观看| 女生性感内裤真人,穿戴方法视频| 中出人妻视频一区二区| 好男人电影高清在线观看| 毛片一级片免费看久久久久 | 欧美激情久久久久久爽电影| a级毛片免费高清观看在线播放| 久久精品国产亚洲av天美| 亚洲专区中文字幕在线| 最后的刺客免费高清国语| 久久久久免费精品人妻一区二区| 长腿黑丝高跟| 黄色丝袜av网址大全| 午夜福利在线在线| 一本一本综合久久| 免费无遮挡裸体视频| 国产一区二区在线av高清观看| 国产成人啪精品午夜网站| 精品国产亚洲在线| 嫩草影院入口| 一个人看视频在线观看www免费| 美女高潮喷水抽搐中文字幕| www.熟女人妻精品国产| 少妇被粗大猛烈的视频| 精品人妻熟女av久视频| 国产一区二区三区视频了| 丝袜美腿在线中文| 欧美绝顶高潮抽搐喷水| 十八禁网站免费在线| 又爽又黄无遮挡网站| 国产极品精品免费视频能看的| 搡老妇女老女人老熟妇| 国产探花在线观看一区二区| 日韩欧美三级三区| 免费黄网站久久成人精品 | 国产久久久一区二区三区| 日韩精品青青久久久久久| 最后的刺客免费高清国语| 特级一级黄色大片| 乱人视频在线观看| 小蜜桃在线观看免费完整版高清| 十八禁网站免费在线| 亚洲美女搞黄在线观看 | 永久网站在线| www.www免费av| 伊人久久精品亚洲午夜| 国产精品爽爽va在线观看网站| 老女人水多毛片| 欧美在线黄色| 两人在一起打扑克的视频| 国产免费一级a男人的天堂| 久久6这里有精品| 午夜日韩欧美国产| 床上黄色一级片| 级片在线观看| 久久婷婷人人爽人人干人人爱| 亚洲一区高清亚洲精品| 日韩欧美国产一区二区入口| 十八禁人妻一区二区| 日韩国内少妇激情av| 精品久久国产蜜桃| 免费人成在线观看视频色| 色综合亚洲欧美另类图片| 国产69精品久久久久777片| 日韩欧美 国产精品| 亚洲精品在线美女| 欧美成人一区二区免费高清观看| 国产毛片a区久久久久| 女生性感内裤真人,穿戴方法视频| 国产在视频线在精品| 国产一区二区在线观看日韩| 成年免费大片在线观看| 97碰自拍视频| 国产美女午夜福利| 99久久久亚洲精品蜜臀av| www.www免费av| 少妇高潮的动态图| 制服丝袜大香蕉在线| 国产在线男女| 国产三级黄色录像| 精品国内亚洲2022精品成人| 国产欧美日韩精品亚洲av| 级片在线观看| 久久久久久久久大av| 色av中文字幕| 美女大奶头视频| 三级毛片av免费| 不卡一级毛片| 精品欧美国产一区二区三| 欧美最新免费一区二区三区 | 国产伦精品一区二区三区四那| 国产精品一及| 国产aⅴ精品一区二区三区波| 精品久久久久久久久亚洲 | 国产免费男女视频| 制服丝袜大香蕉在线| 免费av观看视频| 国产一区二区在线av高清观看| 亚洲av成人精品一区久久| 精品国产三级普通话版| 51国产日韩欧美| 欧美+日韩+精品| 国产一区二区在线av高清观看| 日韩欧美国产在线观看| 2021天堂中文幕一二区在线观| 午夜福利在线观看吧| 国产精品一区二区三区四区免费观看 | 欧美高清成人免费视频www| 少妇的逼好多水| 亚洲av成人精品一区久久| 国产欧美日韩一区二区三| 欧美高清性xxxxhd video| 亚洲精品成人久久久久久| 国产亚洲欧美98| 国产精品综合久久久久久久免费| 国产人妻一区二区三区在| 不卡一级毛片| 亚洲国产色片| 精品人妻偷拍中文字幕| 在线免费观看不下载黄p国产 | 久久久久久国产a免费观看| 怎么达到女性高潮| 国产成人福利小说| 欧美潮喷喷水| 亚洲内射少妇av| 国产精品一区二区免费欧美| 亚洲熟妇中文字幕五十中出| 99精品在免费线老司机午夜| 国产三级黄色录像| 午夜日韩欧美国产| 综合色av麻豆| 9191精品国产免费久久| 嫩草影院精品99| 小蜜桃在线观看免费完整版高清| 亚洲狠狠婷婷综合久久图片| 韩国av一区二区三区四区| 欧美一区二区国产精品久久精品| 免费av观看视频| 综合色av麻豆| 国产伦一二天堂av在线观看| 最近中文字幕高清免费大全6 | av天堂中文字幕网| 亚洲精品久久国产高清桃花| 动漫黄色视频在线观看| 1024手机看黄色片| 中文字幕av成人在线电影| 国产淫片久久久久久久久 | 色播亚洲综合网| 少妇高潮的动态图| 中国美女看黄片| 又紧又爽又黄一区二区| 国产亚洲精品久久久com| 小说图片视频综合网站| 给我免费播放毛片高清在线观看| 国产一级毛片七仙女欲春2| 欧美成狂野欧美在线观看| 日韩中文字幕欧美一区二区| 亚洲av免费高清在线观看| 国产一区二区三区视频了| 日韩亚洲欧美综合| 好男人电影高清在线观看| 美女 人体艺术 gogo| 中文字幕av成人在线电影| 国产麻豆成人av免费视频| ponron亚洲| 午夜福利视频1000在线观看| 日韩欧美 国产精品| 可以在线观看的亚洲视频| 中文字幕av成人在线电影| 午夜激情欧美在线| 欧美一区二区精品小视频在线| 国产美女午夜福利| 国产精品久久久久久久电影| 亚洲av免费高清在线观看| 三级国产精品欧美在线观看| 51国产日韩欧美| av天堂在线播放| 日韩 亚洲 欧美在线| 亚洲专区中文字幕在线| 麻豆av噜噜一区二区三区| 亚洲成人精品中文字幕电影| 99久久精品国产亚洲精品| 97碰自拍视频| 免费看日本二区| 91久久精品电影网| 国产视频内射| 欧美bdsm另类| 国产又黄又爽又无遮挡在线| 变态另类丝袜制服| 国产亚洲精品综合一区在线观看| 免费看美女性在线毛片视频| 成年版毛片免费区| a在线观看视频网站| 国产一级毛片七仙女欲春2| 99精品久久久久人妻精品| 国产爱豆传媒在线观看| 久久久久性生活片| 久久精品国产自在天天线| 色尼玛亚洲综合影院| 亚洲激情在线av| 亚洲欧美日韩高清在线视频| 久久久久久大精品| 欧美精品啪啪一区二区三区| 国模一区二区三区四区视频| 亚洲一区二区三区色噜噜| 免费搜索国产男女视频| 亚洲第一区二区三区不卡| 男人和女人高潮做爰伦理| h日本视频在线播放| 老鸭窝网址在线观看| 熟妇人妻久久中文字幕3abv| 中亚洲国语对白在线视频| 在线观看免费视频日本深夜| 简卡轻食公司| 国产三级在线视频| 亚洲美女搞黄在线观看 | av国产免费在线观看| 最新在线观看一区二区三区| 亚洲美女视频黄频| 淫妇啪啪啪对白视频| 欧美日韩中文字幕国产精品一区二区三区| 欧美激情国产日韩精品一区| 一区二区三区免费毛片| 日韩欧美 国产精品| 欧美色欧美亚洲另类二区| 亚洲国产精品sss在线观看| 国产久久久一区二区三区| 97超视频在线观看视频| 人人妻人人看人人澡| 天美传媒精品一区二区| 精品不卡国产一区二区三区| 熟女人妻精品中文字幕| 美女免费视频网站| 在线播放国产精品三级| 久久人人爽人人爽人人片va | av在线蜜桃| 啪啪无遮挡十八禁网站| 日韩精品中文字幕看吧| 欧美在线一区亚洲| 韩国av一区二区三区四区| 亚洲av日韩精品久久久久久密| av福利片在线观看| 午夜影院日韩av| 亚洲av免费高清在线观看| 精品不卡国产一区二区三区| 久久亚洲真实| 欧美乱色亚洲激情| 精品免费久久久久久久清纯| 亚洲一区二区三区不卡视频| 99国产综合亚洲精品| 真人做人爱边吃奶动态| 精品乱码久久久久久99久播| 亚洲人成网站高清观看| 精品午夜福利在线看| 啦啦啦观看免费观看视频高清| 男女床上黄色一级片免费看| 国内久久婷婷六月综合欲色啪| 亚洲国产精品sss在线观看| 色视频www国产| 精品人妻偷拍中文字幕| 青草久久国产| 看十八女毛片水多多多| 一个人免费在线观看电影| 99久久精品一区二区三区| 欧美黑人欧美精品刺激| 亚洲天堂国产精品一区在线| 99久久精品热视频| 亚洲欧美精品综合久久99| 自拍偷自拍亚洲精品老妇| 欧美色视频一区免费| 免费无遮挡裸体视频| 亚洲性夜色夜夜综合| 麻豆一二三区av精品| 床上黄色一级片| 免费在线观看日本一区| 亚洲精品色激情综合| 日韩欧美国产在线观看| 亚洲美女视频黄频| 99热这里只有精品一区| 深夜a级毛片| 老司机午夜十八禁免费视频| 亚洲一区二区三区色噜噜| 亚洲欧美日韩卡通动漫| 99热精品在线国产| 久久久久久国产a免费观看| 欧美日韩瑟瑟在线播放| 国产欧美日韩一区二区精品| 深夜a级毛片| 九色国产91popny在线| 床上黄色一级片| 少妇熟女aⅴ在线视频| 欧美成狂野欧美在线观看| 午夜福利18| 观看免费一级毛片| 成人特级av手机在线观看| 少妇熟女aⅴ在线视频| 久久久色成人| www日本黄色视频网| 亚洲在线自拍视频| 偷拍熟女少妇极品色| 九九在线视频观看精品| 在线看三级毛片| 欧美午夜高清在线| 亚洲国产日韩欧美精品在线观看| 亚洲五月天丁香| 日韩免费av在线播放| 亚洲男人的天堂狠狠| 国产一区二区激情短视频| 99久久九九国产精品国产免费| 亚洲国产色片| 男女下面进入的视频免费午夜| 国内精品久久久久精免费| 我要看日韩黄色一级片| 亚洲成人免费电影在线观看| 欧美色欧美亚洲另类二区| 自拍偷自拍亚洲精品老妇| 国产精品伦人一区二区| 国内揄拍国产精品人妻在线| 国产在视频线在精品| 色吧在线观看| 可以在线观看毛片的网站| 丰满乱子伦码专区| 内射极品少妇av片p| 一个人观看的视频www高清免费观看| 九九在线视频观看精品| 久久性视频一级片| 国产极品精品免费视频能看的| 嫁个100分男人电影在线观看| 全区人妻精品视频| www.www免费av| 日韩中文字幕欧美一区二区| 1024手机看黄色片| 亚洲专区中文字幕在线| 亚洲人成伊人成综合网2020| 村上凉子中文字幕在线| 免费看日本二区| 日本 av在线| 校园春色视频在线观看| 热99在线观看视频| 中文在线观看免费www的网站| 日本精品一区二区三区蜜桃| 亚洲在线自拍视频| 国产一区二区亚洲精品在线观看| netflix在线观看网站| 日韩欧美免费精品| 看十八女毛片水多多多| 一本久久中文字幕| 一进一出抽搐gif免费好疼| 免费在线观看亚洲国产| 亚洲精品成人久久久久久| 日本三级黄在线观看| 欧美黑人欧美精品刺激| 真人做人爱边吃奶动态| 免费观看人在逋| 婷婷精品国产亚洲av| 欧美成狂野欧美在线观看| 免费看a级黄色片| 最近最新中文字幕大全电影3| 美女xxoo啪啪120秒动态图 | 亚洲人与动物交配视频| avwww免费| 赤兔流量卡办理| 久久天躁狠狠躁夜夜2o2o| 欧美日本亚洲视频在线播放| 日韩大尺度精品在线看网址| 久久6这里有精品| 此物有八面人人有两片| 日本一本二区三区精品| 国产高清有码在线观看视频| 成人国产一区最新在线观看| 尤物成人国产欧美一区二区三区| 免费观看人在逋| 国产精品综合久久久久久久免费| 丰满人妻熟妇乱又伦精品不卡| 国产精品女同一区二区软件 | 国产一区二区激情短视频| 又紧又爽又黄一区二区| 亚洲精品456在线播放app | 精品一区二区三区视频在线| 草草在线视频免费看| 国产伦一二天堂av在线观看| 精品欧美国产一区二区三| 久久精品国产自在天天线| 18+在线观看网站| 男人和女人高潮做爰伦理| 热99在线观看视频| 亚洲一区二区三区不卡视频| 一级作爱视频免费观看| 高清日韩中文字幕在线| 欧美日韩瑟瑟在线播放| 在线看三级毛片| 亚洲熟妇熟女久久| 国产视频一区二区在线看|