• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    BOUNDEDNESS AND EXPONENTIAL STABILIZATION IN A PARABOLIC-ELLIPTIC KELLER–SEGEL MODEL WITH SIGNAL-DEPENDENT MOTILITIES FOR LOCAL SENSING CHEMOTAXIS*

    2022-06-25 02:11:36JieJIANG江杰

    Jie JIANG (江杰)

    Innovation Academy for Precision Measurement Science and Technology,CAS,Wuhan 430071,China

    E-mail:jiang@apm.ac.cn;jiang@wipm.ac.cn

    Abstract In this paper we consider the initial Neumann boundary value problem for a degenerate Keller–Segel model which features a signal-dependent non-increasing motility function.The main obstacle of analysis comes from the possible degeneracy when the signal concentration becomes unbounded.In the current work,we are interested in the boundedness and exponential stability of the classical solution in higher dimensions.With the aid of a Lyapunov functional and a delicate Alikakos–Moser type iteration,we are able to establish a time-independent upper bound of the concentration provided that the motility function decreases algebraically.Then we further prove the uniform-in-time boundedness of the solution by constructing an estimation involving a weighted energy.Finally,thanks to the Lyapunov functional again,we prove the exponential stabilization toward the spatially homogeneous steady states.Our boundedness result improves those in[1]and the exponential stabilization is obtained for the first time.

    Key words Classical solution;boundedness;exponential stabilization;degeneracy;Keller–Segel models

    1 Introduction

    Chemotaxis is a biased movement of cells due to a chemical gradient,and it plays a significant role in diverse biological phenomena.In the 1970s,Keller and Segel proposed in their seminal work[2]the following model for chemotaxis:

    Here,uandvdenote the density of cells and the concentration of signals,respectively.The signal-dependent cell diffusion rateγand chemo-sensitivityχare linked via

    where the parameterσ≥0 is a constant proportional to the distance between the signal receptors in the cells.In the caseσ>0,a cell determines its moving direction due to a gradient sensing mechanism by calculating the difference of concentrations at different spots,while in the caseσ=0,the distance between receptors is zero and thus chemotactic movement occurs because of an undirected effect on the activity due to the presence of a chemical signal sensed by a single receptor (local sensing).One notices that in the latter case,the first equation of (1.1) has the concise form

    whereγstands for a signal-dependent motility.More recently,in[3,4],by adding a logistic source term on the right hand side of (1.3),this model was also applied to describe the process of pattern formations via the so-called“self-trapping”mechanism,where the cellular motilityγ(·) was assumed to be suppressed by the concentration of signals.In other words,γ(·) is a signal-dependent decreasing function,i.e.,γ′(v)<0.We remark thatγ′(v)<0 indicates that cells are attracted by a high concentration of signals.

    In this paper,we are interested in the boundedness and stability of classical solutions to the following initial boundary value problem for the parabolic-elliptic simplification of the original Keller–Segel model with signal-dependent motility for local sensing chemotaxis (i.e.,ε=σ=0 in (1.1)–(1.2)):

    In view of the asymptotically vanishing property ofγ,an apparent difficulty in analysis lies in the possible degeneracy whenvbecomes unbounded.Theoretical analysis for the above Keller–Segel model with signal-dependent motility has attracted a lot of interest in recent years;see e.g.[1,5–18],and see[19,20]for some recent works on the gradient sensing model (1.1).A common strategy used in most literature is to derive theboundedness ofuwith somep>by an energy method.Then theboundedness ofvfollows via an application of standard elliptic/parabolic regularity theory to the equation forv.However,this method seems only to work under restrictive conditions,such as specific choices ofγ[1,8,15],or with the presence of logistic source terms[5–7].Recently,a new comparison approach was proposed in[11–14].By introducing an auxiliary elliptic problem that enjoys a comparison principle,the explicit point-wise upper bound estimates ofvwere established directly for generic motility functions satisfying (A0) in any spatial dimensions.In fact,it was proved thatv(x,t) grows at most exponentially in time and hence degeneracy cannot happen in finite time.In addition,a delicate Alikakos–Moser type iteration was further developed in[13]to deduce the uniformin-time boundedness ofvdirectly in higher dimensions without the help of any integrability ofu.

    Previous studies on (1.4) strongly indicate that the dynamics of solutions are closely related to the decay rate ofγ.Whenn=2,it was proved in[11]that a classical solution always exists globally with any large initial datum and a genericγsatisfying (A0).Furthermore,ifγadditionally satisfies that

    then for any large initial datum,the global classical solution is uniformly-in-time bounded[13].Note that assumption (1.7) allowsγto take any decreasing form within a finite region and moreover that any motility function decreases more slowly than a standard exponentially decreasing function at high concentrations can guarantee the boundedness;for example,γ(s)=e-sβwith anyβ∈(0,1).Ifγdecays even faster so that there isχ>0 such that

    then the solution of (1.4) is uniformly-in-time bounded provided thatIn particular,ifγ(s)=e-χs,a critical-mass phenomenon was observed in[11,12,15]such that with any sub-critical mass,the classical solution is uniformly-in-time bounded.Moreover,it was pointed out that no finite-time blowup occurs and that the global solution may blow up at time infinity with certain super-critical mass[10–12].

    For higher dimensionsn≥3,the boundedness was studied in several works provided thatγsatisfies some algebraically decreasing assumptions[1,13,19].In particular,ifγ(s)=s-kwith somek>0,one notices that a variant form of (1.4) reads as

    The above two systems share the same set of equilibria.In addition,they have similar scaling structures.Supposing that (u,v) is a solution of (1.10),one checks thatuλ(t,x)=λu(t,x) andvλ(t,x)=λv(t,x) is also a solution with anyλ>0,while for (1.9),the scaling is given byuλ(t,x)=λu(λ-kt,x) andvλ(t,x)=λv(λ-kt,x).Such a scaling invariance indicates that existence results are usually independent of the size of initial datum.

    There is very limited theoretical research on both (1.9) and (1.10).Roughly speaking,the dynamics of solutions seem to be determined by the size ofk.For the logarithmic Keller–Segel system (1.10) there are several studies on the admissible range ofkfor global existence/boundedness,and on the other hand,blowup solutions were constructed only in the radial symmetric casen≥3 andk>[21],though the threshold number is still unclear.In comparison,the existence of blowup solutions remains unknown for the fully parabolic version of (1.10).In[22],it was proved that a classical solution exists globally provided thatFor the radially symmetric case,the existence of weak solutions fork<∞,n=2 andwas shown in[23].More recently,the asymptotic stabilization toward the constant equilibria was obtained in[24]forn≥2 withk<under the smallness of the size of|Ω|.We refer the reader to[25–27]for a complete description of topics related to the logarithmic Keller-Segel model.

    For the degenerate system (1.9),the boundedness of global solutions with anywas first shown in[1],and later in[13,19]via different methods.Moreover,the existence of a global (but likely growing up) classical solution was obtained in[13]within a larger rangeWe also mention that,recently,in[32],some doubly nonlinear diffusion operators involving porous medium type degeneracies were considered in similar frameworks,which indicates that the simultaneous density-determined enhancement of diffusion and crossdiffusion can foster boundedness in a system of this form.It would be interesting to consider whether the comparison method developed in[12]and the idea in the present contribution can be generalized to that case.

    In the present work,we aim to improve the uniform-in-time boundedness results for (1.4) in higher dimensions.The key observation of this contribution is that under an assumption

    system (1.4) possesses a Lyapunov functional (see also[1]).Then we can perform an Alikakos–Moser iteration to derive a time-independent upper bound ofvunder weakened conditions compared with[1,13,19].Also,with the aid of the Lyapunov functional,exponential stabilization of the global solution toward the spatially homogeneous steady statesis obtained for the first time.A direct consequence of our result to the specific caseγ(s)=s-kis that the boundedness of solutions can be improved to anyk≤1 whenn=4,5,orwhenn≥6.Furthermore,the solution will converge toexponentially as time tends to infinity.

    In order to formulate our result in a more general framework,we introduce the following condition:

    Note that (A2) allowsγto take other algebraically decreasing functions.For example,ifwith any givenk0>0,we may takek=k0+εwith anyε>0 in (A2).

    Now we are in a position to state the main results of the current work.

    Theorem 1.1Assume thatn≥3.Suppose thatγsatisfies (A0),(A1) and

    Then,for any initial datum satisfying (1.5),problem (1.4) possesses a unique global classical solution that is uniformly-in-time bounded.

    Moreover,there existα>0 andC>0 depending onu0,γ,nand Ω such that,for allt≥1,

    Remark 1.2Thanks to the strictly positive time-independent lower boundv*ofvfor (x,t)∈Ω×[0,∞) given in Lemma 2.2 in the next section,assumptions (A1) and (A3) can be weaken so as to hold for alls≥v*.Thus,our existence and boundedness results also hold true ifγ(s) has singularities ats=0;for exampleγ(s)=s-kwithk>0.In such cases,we can simply replaceγ(s) by a new motility function~γ(s) which satisfies (A0) and coincides withγ(s) for

    In particular,for the typical caseγ(v)=v-k,we have

    Theorem 1.3Suppose thatγ(v)=v-kandn≥4.Then for any initial datum satisfying (1.5),problem (1.4) has a unique global classical solution which is uniformly-in-time bounded provided that 0<k≤1 whenn=4,5,or 0<kwhenn≥6.Moreover,there existα>0 andC>0 depending onu0,k,nand Ω such that,for allt≥1,

    Remark 1.4Combined with the results in[1,13,19],uniform-in-time boundedness for the caseγ(s)=s-kis now available if

    The exponential decay (1.15) also holds whenn≤3 if 0<k≤1.We remark that the convergence of (u,v) toward the constant solution was found in[1]whenγ(s)=s-k,supposing thatk∈∩(0,1],however,no convergence rate was given.

    Now,let us sketch the main idea of our proof.First,we would like to recall the following identity,which unveils the key mechanism of our system:

    Here Δ denotes the usual Neumann Laplacian operator.The above key identity was first observed in[11,12],and along with a new comparison approach,gives rise to a point-wise upper bound ofvwith generic functions satisfying (A0).Furthermore,one notices that a substitution of the second equation of (1.4) gives a variant form of this key identity:

    Thanks to the comparison principle of elliptic equations and the decreasing property ofγ,one has that

    withv*being the strictly positive lower bound forvgiven by Lemma 2.2 below.Then under the assumption (A2),based on a delicate Alikakos–Moser type iteration,we can show that the uniform-in-time upper bound ofvis obtainable if we have time-independent estimates forwith anybeforehand.

    On the other hand,system (1.4) possesses a Lyapunov functional (see also[1]) such that

    Next,in order to prove the boundedness of solutions,it suffices to establish theboundedness ofuwith somesince higher-order estimates can then be proven by standard iterations and a bootstrap argument.Recalling thatvis now bounded from above,γ(v) is bounded from below by a strictly positive time-independent constant due to its decreasing property.With the aid of the key identity again,we construct an estimation involving a weighted energyRΩupγq(v),which,with a proper choice ofp>n2andq>0,will finally imply the boundedness.

    Last,the Lyapunov functionalR also plays a crucial role in the study of exponential stabilization.Sincewe haveΩvtdx=0 for allt>0,and hence the energy-dissipation relation (1.18) can be rewritten as

    With the boundedness ofvin hand,one can deduce from the above by Poincaré’s inequality thatdecay exponentially.Then,by a bootstrapping strategy,the exponential stabilization of (u,v) can be further acquired inL∞×W1,∞.

    We remark that if the second equation of (1.4) is of parabolic type,it is still unknown whether the system possesses a Lyapunov functional like (1.18).Thus,at the present stage,we cannot improve the results in[13]for the fully parabolic case using the same idea.

    The rest of the paper is organized as follows:in Section 2,we provide some preliminary results and recall some useful lemmas.In Section 3 we first construct a Lyapunov functional which satisfies a certain dissipation property.Then,using a delicate Alikakos–Moser iteration,we derive the uniform-in-time upper bounds ofv.In Section 4,we first establish the boundedness of the weighted energy which gives rise to the boundedness of the global classical solutions.Then using the Lyapunov functional again we prove the exponential stabilization toward the constant steady states.

    2 Preliminaries

    In this section we recall some useful lemmas.First,the local existence and uniqueness of classical solutions to system (1.4) can be established by the standard fixed point argument and regularity theory for elliptic/parabolic equations.A similar proof can be found in[1,Lemma 3.1].

    Theorem 2.1Let Ω be a smooth bounded domain of Rn.Suppose thatγ(·) satisfies (A0) andu0satisfies (1.5).Then there existsTmax∈(0,∞]such that problem (1.4) permits a unique non-negative classical solution (u,v)Moreover,the following mass conservation holds:

    A strictly positive uniform-in-time lower bound forv=(I-Δ)-1[u](x,t) is given in[1,Lemma 2.2];see also[31,Lemma 3.3].

    Lemma 2.2Suppose that (u,v) is the classical solution of (1.4) up to the maximal time of existenceTmax∈(0,∞].Then,there exists a strictly positive constantv*=v*(n,Ω,‖u0‖L1(Ω)) such that,for allt∈(0,Tmax),it holds that

    Next,we recall a key identity and an explicit point-wise upper bound estimate forv[11,Lemma 3.1].

    Lemma 2.3Assume thatn≥1 and suppose thatγsatisfies (A0).For any 0<t<Tmax,it holds that

    Last,we recall the followingLp-Lqestimates for the Neumann heat semigroup on bounded domains (see e.g.,[28,29]):

    Lemma 2.4Suppose that{etΔ}t≥0is the Neumann heat semigroup in Ω,and thatμ1>0 denotes the first nonzero eigenvalue of-Δ in Ω under Neumann boundary conditions.Then there existk1>0 andk2>0 which only depend on Ω such that the following properties hold:

    3 Time-Independent Upper Bounds of v

    In this part,we aim to establish the uniform-in-time upper bound forvin higher dimensions whenγdecreases algebraically at large concentrations.The proof consists of several steps.To begin with,we introduce a Lyapunov functional.

    Lemma 3.1For any 0≤t<Tmax,it holds that

    In particular,under the assumption (A1),there isC>0 depending only onu0such that

    ProofMultiplying the first equation of (1.4) byv,integrating over Ω and substituting the second equation of (1.4) yields that

    Then the uniform-in-time estimate (3.2) follows by integration of the above identity with respect to time.Finally,since-Δv0+v0=u0in Ω and?νv0=0 on?Ω,we infer,by Young’s inequality,that

    This completes the proof. □

    Remark 3.2In view of the time-independent lower bound 0<v*≤v(x,t),one can slightly weaken assumption (A1) as follows:

    On the other hand,a direct calculation indicates that the above assumption yields that

    and henceγfulfills (A2) with anyk>1.In particular,ifγ(s)=s-k,assumption (A1) is satisfied whenk≤1.

    With the above result,we can proceed to derive the uniform-in-time upper bounds ofvbased on a delicate Alikakos–Moser iteration[30].First,we demonstrate

    Lemma 3.3Assume thatn≥3.Suppose thatγsatisfies (A0) and (A2) with somek>0.Then there existλ1>0 andλ2>0 independent of time such that,for anyp>1+k,

    ProofFirst,under our assumption,we may infer that there existb>0 andsb>v*such that,for alls≥sb,

    and on the other hand,sinceγ(·) is non-increasing,

    for all 0≤s<sb.Therefore,for alls≥0,it holds that

    Now,multiplying the key identity (2.1) byvp-1with somep>1+k,we obtain that

    Sinceγ(v)≤γ(v*),we deduce,by the comparison principle of elliptic equations,that

    from which we deduce thatZ

    whereC2>0 may depend on the initial datum,n,Ω andγ,but is independent ofpand time.Next,recalling thatv-Δv=u,we observe that with someλ1,λ2>0 independent ofpand time.The proof is completed by addingto both sides of the above inequality. □

    Lemma 3.4Assume thatn≥3.Suppose thatγsatisfies (A0) and (A2) with somebe a generic constant.There existsC0>0 depending only on the initial datum,Ω,k,λ1,λ2andnsuch that,for anysatisfying

    ProofFirst,one notices thatq*>1+kand,provided thatn≥3 and 0<k<.Let

    and on the other hand,solvingα<1 yields thatMoreover,sinceas well,one checks thatThen an application of Hlder’s inequality yields that

    Recall the Sobolev embedding inequality

    whereλ*>0 depends only onnand Ω.In view of the fact thatinvoking Young’s inequality,we infer that

    It follows from the above and from (3.12) that

    Moreover,we note by (3.16) again that

    Thus,we obtain that

    In addition,by substituting (3.15),we infer that

    and similarly,by (3.19),

    Moreover,sincep>q*>1+k,we deduce that

    Now,based on the above calculations,we obtain that

    Hence,one can find thatC0>0 is a constant depending only on the initial datum,Ω,k,λ1,λ2,λ*andnsuch that

    Therefore,by the above and by (3.13),we have that

    Combining Lemma 3.3 and recalling thatL>1,we finally arrive at the following inequality:

    This completes the proof. □

    Proposition 3.5Assume thatn≥3.Suppose thatγsatisfies (A0),(A1) and (A2) with someThen there isv*>0 depending only on the initial datum,γ,nand Ω such that

    ProofFor allr∈N we define

    Note that Mris finite for allrin view of (2.2). Now,lettingwe infer from the above that

    which implies that

    As a result,we obtain that,for allr∈N,

    Sincepr≥q*for allr≥1,one can chooseL>1 sufficiently large depending only on the initial datum,Ω,nandksuch that Ar>1 for allr≥1.Moreover,adjustingC0by a proper larger number,we have that

    with somea>0 depending only on the initial datum,Ω,kandn.In addition,sinceγsatisfies (A0) and (A1),due to Lemma 3.1 and the Sobolev embeddingwe may find some large constantK0>1 that dominatesdxfor all time (note that ‖v0‖L∞(Ω)≤‖u0‖L∞(Ω),by the definition ofv0).

    Iteratively,we deduce that

    which concludes the proof. □

    Corollary 3.6Ifγ(v)=v-k,thenvhas a uniform-in-time upper bound provided thatk≤1 whenn=4,5,orwhenn≥6.

    Next,we recall the following lemma,established in[13]:

    Lemma 3.7A function satisfying (A0),(A1) and

    with somel>1 must fulfill assumption (A2) with any.

    Lemma 3.8Assume thatn≥4.Suppose thatγ(·) satisfies (A0),(A1) and (A3).Thenvhas a uniform-in-time upper bound in.

    ProofNote thatThusγsatisfies (A2) with somek<and,due to Proposition 3.5,vhas a uniform-in-time upper bound such thatv≤v*on□

    4 Proof of Theorem 1.1

    4.1 Uniform-in-time boundedness

    This part is devoted to the proof of Theorem 1.1.With the time-independent upper bound ofvin hand,it suffices to establish an estimation involving a weighted energyfor some 1+p>andq>0.Higher-order estimates can be then proven via a standard bootstrapping argument.To begin with,we provide

    Lemma 4.1For any 0≤t<Tmaxandp,q>0,it holds that

    ProofFor anyp,q>0,by direct computations,we infer by the key identity that

    Then a substitution ofv-Δv=uto the last term on the right hand side of (4.2) yields that

    By integration by parts and the first equation of (1.4),we infer that

    Last,by integration by parts again,it holds that

    Collecting the above equalities completes the proof. □

    Lemma 4.2Assume thatγ(·) satisfies (A0),(A1) and (A3).For any,there exist time-independent constantsandδ0=δ0(p,q)∈(0,1) such that

    for allλ>0.We observe thatf(λ) attains its maximum valueThus,for anyit holds that

    In addition,we can further find a time-independent constantδ0=δ0(p,λ0)∈(0,1) such that

    for any 1+p∈(1,).On the other hand,according to Lemma 2.2 and Lemma 3.8,there exist the following time-independent lower and upper bounds forv:

    for any 1+p∈(1,).As a result,assertion (4.6) holds withq=λ0pandδ0chosen above.□

    Lemma 4.3Assume thatn≥3 and thatγ(·) satisfies (A0),(A1) and (A3).Then there existp>-1 andC>0 independent of time such that

    ProofInvoking Young’s inequality,it holds that

    with any 1+p∈(1,) andqandδ0chosen in Lemma 4.2.

    Then it follows from (4.1) and Lemma 4.2 that

    Sincev*≤v≤v*,there existC3and>0 depending onp,δ0,γand the initial datum only such that,for any

    Recall the Gagliardo-Nirenberg inequality

    with anyε>0 and someindependent of time.Thus,by choosing proper smallε>0,we infer from (4.9) that,for any

    withC6andC7>0 independent of time.Then,in view of the fact that ‖u(·,t)‖L1(Ω)=‖u0‖L1(Ω),together with the uniform-in-time lower and upper boundedness ofγq(v),one can deduce iteratively from (4.11) that,for any

    Thus we can always findp>0 satisfying 1+p>such that (4.12) holds.This completes the proof. □

    Proof of Theorem 1.1Boundedness:Once we obtain Lemma 4.3 with 1+p>,we can to proceed to deduce the uniform-in-time boundedness of the solutions in the same manner as was done in[1,Lemma 4.3].We omit the details here. □

    Corollary 4.4Assume thatγ(v)=v-kand thatn≥4.Then there exists a unique globally bounded classical solution,provided thatk≤1 whenn=4,5,orwhenn≥6.

    4.2 Exponential stabilization toward constant steady states

    In this part,we derive the exponential stabilization of the global solutions relying on a slightly modified version of the Lyapunov functional (3.1).

    Lemma 4.5There exist constantsα>0 andC>0 depending onu0,γ,nand Ω such that

    ProofObserving thatfor allt≥0,it follows that,and hence,

    Therefore,we deduce from (3.1) that

    Sincev≤v*andγis non-increasing,we have that

    which,together with Poincaré’s inequality,yields that

    Hereμ1>0 denotes the first positive eigenvalue of the Neumann Lapaplacian operator,and we also use the fact thatμ1‖?v‖2≤‖Δv‖2if?νv=0 on?Ω.

    Thus,we infer from (4.14) that

    which by standard ODI analysis yields that,for allt≥0,

    wherev0=(I-Δ)-1[u0].

    Next,from the first equation of (1.4),we have that

    Since nowuandvare both uniformly-in-time bounded,there is a time-independent constantC9>0 such that

    Applying Poincaré’s inequality,one can find a constant 0<α1<andC10>0 depending only on initial datum,γ,nand Ω such that

    In view of (4.16),solving the above differential inequality yields that

    withC11>0 depending on initial datum,n,γand Ω only.

    Next,for anyp>2,we multiply (4.17) byto get that

    Similarly,there are time-independent constantsC12=C12(p)>0 andα2<α1such that

    Observing that

    we arrive at

    which yields that

    Last,note that from the second equation of (1.4),

    Choosing somep0>nin (4.20),one may deduce,by elliptic regularity and Sobolev embeddings,that

    Next,we assert

    Lemma 4.6There are positive constantsC=C(n,Ω,γ,u0) andθ∈(0,1) such that

    ProofSince ‖u‖L∞(Ω)and ‖v‖W1,∞(Ω)are now uniform-in-time bounded,one infers from the key identity (2.1) that

    and from the second equation of (1.4),

    On the other hand,in the same manner as in[1,Lemma 5.1],there exists a time-independent constantC19>0 such that

    with someθ2∈(0,1).

    Then we recall the following variant form of the key identity:

    Sinceγ(v(x,t)) is uniformly bounded from above and below,γ(v(x,t))Δ is a uniform elliptic operator.Also,in view of our assumption (A0),as well as the regularizing effect of the operator (I-Δ)-1,bothvγ(v) and (I-Δ)-1[uγ(v)]are now bounded inThus we can further deduce,by a standard version of Schauder’s theory for parabolic equations,that with someθ3∈(0,1),

    In turn,we may finally deduce from the equation foru,by Schauder’s theory,that

    With the above preparations,we are now ready to prove the exponential decay of ‖u-Denoting,by the semigroup theory,we infer from (4.17) that,for anyt>τ0≥1,

    As a result,we deduce by Lemma 2.4 that

    where we use the fact that

    sincesv(t,x)+(1-s)u0is uniformly bounded from above and below on[0,+∞)×Ω for alls∈[0,1].

    As a result,recalling Lemma 4.5 and Lemma 2.4,we may infer that

    with anyα′<min{γ0μ1,α}.Here,we use the fact that,for anyβ≥κ>0,

    with anyκ′<κ.Here,C24>0 depends only onκandκ′.On the other hand,for 0<β<κ,

    with anyβ′<βandC25>0 depending onβ,β′.

    Proof of Theorem 1.1Convergence:By Lemma 4.5 and (4.25),we conclude that

    with someα′>0 andC26>0 depending onu0,γ,nand Ω. □

    成人国产av品久久久| 国产黄色免费在线视频| 久久99一区二区三区| 亚洲成色77777| 亚洲国产精品999| 午夜福利乱码中文字幕| 人妻一区二区av| 亚洲性久久影院| 久久久久久久久久久免费av| 亚洲人成77777在线视频| 国产欧美亚洲国产| 亚洲精品美女久久av网站| 中文字幕免费在线视频6| 天天躁夜夜躁狠狠躁躁| 国产成人精品一,二区| 天天影视国产精品| 久久亚洲国产成人精品v| 伦理电影大哥的女人| 肉色欧美久久久久久久蜜桃| 亚洲一区二区三区欧美精品| 亚洲av.av天堂| www.熟女人妻精品国产 | 天天影视国产精品| kizo精华| 捣出白浆h1v1| 亚洲,欧美,日韩| 中国美白少妇内射xxxbb| 午夜免费男女啪啪视频观看| 国产免费又黄又爽又色| 高清在线视频一区二区三区| av在线老鸭窝| 精品亚洲乱码少妇综合久久| 国产精品女同一区二区软件| 一本—道久久a久久精品蜜桃钙片| 男女免费视频国产| 男的添女的下面高潮视频| 午夜日本视频在线| 欧美日韩精品成人综合77777| 美女主播在线视频| 国产精品一国产av| 亚洲av.av天堂| 欧美另类一区| 日本欧美国产在线视频| 亚洲欧美中文字幕日韩二区| 夜夜骑夜夜射夜夜干| 777米奇影视久久| 久久精品国产自在天天线| 亚洲美女视频黄频| 两个人免费观看高清视频| 伊人久久国产一区二区| 国产乱人偷精品视频| 男女无遮挡免费网站观看| 中国美白少妇内射xxxbb| 国产欧美亚洲国产| 午夜免费观看性视频| 国产午夜精品一二区理论片| 高清欧美精品videossex| 久久久久久久久久久久大奶| 精品一区在线观看国产| 久久这里有精品视频免费| 久久久久精品性色| 美女xxoo啪啪120秒动态图| 男女下面插进去视频免费观看 | 亚洲色图综合在线观看| 久久久久精品久久久久真实原创| 国产av精品麻豆| 久久人人爽人人片av| 久久韩国三级中文字幕| 亚洲国产精品一区三区| 十分钟在线观看高清视频www| 国产男女超爽视频在线观看| 三上悠亚av全集在线观看| 久久久国产一区二区| 日韩不卡一区二区三区视频在线| 久久人妻熟女aⅴ| videosex国产| 国产精品麻豆人妻色哟哟久久| 国产精品一区二区在线不卡| 波多野结衣一区麻豆| 水蜜桃什么品种好| av视频免费观看在线观看| 亚洲欧洲国产日韩| 热99久久久久精品小说推荐| 婷婷色av中文字幕| 在线观看美女被高潮喷水网站| 韩国av在线不卡| 这个男人来自地球电影免费观看 | 最近中文字幕2019免费版| 精品国产一区二区三区四区第35| 久久精品国产鲁丝片午夜精品| 麻豆乱淫一区二区| 国产精品国产三级国产av玫瑰| 国产精品无大码| 黄色一级大片看看| 999精品在线视频| 国产精品嫩草影院av在线观看| 多毛熟女@视频| 日韩av在线免费看完整版不卡| 黄网站色视频无遮挡免费观看| 国产免费一区二区三区四区乱码| 五月玫瑰六月丁香| 日本与韩国留学比较| 国产在线免费精品| 亚洲国产成人一精品久久久| 2021少妇久久久久久久久久久| 亚洲,一卡二卡三卡| 一本—道久久a久久精品蜜桃钙片| 久久免费观看电影| 国产免费一级a男人的天堂| 欧美xxⅹ黑人| 国产高清不卡午夜福利| 老女人水多毛片| 九九爱精品视频在线观看| 亚洲成人一二三区av| 欧美3d第一页| 欧美丝袜亚洲另类| 99热全是精品| 国产 精品1| 亚洲成人手机| 国产一区亚洲一区在线观看| av福利片在线| 国产一区二区三区av在线| 纵有疾风起免费观看全集完整版| 亚洲,欧美精品.| 久久久久久久亚洲中文字幕| 国产爽快片一区二区三区| av不卡在线播放| 国产亚洲精品久久久com| 老司机亚洲免费影院| 99久国产av精品国产电影| 国产精品嫩草影院av在线观看| 青春草视频在线免费观看| 精品国产一区二区三区四区第35| 国产乱人偷精品视频| 成人综合一区亚洲| 91精品三级在线观看| 大陆偷拍与自拍| 99国产精品免费福利视频| 亚洲经典国产精华液单| 亚洲一区二区三区欧美精品| 国产成人免费观看mmmm| 国产精品人妻久久久影院| 亚洲精品av麻豆狂野| 女性被躁到高潮视频| 99久久人妻综合| 免费高清在线观看视频在线观看| 91午夜精品亚洲一区二区三区| 成人国产麻豆网| 久久久亚洲精品成人影院| 日韩av在线免费看完整版不卡| 色吧在线观看| 青青草视频在线视频观看| 久久国内精品自在自线图片| 999精品在线视频| 青春草视频在线免费观看| 90打野战视频偷拍视频| 日韩一本色道免费dvd| 伊人亚洲综合成人网| 成人亚洲欧美一区二区av| 亚洲精品久久久久久婷婷小说| 午夜激情久久久久久久| 黄色 视频免费看| 精品视频人人做人人爽| 色5月婷婷丁香| 国产免费福利视频在线观看| 亚洲一级一片aⅴ在线观看| 在线观看美女被高潮喷水网站| 亚洲综合精品二区| av线在线观看网站| 在线天堂中文资源库| 国产精品成人在线| 久久久国产一区二区| 国产1区2区3区精品| 国产精品一区www在线观看| 欧美 日韩 精品 国产| 久久久久久久亚洲中文字幕| 九草在线视频观看| 午夜日本视频在线| 亚洲色图 男人天堂 中文字幕 | 天天操日日干夜夜撸| 免费高清在线观看视频在线观看| 大片电影免费在线观看免费| 人人妻人人添人人爽欧美一区卜| 成人特级黄色片久久久久久久| tube8黄色片| 日韩欧美免费精品| 日本wwww免费看| 久久国产亚洲av麻豆专区| 12—13女人毛片做爰片一| 亚洲av日韩精品久久久久久密| 制服诱惑二区| 搡老乐熟女国产| 免费日韩欧美在线观看| 久久热在线av| 免费日韩欧美在线观看| 乱人伦中国视频| 成人免费观看视频高清| 久久性视频一级片| 亚洲人成伊人成综合网2020| 丰满迷人的少妇在线观看| 亚洲av成人一区二区三| 精品第一国产精品| 成人精品一区二区免费| 在线十欧美十亚洲十日本专区| 中文字幕制服av| 精品一区二区三卡| 91精品三级在线观看| 午夜福利在线免费观看网站| 免费在线观看影片大全网站| 在线播放国产精品三级| 可以免费在线观看a视频的电影网站| 亚洲免费av在线视频| 精品久久蜜臀av无| 最近最新中文字幕大全电影3 | 每晚都被弄得嗷嗷叫到高潮| 身体一侧抽搐| 丰满饥渴人妻一区二区三| 999久久久精品免费观看国产| 亚洲专区中文字幕在线| 亚洲av成人不卡在线观看播放网| 好男人电影高清在线观看| 纯流量卡能插随身wifi吗| 黄色 视频免费看| 国产日韩欧美亚洲二区| 国产又色又爽无遮挡免费看| 亚洲av成人一区二区三| 精品久久久精品久久久| 伊人久久大香线蕉亚洲五| 波多野结衣av一区二区av| 不卡一级毛片| 国产在线观看jvid| 黄片小视频在线播放| 叶爱在线成人免费视频播放| 91av网站免费观看| 1024视频免费在线观看| 桃红色精品国产亚洲av| 亚洲免费av在线视频| 日本wwww免费看| 中文字幕色久视频| 成熟少妇高潮喷水视频| 中文字幕色久视频| 黄色a级毛片大全视频| 黑人操中国人逼视频| 国产乱人伦免费视频| 中文亚洲av片在线观看爽 | 一级a爱片免费观看的视频| 无遮挡黄片免费观看| 不卡一级毛片| ponron亚洲| 午夜免费成人在线视频| 久久狼人影院| 深夜精品福利| 久久中文字幕一级| 欧美在线一区亚洲| 男人操女人黄网站| 久久久精品国产亚洲av高清涩受| 中文字幕色久视频| 欧美精品av麻豆av| 国产日韩一区二区三区精品不卡| 脱女人内裤的视频| 最新美女视频免费是黄的| svipshipincom国产片| 日日摸夜夜添夜夜添小说| 国产成人免费无遮挡视频| 国产成人精品久久二区二区免费| 国产在视频线精品| 黄网站色视频无遮挡免费观看| 亚洲精品成人av观看孕妇| 欧美日韩黄片免| 国产野战对白在线观看| 日韩三级视频一区二区三区| 大陆偷拍与自拍| 亚洲人成电影免费在线| 午夜成年电影在线免费观看| 欧美 亚洲 国产 日韩一| 91成年电影在线观看| 日韩欧美一区视频在线观看| 精品久久久久久,| 日本五十路高清| 国产精品久久久人人做人人爽| 欧美老熟妇乱子伦牲交| 欧美日韩亚洲综合一区二区三区_| 久久九九热精品免费| 亚洲成a人片在线一区二区| 日韩欧美在线二视频 | www.精华液| 免费在线观看日本一区| 热99国产精品久久久久久7| 精品一区二区三区视频在线观看免费 | 亚洲中文日韩欧美视频| 777久久人妻少妇嫩草av网站| 日韩中文字幕欧美一区二区| 村上凉子中文字幕在线| 国产精品免费一区二区三区在线 | 久久久国产精品麻豆| 夜夜爽天天搞| 欧美亚洲 丝袜 人妻 在线| 两性夫妻黄色片| 亚洲成a人片在线一区二区| 国产成人免费无遮挡视频| 老熟妇乱子伦视频在线观看| 精品亚洲成国产av| 国产欧美日韩一区二区三| 国产有黄有色有爽视频| 久9热在线精品视频| 欧美日韩亚洲国产一区二区在线观看 | 一个人免费在线观看的高清视频| 一区二区三区精品91| 老司机午夜十八禁免费视频| 精品国产乱子伦一区二区三区| 香蕉久久夜色| 精品国产超薄肉色丝袜足j| 伊人久久大香线蕉亚洲五| 欧美午夜高清在线| 亚洲av日韩精品久久久久久密| 免费看十八禁软件| 熟女少妇亚洲综合色aaa.| 一级毛片精品| 国产亚洲精品久久久久久毛片 | 精品国产乱码久久久久久男人| 18禁裸乳无遮挡免费网站照片 | 国产精品亚洲一级av第二区| 纯流量卡能插随身wifi吗| 亚洲男人天堂网一区| av网站免费在线观看视频| 麻豆国产av国片精品| 国产精品久久电影中文字幕 | 国产成+人综合+亚洲专区| 欧美亚洲日本最大视频资源| 亚洲精品在线观看二区| 国产高清激情床上av| 亚洲国产精品一区二区三区在线| 午夜精品久久久久久毛片777| 搡老乐熟女国产| a级毛片黄视频| 波多野结衣av一区二区av| 亚洲性夜色夜夜综合| 这个男人来自地球电影免费观看| 久久久国产成人精品二区 | 18禁黄网站禁片午夜丰满| 亚洲第一欧美日韩一区二区三区| 国产成人免费无遮挡视频| 极品少妇高潮喷水抽搐| 一本一本久久a久久精品综合妖精| 久久久久久久精品吃奶| 精品久久蜜臀av无| 天天躁日日躁夜夜躁夜夜| 热re99久久精品国产66热6| 人妻 亚洲 视频| 男女下面插进去视频免费观看| 中文欧美无线码| 女人被狂操c到高潮| 午夜91福利影院| 99国产极品粉嫩在线观看| 亚洲性夜色夜夜综合| 高清av免费在线| 免费在线观看视频国产中文字幕亚洲| videos熟女内射| 大陆偷拍与自拍| 两人在一起打扑克的视频| 欧美精品啪啪一区二区三区| 精品久久久久久,| 极品教师在线免费播放| 色婷婷av一区二区三区视频| 精品国产国语对白av| 午夜影院日韩av| 中国美女看黄片| 男女高潮啪啪啪动态图| a级毛片黄视频| 亚洲av成人不卡在线观看播放网| 国产精品免费一区二区三区在线 | 热99re8久久精品国产| 久久久久视频综合| 亚洲专区字幕在线| 99久久人妻综合| 亚洲久久久国产精品| 在线观看免费日韩欧美大片| 多毛熟女@视频| 精品乱码久久久久久99久播| 亚洲成人国产一区在线观看| 欧美在线一区亚洲| 亚洲精品国产一区二区精华液| 精品久久久精品久久久| 欧美 日韩 精品 国产| 国产91精品成人一区二区三区| 十八禁人妻一区二区| 亚洲国产中文字幕在线视频| 欧美国产精品va在线观看不卡| 村上凉子中文字幕在线| av有码第一页| 亚洲五月婷婷丁香| 久久ye,这里只有精品| 国产精品亚洲一级av第二区| 91麻豆精品激情在线观看国产 | 大香蕉久久网| 在线观看日韩欧美| 精品久久久久久久久久免费视频 | 搡老熟女国产l中国老女人| 悠悠久久av| 亚洲精品粉嫩美女一区| 成年女人毛片免费观看观看9 | 自拍欧美九色日韩亚洲蝌蚪91| 欧美精品啪啪一区二区三区| 99国产精品免费福利视频| 视频在线观看一区二区三区| 欧美精品av麻豆av| 久久香蕉精品热| 午夜免费观看网址| 如日韩欧美国产精品一区二区三区| 精品久久久久久久久久免费视频 | 热99久久久久精品小说推荐| 在线看a的网站| 久99久视频精品免费| 91在线观看av| 亚洲精品成人av观看孕妇| 日本五十路高清| 黑丝袜美女国产一区| 免费在线观看亚洲国产| 国产aⅴ精品一区二区三区波| 国产视频一区二区在线看| 久热这里只有精品99| 久久天躁狠狠躁夜夜2o2o| 9色porny在线观看| 精品少妇一区二区三区视频日本电影| 免费少妇av软件| 99国产精品一区二区蜜桃av | 91九色精品人成在线观看| 成人特级黄色片久久久久久久| 高清视频免费观看一区二区| 国产av又大| 看黄色毛片网站| 亚洲精品在线观看二区| 国产精品久久视频播放| 丰满迷人的少妇在线观看| 韩国精品一区二区三区| 高清毛片免费观看视频网站 | 高潮久久久久久久久久久不卡| 成人国产一区最新在线观看| 久久性视频一级片| 成人精品一区二区免费| 无遮挡黄片免费观看| 一区在线观看完整版| 王馨瑶露胸无遮挡在线观看| 亚洲美女黄片视频| 亚洲一区二区三区欧美精品| 高清欧美精品videossex| 免费一级毛片在线播放高清视频 | 妹子高潮喷水视频| 久久中文看片网| 别揉我奶头~嗯~啊~动态视频| 国产片内射在线| 在线十欧美十亚洲十日本专区| 色在线成人网| 欧美日韩中文字幕国产精品一区二区三区 | 亚洲男人天堂网一区| 国产成人一区二区三区免费视频网站| 人妻丰满熟妇av一区二区三区 | ponron亚洲| 久久精品人人爽人人爽视色| 久99久视频精品免费| 久久 成人 亚洲| 成年版毛片免费区| 亚洲片人在线观看| 十八禁人妻一区二区| 黄色毛片三级朝国网站| 亚洲国产看品久久| 嫁个100分男人电影在线观看| 国产99久久九九免费精品| 伊人久久大香线蕉亚洲五| 丝袜美腿诱惑在线| 亚洲精品国产色婷婷电影| 亚洲精品国产区一区二| 90打野战视频偷拍视频| 大码成人一级视频| 欧美 亚洲 国产 日韩一| 国产一卡二卡三卡精品| 别揉我奶头~嗯~啊~动态视频| www日本在线高清视频| 欧美午夜高清在线| 久久人妻福利社区极品人妻图片| 亚洲国产中文字幕在线视频| 日本黄色视频三级网站网址 | 一级片免费观看大全| 人妻丰满熟妇av一区二区三区 | 男人舔女人的私密视频| 精品国产乱码久久久久久男人| 欧美精品av麻豆av| 老熟妇仑乱视频hdxx| 18禁美女被吸乳视频| 国产精品一区二区免费欧美| 超碰97精品在线观看| 日韩欧美三级三区| 18禁黄网站禁片午夜丰满| 757午夜福利合集在线观看| 久久久精品免费免费高清| 香蕉国产在线看| 一级毛片女人18水好多| 国产无遮挡羞羞视频在线观看| 精品人妻熟女毛片av久久网站| 最新在线观看一区二区三区| 水蜜桃什么品种好| 久久天堂一区二区三区四区| 女警被强在线播放| 欧美激情久久久久久爽电影 | 久久久国产成人免费| 一本大道久久a久久精品| 亚洲,欧美精品.| 99精品久久久久人妻精品| www日本在线高清视频| 国产欧美亚洲国产| bbb黄色大片| 亚洲欧美一区二区三区久久| 欧美老熟妇乱子伦牲交| 亚洲人成伊人成综合网2020| 岛国在线观看网站| 老汉色av国产亚洲站长工具| 欧美日韩一级在线毛片| x7x7x7水蜜桃| 久久ye,这里只有精品| 91精品国产国语对白视频| 少妇猛男粗大的猛烈进出视频| 91在线观看av| 一二三四在线观看免费中文在| 在线十欧美十亚洲十日本专区| 国产xxxxx性猛交| 桃红色精品国产亚洲av| 女人爽到高潮嗷嗷叫在线视频| 亚洲成人免费av在线播放| 麻豆av在线久日| 亚洲欧美精品综合一区二区三区| 国产精品一区二区在线观看99| 高清av免费在线| 国产深夜福利视频在线观看| 黄片大片在线免费观看| 国产精品久久久久成人av| 国产不卡一卡二| 欧美中文综合在线视频| 亚洲精品在线观看二区| 国产av又大| 亚洲五月色婷婷综合| 一个人免费在线观看的高清视频| 色综合婷婷激情| 亚洲av成人av| 法律面前人人平等表现在哪些方面| 久久久久久久国产电影| av超薄肉色丝袜交足视频| 一级a爱视频在线免费观看| 老司机影院毛片| 怎么达到女性高潮| 午夜福利一区二区在线看| 夜夜夜夜夜久久久久| 亚洲少妇的诱惑av| 国产精品久久视频播放| 亚洲成人手机| 午夜福利一区二区在线看| 色尼玛亚洲综合影院| 国产深夜福利视频在线观看| tocl精华| 亚洲欧美精品综合一区二区三区| 极品教师在线免费播放| 久久精品亚洲精品国产色婷小说| 深夜精品福利| 自拍欧美九色日韩亚洲蝌蚪91| 丝瓜视频免费看黄片| 黄频高清免费视频| 女性被躁到高潮视频| 人人妻人人澡人人爽人人夜夜| 久久热在线av| 男女午夜视频在线观看| 99久久综合精品五月天人人| 99久久人妻综合| 久久香蕉激情| 水蜜桃什么品种好| 99国产综合亚洲精品| www.熟女人妻精品国产| 国产不卡av网站在线观看| 国产亚洲欧美精品永久| 国产在线一区二区三区精| 制服诱惑二区| 超碰成人久久| 99热只有精品国产| svipshipincom国产片| 国产高清视频在线播放一区| 香蕉丝袜av| 淫妇啪啪啪对白视频| 国产在线一区二区三区精| 大型av网站在线播放| 国产亚洲精品一区二区www | 亚洲精品乱久久久久久| 丝袜在线中文字幕| 很黄的视频免费| 亚洲 国产 在线| 欧美在线一区亚洲| 人妻丰满熟妇av一区二区三区 | 久久精品熟女亚洲av麻豆精品| 色婷婷av一区二区三区视频| 999久久久国产精品视频| 99riav亚洲国产免费| 亚洲欧美日韩另类电影网站| 大型av网站在线播放| 亚洲一区二区三区不卡视频| 久久久久久久午夜电影 | 精品久久久久久电影网| 久久久久久免费高清国产稀缺| 中国美女看黄片| 老司机亚洲免费影院| 啦啦啦 在线观看视频| 免费av中文字幕在线| av欧美777| 可以免费在线观看a视频的电影网站| 亚洲精品成人av观看孕妇| 99热国产这里只有精品6| 超碰97精品在线观看| 欧美精品一区二区免费开放| 亚洲精品一卡2卡三卡4卡5卡|