• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    西方蜜蜂工蜂不同蟲態(tài)發(fā)育的轉錄組學分析

    2022-06-15 06:05:40宋文菲胡宗文苗春輝余玉生楊爽李亞輝
    南方農業(yè)學報 2022年3期
    關鍵詞:差異表達基因信號通路生長發(fā)育

    宋文菲 胡宗文 苗春輝 余玉生 楊爽 李亞輝

    摘要:【目的】基于轉錄組學對西方蜜蜂工蜂不同蟲態(tài)間的差異表達基因(DEGs)進行篩選和功能注釋分析,揭示與工蜂生長發(fā)育相關的信號通路,為深入解析工蜂生長發(fā)育的分子調控機理提供基礎數(shù)據。【方法】以西方蜜蜂工蜂的3日齡幼蟲、1日齡蛹和1日齡羽化工蜂3個蟲態(tài)為研究對象,利用llumina NovaSeq 6000平臺進行轉錄組測序,采用DESeq2篩選不同蟲態(tài)樣品間的表達差異基因,然后分別進行GO功能注釋分析及KEGG信號通路富集分析,并通過實時熒光定量PCR進行驗證?!窘Y果】經轉錄組測序,在西方蜜蜂工蜂3日齡幼蟲與1日齡蛹間篩選出4823個差異表達基因(51.86%上調,48.14%下調),在1日齡蛹與1日齡羽化工蜂間篩選出3295個差異表達基因(57.51%上調,42.49%下調),在3日齡幼蟲與1日齡羽化工蜂間篩選出5267個差異表達基因(52.95%上調,47.05%下調)。GO功能注釋分析結果顯示,3日齡幼蟲與1日齡蛹間的差異表達基因注釋到43個GO功能條目,1日齡蛹與1日齡羽化工蜂間的差異表達基因注釋到45個GO功能條目,3日齡幼蟲與1日齡羽化工蜂間的差異表達基因注釋到44個GO功能條目,主要涉及細胞過程、細胞部分及結合等。KEGG信號通路富集分析發(fā)現(xiàn),3日齡幼蟲與1日齡蛹間有2905個差異表達基因富集到332條KEGG信號通路上,其中17條KEGG信號通路呈顯著富集,涉及核糖體、氧化磷酸化和昆蟲激素生物合成等;1日齡蛹與1日齡羽化工蜂間有1644個差異表達基因富集到331條KEGG信號通路上,其中45條KEGG信號通路呈顯著富集,涉及氧化磷酸化、生熱作用和胰島素分泌等;3日齡幼蟲與1日齡羽化工蜂間有2958個差異表達基因富集到337條KEGG信號通路上,其中14條KEGG信號通路呈顯著富集,涉及核糖體、蛋白酶體和胰島素分泌等。6個隨機挑選差異表達基因的實時熒光定量PCR檢測結果與轉錄組測序結果相符,即轉錄組測序結果可靠。【結論】昆蟲激素生物合成通路相關差異表達基因調控與西方蜜蜂工蜂各蟲態(tài)JH滴度變化規(guī)律一致,氧化磷酸化信號通路則與各蟲態(tài)的營養(yǎng)攝入和活動行為相關,而胰島素分泌通路涉及各蟲態(tài)的營養(yǎng)調控、脂肪體合成及細胞凋亡??梢?,昆蟲激素生物合成、胰島素分泌和氧化磷酸化3種信號通路在西方蜜蜂工蜂幼蟲、蛹和成蟲的發(fā)育調控中發(fā)揮著重要作用。

    關鍵詞:西方蜜蜂;工蜂;生長發(fā)育;差異表達基因;信號通路;轉錄組測序

    中圖分類號:S891? ? ? ? ? ? ? ? ? ? ? ? ? 文獻標志碼: A 文章編號:2095-1191(2022)03-0748-11

    Transcriptome analysis of development of different stages in Apis mellifera worker bees

    SONG Wen-fei HU Zong-wen MIAO Chun-hui YU Yu-sheng YANG Shuang LI Ya-hui

    (1College of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan? 650201, China;

    2Sericulture and Apiculture Research Institute, Yunnan Academy of Agricultural Sciences,

    Mengzi, Yunnan? 661101, China)

    Abstract:【Objective】To screen and functional annotation analysis of differentially expressed genes (DEGs) among different stages of Apis mellifera worker bees based on transcriptomics, reveal signaling pathways related to development of worker bees,so as to provide basic data for in-depth analysis of the molecular regulation mechanism of growth and deve-lopment of worker bees. 【Method】The 3-day-old larvae,1-day-old pupae and 1-day-old eclosion worker bees were takenas the research objects. Transcriptome sequencing was performed by Illumina NovaSeq 6000 platform,and screening of DEGs among different worker bees samples by DESeq2. GO functional annotation analysis and KEGG signaling pathway enrichment analysis were performed, and then real-time quantative PCR (qRT-PCR) verification was conducted. 【Result】After transcriptome sequencing, 4823 DEGs (51.86% up-regulated, 48.14% down-regulated) were screened between 3-day-old larvae and 1-day-old pupae of A. mellifera worker bees. 3295 DEGs were screened between 1-day-old pupae and 1-day-old eclosion worker bees (57.51% up-regulated, 42.49% down-regulated), 5267 DEGs (52.95% up-regulated, 47.05% down-regulated) were screened between 3-day-old larvae and 1-day-old eclosion worker bees. The annotated GO function entries in the GO database of the three instar differential genes were 43 (between 3-day-old larvae and 1-day-old pupae), 45 (between 1-day-old pupae and 1-day-old eclosion worker bees), and 44 (between 3-day-old larvae and 1-day-old eclosion worker bees) respectively, mainly involving cellular process, cell part, binding, etc. KEGG signaling pathway enrichment analysis results showed that 2905 DEGs were enriched in 332 KEGG signaling pathways between 3-day-old larvae and 1-day-old pupae, of which 17 KEGG signaling pathways were significantly enriched, involving ribosomes, oxidation phosphorylation and insect hormone biosynthesis.1644 DEGs were enriched in 331 KEGG signaling pathways between 1-day-old pupae and 1-day-old eclosion worker bees, of which 45 KEGG signaling pathways were significantly enriched, involving oxidative phosphorylation, thermogenesis and insulin secretion. 2958 DEGs were enriched in 337 KEGG signaling pathways between 3-day-old larvae and 1-day-old eclosion worker bees, of which 14 KEGG signaling pathways were significantly enriched, involving ribosomes, proteasomes and insulin secretion. The qRT-PCR results of 6 randomly selected DEGs were consistent with the transcriptome sequencing results, indicating that the transcriptome sequencing results were reliable. 【Conclusion】The regulation of DEGs related to insect hormone biosynthesis pathway is consistent with the change rule of juvenile hormone(JH) titer in different stages of A. mellifera worker bees. The oxidative phosphorylation signaling pathway is related to the nutrient intake and activity behavior of different stages, and the insulin secretion pathway involves in the regulation of nutritional regulation, fat body synthesis and apoptosis of diffe-rent stages. The results showsthat three signaling pathways of insect hormone biosynthesis, insulin secretion and oxidative phosphorylation play important roles in the developmental regulation of larvae, pupae and adult of A. mellifera worker bees.4293EE6F-6C74-4C82-858F-238197A4E9A1

    Key words:Apis mellifera;worker bees; growth and development; differentially expressed genes;signaling pathway; transcriptome sequencing

    Foundation items:National Modern Agriculture Industry Technology System(Honey Bee) Construction Project(CARS-44-SYZ16); Yunnan Province Science and Technology Plan Project (202105AF150052); Yunan Science and Technology Mission Funding Project (202204BI090013)

    0 引言

    【研究意義】西方蜜蜂(Apis mellifera L.)是一類以雌性為主的社會性昆蟲,受級型分化影響雌性單元分化為蜂王和工蜂,蜂王負責繁殖后代和維持秩序,而數(shù)量最多的工蜂承擔著覓食、哺育及筑巢等職能分工(Amdam and Seehuus,2006;Barchuk et al.,2007;宋文菲等,2021)。工蜂在生長發(fā)育過程中受到營養(yǎng)物質和內激素的共同影響(李成成等,2011;Wang et al.,2014),如缺少花粉會引起幼蟲和成年工蜂的發(fā)育受阻(Wang et al.,2014;Di Pasquale et al.,2016;Martin et al.,2021)。內激素主要包括保幼激素(Juvenile hormone,JH)和蛻皮激素(20-hydroxyecdysone,20E),會影響工蜂的變態(tài)發(fā)育和級型分化(李茫等,2019)。至今,針對西方蜜蜂(工蜂和蜂王)幼蟲階段差異表達基因(Differentially expressed genes,DEGs)和代謝通路的研究已有相關報道,證實工蜂和蜂王的幼蟲在不同發(fā)育階段的基因種類和表達水平存在明顯差異,蜂王在幼蟲早期具有獨特的基因表達譜,hexamerin 70b基因和雷帕霉素靶蛋白(TOR)信號通路與其級型分化密切相關(Chen et al.,2012;Cameron et al.,2013;He et al.,2017)。但關于西方蜜蜂工蜂胚后發(fā)育的分子調控機理尚不清楚,因此分析工蜂各蟲態(tài)的差異表達基因及其信號通路,可為深入探究工蜂生長發(fā)育的分子調控機理提供理論依據。【前人研究進展】隨著昆蟲基因組學及轉錄組學等分子生物信息學的快速發(fā)展,有關西方蜜蜂級型分化、行為分化和生長發(fā)育等方面的代謝通路調控機理研究已取得階段性進展(Patel et al.,2007;Wang et al.,2013;Harpur et al.,2014)。研究表明,JH是調控西方蜜蜂變態(tài)發(fā)育和級型分化的關鍵因子,其表達水平受表皮生長因子受體(EGFR)信號調控,以及胰島素受體底物(IRS)和TOR信號通路的影響(Patel et al.,2007;Kamakura,2011;Mutti et al.,2011);對蜜蜂幼蟲的IRS和TOR基因進行RNA干擾,可引起體內JH水平下降,進而誘導幼蟲發(fā)育成為工蜂(Patel et al.,2007;Muttiet al.,2011)。胰島素/胰島素樣生長因子信號(IIS)也是工蜂生長發(fā)育的調控因子,通過營養(yǎng)調控和行為分化等方式影響工蜂的發(fā)育。Ament等(2008)研究發(fā)現(xiàn),采集蜂在大腦和腹部的IIS基因表達水平高于哺育蜂,說明IIS可調控成年工蜂的行為分化。Wang等(2013)研究表明,IIS信號通路中的AmILP1和AmILP2基因在工蜂幼蟲發(fā)育過程中發(fā)揮著不同作用,AmILP1基因能顯著降低JH水平,AmILP2基因對脂肪體起調控作用,對幼蟲發(fā)育及其體重均有影響。AmILP-2基因是胰島素樣肽主要轉錄基因,在工蜂中的表達量明顯高于蜂王,說明組織特異性與IIS信號通路相對獨立(de Azevedo and Hartfelder,2008)。與蜂王相比,在工蜂幼蟲早期和中期發(fā)育中以氨基酸、肌肉發(fā)育和一般代謝相關基因的表達較高,在幼蟲中后期則是與細胞凋亡(組織蛋白酶)和自噬細胞死亡的相關基因表達較高(Cameron et al.,2013);不同年齡段工蜂的勞動分工也是通過JH信號通路、胰島素樣/TOR信號通路相互作用來調節(jié),其體內存在著較多的高表達新基因(Johnson and Tsutsui,2011;Harpur et al.,2014)。有關20E對工蜂生長發(fā)育的影響,Hartfelder和Engels(1998)研究發(fā)現(xiàn),20E在工蜂幼蟲階段的滴度水平較低,但在預蛹期和成蟲期分別出現(xiàn)一個峰值;祝智威等(2022)研究證實,3種微小RNA可通過調控20E基因及Hippo和FoxO信號通路的相關基因而影響工蜂蛹期的變態(tài)發(fā)育過程?!颈狙芯壳腥朦c】工蜂是西方蜜蜂蜂群中數(shù)量最多的類型,其生長發(fā)育對蜂群的發(fā)展至關重要。近年來,基于轉錄組學對西方蜜蜂工蜂哺育行為相關基因、工蜂中腸發(fā)育基因的研究表明,工蜂的哺育行為受信號轉導和能量代謝等途徑的調控(高艷等,2020),而TGF-β、Wnt及Hippo等信號通路影響工蜂中腸的生長發(fā)育和免疫能力(杜宇等,2020)。目前有關蜜蜂工蜂和蜂王級型分化差異表達基因及代謝通路的研究已有相關報道(Chen et al.,2012;Cameron et al.,2013;He et al.,2017),但針對工蜂不同蟲態(tài)間的信號通路及調控作用研究鮮見報道?!緮M解決的關鍵問題】通過對西方蜜蜂工蜂的3日齡幼蟲、1日齡蛹和1日齡羽化工蜂3個蟲態(tài)進行轉錄組測序,并對各蟲態(tài)間的差異表達基因進行篩選和功能注釋分析,揭示與工蜂生長發(fā)育相關的信號通路,為深入解析工蜂生長發(fā)育的分子調控機理提供基礎數(shù)據。4293EE6F-6C74-4C82-858F-238197A4E9A1

    1 材料與方法

    1. 1 試驗材料

    供試西方蜜蜂蜂群由云南省農業(yè)科學院蠶桑蜜蜂研究所國家現(xiàn)代農業(yè)產業(yè)技術體系(蜜蜂)紅河綜合試驗站西方蜜蜂試驗蜂場提供。2021年4—5月選擇3群群勢相當?shù)姆淙海咳悍?張空巢脾,待蜂王產卵后收集幼蟲、蛹和成蟲3個發(fā)育蟲態(tài)。為保證相鄰蟲態(tài)間發(fā)育時間相同,以相鄰蟲態(tài)間隔6~7 d取樣(Wang et al.,2015),分別以3日齡幼蟲、1日齡蛹和1日齡羽化工蜂代表幼蟲期、蛹期及成蟲期。3日齡幼蟲以6頭為1個樣本,1日齡蛹和1日齡羽化工蜂則以3頭為1個樣本,每個樣本設3個生物學重復。樣品采集后立即放入液氮中凍斃,-80 ℃保存?zhèn)溆?。TRIzol試劑(Invitrogen)、PrimeScriptTM RT reagent Kit with gDNA Eraser RT-qPCR反轉錄試劑盒及TB Green Premix Ex Taq II購自寶日醫(yī)生物技術(北京)有限公司,DEPC水購自北京索萊寶科技有限公司。主要儀器設備有NanoDrop 2000型分光光度計(Thermo Scientific)、StepOnePlusTM型qPCR儀(Applied Biosystems公司)、梯度PCR儀(Applied Biosystems公司)、低溫高速離心機(Sigma公司)及HWS智能型恒溫恒濕箱(寧波江南儀器廠)等。

    1. 2 cDNA文庫構建及轉錄組測序

    采集樣品在液氮中充分研磨后,根據TRIzol試劑操作說明提取總RNA,利用NanoDrop 2000進行RNA濃度和純度檢測,以瓊脂糖凝膠電泳檢測其完整性,采用Agilent 2100 Nano測定RIN值。質檢合格的RNA,根據TruseqTM RNA Sample Preparation Kit (Illumina)試劑盒說明構建cDNA文庫,然后利用llumina HiSeq Xten/NovaSeq 6000平臺進行高通量測序,獲得原始數(shù)據?;谖鞣矫鄯浠蚪M序列,利用HISAT2序列比對軟件與蜜蜂的基因組注釋信息進行比對(Kim et al.,2015),并將基因/轉錄本在Nr、Swiss-Prot、Pfam、EggNOG、GO和KEGG等數(shù)據庫中進行注釋,全面獲得基因/轉錄本的注釋信息。

    1. 3 轉錄組數(shù)據處理及注釋分析

    利用Cufflinks計算FPKM值,即每百萬個外顯子映射的片段數(shù),用以評估基因表達水平(Trapnell et al.,2010;張蕾等,2020)。采用DESeq2篩選不同蟲態(tài)樣品組間的表達差異基因,篩選參數(shù)設為P<0.01且|log2Fold Change|≥1,上調/下調差異倍數(shù)為2。

    1. 4 實時熒光定量PCR驗證

    從西方蜜蜂工蜂不同蟲態(tài)轉錄組數(shù)據中隨機挑選6個差異表達基因進行實時熒光定量PCR驗證,分別是腺苷酸環(huán)化酶 3基因(Ac3)、蛋白激酶C基因(Pkc)、細胞色素 P450 302a1基因(LOC727118)、胰島素樣肽2基因(ILP-2)、法尼酸甲酯環(huán)氧酶基因(LOC551179)和保幼激素酸O-甲基轉移酶基因(LOC724216)。采用Primer Premier 5.0設計6個差異表達基因的擴增引物,參照Zhang等(2020)的方法設計內參基因(GAPDH)擴增引物,所有引物(表1)均委托生工生物工程(上海)股份有限公司合成。采用反轉錄試劑盒將提取的RNA反轉錄合成cDNA,獲得的cDNA 置于-20 ℃冰箱保存?zhèn)溆?。實時熒光定量PCR反應體系20.0 μL:TB Green Premix Ex Taq II 10.0 μL,正、反向引物(10 μmol/L)各0.8 μL,ROX Reference Dye(50×)0.4 μL,cDNA模板2.0 μL,ddH2O 6.0 μL。擴增程序:95 ℃預變性10 min;95 ℃ 15 s,57 ℃ 1 min,進行40個循環(huán);添加熔解曲線。設3個水平重復孔,采用2-DDCt法換算目的基因相對表達量。

    2 結果與分析

    2. 1 轉錄組測序數(shù)據質控分析結果

    Illumina HiSeq 6000平臺高通量測序結果(表2)顯示,西方蜜蜂工蜂3日齡幼蟲、1日齡蛹和1日齡羽化工蜂的有效序列(Clean reads)分別為44384567、42199177和41901170條。各樣本的Q30均在93.00%以上,GC含量在35.66%~39.61%,表明轉錄組測序數(shù)據質量良好,可用于后續(xù)的研究分析。

    2. 2 西方蜜蜂工蜂不同蟲態(tài)間差異表達基因分析結果

    在西方蜜蜂工蜂3個蟲態(tài)中,3日齡幼蟲與1日齡蛹間存在4823個差異表達基因,表現(xiàn)為51.86%的差異表達基因上調、48.14%的差異表達基因下調(圖1-A);1日齡蛹與1日齡羽化工蜂間存在3295個差異表達基因,表現(xiàn)為57.51%的差異表達基因上調、42.49%的差異表達基因下調(圖1-B);3日齡幼蟲與1日齡羽化工蜂間存在5267個差異表達基因,表現(xiàn)為52.95%的差異表達基因上調、47.05%的差異表達基因下調(圖1-C)。

    2. 3 差異表達基因GO功能注釋分析結果

    3日齡幼蟲與1日齡蛹間的4823個差異表達基因共注釋到43個GO功能條目。其中,以注釋到生物學過程(Biological process)的功能條目最多,有16個(占37.21%),主要涉及細胞過程(Cellular process)(935個差異表達基因,占19.39%)、代謝過程(Metabolic process)(978個差異表達基因,占20.28%)、生物調節(jié)(Biological regulation)(333個差異表達基因,占6.90%)等;注釋到細胞組分(Cellular component)的功能條目有15個(占34.88%),主要涉及膜部分(Membrane part)(839個差異表達基因,占17.40%)、細胞部分(Cell part)(756個差異表達基因,占15.67%)、含蛋白質復合物(Protein-containing complex)(315個差異表達基因,占6.53%)等;注釋到分子功能(Molecular function)的功能條目有12個(占27.91%),主要涉及結合(Binding)(1032個差異表達基因,占21.40%)、催化活性(Catalytic activity)(948個差異表達基因s,占19.66%)、轉運蛋白活性(Transporter activity)(161個差異表達基因,占3.34%)等(圖2-A)。4293EE6F-6C74-4C82-858F-238197A4E9A1

    1日齡蛹與1日齡羽化工蜂間的3295個差異基因共注釋到45個GO功能條目,同樣以注釋到生物學過程的功能條目最多,有17個(占37.78%),主要涉及細胞過程(549個差異表達基因,占16.67%)、代謝過程(562個差異表達基因,占17.06%)、生物調節(jié)(264個差異表達基因,占8.01%)等;注釋到細胞組分的功能條目有15個(占33.33%),主要涉及膜部分(670個差異表達基因,占20.33%)、細胞部分(383個差異表達基因,占11.62%)、膜(Membrane)(199個差異表達基因,占6.04%)等;注釋到分子功能的功能條目有13個(占28.89%),主要涉及結合(624個差異表達基因,占18.94%)、催化活性(619個差異表達基因,占18.79%)、轉運蛋白活性(153個差異表達基因,占4.64%)等(圖2-B)。

    3日齡幼蟲與1日齡羽化工蜂間的5267個差異基因共注釋到44個GO功能條目,同樣以注釋到生物學過程的功能條目最多,占50.00%,主要涉及細胞過程(1020個差異表達基因,占19.37%)、代謝過程(1022個差異表達基因,占19.4%)、生物調節(jié)(430個差異表達基因,占8.16%)等;注釋到細胞組分的功能條目有15個(占34.09%),主要涉及膜部分(936個差異表達基因,占17.77%)、細胞部分(786個差異表達基因,占14.92%)、細胞器(Organelle)(313個差異表達基因,占5.94%)等;注釋到分子功能的功能條目有12個(占27.27%),主要涉及結合(1112個差異表達基因,占21.11%)、催化活性(1010個差異表達基因,占19.18%)、轉運蛋白活性(165個差異表達基因,占3.13%)等(圖2-C)。

    2. 4 差異表達基因KEGG信號通路富集分析結果

    在KEGG數(shù)據庫中比對獲得差異表達基因6351個,涉及有機體系統(tǒng)(Organismal systems)、細胞過程(Cellular process)、環(huán)境信息處理(Environmental information processing)、遺傳信息處理(Genetic information processing)和新陳代謝(Metabolism)五大類(圖3)。其中,有機體系統(tǒng)通路富集到的差異表達基因數(shù)最多(1736個),占可注釋基因數(shù)的27.33%,且以與內分泌系統(tǒng)相關的基因最多;新陳代謝通路富集到的差異表達基因次之(1521個),占23.95%,以與碳水化合物代謝相關的基因最多;遺傳信息處理通路富集到1095個差異表達基因,占17.24%,以與翻譯相關的基因最多;細胞過程通路富集到1076個差異表達基因,占16.94%,以與運輸和分解代謝相關的基因最多;環(huán)境信息處理通路富集到923個差異表達基因,占14.53%,以與信號轉導相關的基因最多。

    在西方蜜蜂工蜂3個蟲態(tài)中,3日齡幼蟲與1日齡蛹間有2905個差異表達基因富集到332條KEGG信號通路上,其中17條KEGG信號通路呈顯著富集(圖4-A),包括核糖體(Ribosome,102個)、氧化磷酸化(Oxidative phosphorylation,74個)和昆蟲激素生物合成(Insect hormone biosynthesis,19個)等。1日齡蛹與1日齡羽化工蜂間有1644個差異表達基因富集到331條KEGG信號通路上,其中45條KEGG信號通路呈顯著富集(圖4-B),包括氧化磷酸化(74個)、生熱作用(Thermogenesis,83個)和胰島素分泌(Insulin secretion,25個)等。3日齡幼蟲與1日齡羽化工蜂間有2958個差異表達基因富集到337條KEGG信號通路上,其中14條KEGG信號通路呈顯著富集(圖4-C),包括核糖體(104個)、蛋白酶體(Proteasome,32個)和胰島素分泌(28個)等。

    從昆蟲激素生物合成通路上挑選6個差異表達基因進行分析,結果(表3)顯示,這6個差異表達基因從3日齡幼蟲到1日齡蛹出現(xiàn)整體下調的表達趨勢,但從1日齡蛹到1日齡羽化工蜂呈整體上調的表達趨勢。同時從胰島素信號通路上挑選6個差異表達基因進行分析,結果(表4)發(fā)現(xiàn)從3日齡幼蟲到1日齡羽化工蜂,40S核糖體蛋白S6基因(LOC725647)持續(xù)下調;ILP-2基因、胰島素樣受體樣轉錄變體 X3基因(InR-2)和mTOR調節(jié)相關蛋白基因(LOC551668)呈先上調后下調的表達趨勢;己糖激酶1樣基因(LOC408818)和脂肪酸合酶基因(LOC412815)則呈先下調后上調的表達趨勢。

    2. 5 轉錄組數(shù)據實時熒光定量PCR驗證結果

    從西方蜜蜂工蜂不同蟲態(tài)的轉錄組數(shù)據中隨機挑選6個差異表達基因(Ac3、Pkc、ILP-2、LOC727118、LOC551179和LOC724216),采用實時熒光定量PCR進行驗證,結果(圖5)表明,在不同蟲態(tài)中6個差異表達基因的實時熒光定量PCR檢測結果與轉錄組測序結果相符,進一步證實了轉錄組數(shù)據結果的可靠性。

    3 討論

    氧化磷酸化是生物體分解過程中氧化步驟所釋放的能量,并驅動ATP的合成過程(Waites and? Garner,2011)。本研究對西方蜜蜂工蜂的3日齡幼蟲、1日齡蛹和1日齡羽化工蜂進行轉錄組測序分析,結果發(fā)現(xiàn):3日齡幼蟲與1日齡蛹間有102個差異表達基因顯著富集在核糖體通路上,包括RpL32、RpL41及Rps14等101個下調基因,僅有1個基因(LOC724629)上調;有74個差異表達基因顯著富集在氧化磷酸化通路上,包括Cox6c、Ndufs1和Ndufs5等72個下調基因,而LOC408734和LOC100578821基因上調。1日齡蛹與1日齡羽化工蜂間有74個差異表達基因顯著富集在氧化磷酸化通路上,包括Uqcr11、Cox6c和Ndufs5等72個上調基因,而LOC727212和LOC551917基因下調。與蛹和羽化工蜂相比,工蜂會在幼蟲期攝入更多食物,如蜂王漿、花粉及哺育蜂下顎腺分泌物混合物質,因而表現(xiàn)為幼蟲發(fā)育階段的氧化磷酸化增強(Cameron et al.,2013),與本研究中3日齡幼蟲與1日齡蛹間的氧化磷酸化通路差異表達基因下調的結果一致。氧化磷酸化通路差異表達基因在1日齡蛹與1日齡羽化工蜂間上調,故推測是羽化工蜂的行為活動引起氧化磷酸化增強所致。核糖體是由rRNA及核糖體蛋白組成的顆粒狀結構,其中核糖體蛋白主要參與蛋白質的合成、調控轉錄和細胞凋亡等生理過程(Warner and Mclntosh,2009)。Verras等(2004)在地中海實蠅(Ceratitis capitate)中也發(fā)現(xiàn),核糖體蛋白基因CcRpS21在胚胎和幼蟲的表達量高于蛹和成蟲,該結論在本研究中得到進一步驗證。此外,有研究發(fā)現(xiàn)核糖體蛋白對昆蟲卵的滯育有重要調控作用(李艷艷等,2021),因此相關核糖體蛋白基因的功能值得后續(xù)深入研究。4293EE6F-6C74-4C82-858F-238197A4E9A1

    昆蟲變態(tài)發(fā)育主要由JH和20E協(xié)同調控完成,其中,JH在調控西方蜜蜂工蜂生長和變態(tài)發(fā)育過程中發(fā)揮關鍵作用(洪芳等,2016;李茫等,2019;張慧等,2021)。本研究中,西方蜜蜂工蜂3日齡幼蟲與1日齡蛹間的昆蟲激素生物合成通路顯著富集,對昆蟲內分泌激素相關的6個差異表達基因進行分析,結果發(fā)現(xiàn)3日齡幼蟲與1日齡蛹間的6個差異表達基因整體下調,而1日齡蛹到1日齡羽化工蜂呈整體上調趨勢。在西方蜜蜂工蜂的生長發(fā)育過程中,JH滴度也表現(xiàn)出3日齡幼蟲高于蛹和羽化工蜂(Hartfelder and Engels,1998)。由于工蜂3日齡仍處于幼蟲早期,在完全變態(tài)昆蟲中其幼蟲期體內需保持一定的JH水平,以維持蟲體處于幼蟲蟲態(tài),而化蛹前的JH水平下降及蛻皮激素上升,幼蟲才能正?;迹═ruman and Riddiford,1999)。此外,3~5日齡幼蟲是西方蜜蜂幼蟲級型分化的關鍵期,此時幼蟲在攝入蜂王漿后可進一步提高JH滴度,且能通過蜂王漿和JH轉向蜂王發(fā)育,低齡幼蟲維持一定的JH水平以實現(xiàn)幼蟲的可塑性(Mutti et al.,2011)。故推測西方蜜蜂工蜂由于受到變態(tài)發(fā)育和級型分化的影響,導致從3日齡幼蟲到羽化工蜂其昆蟲激素生物合成相關差異表達基因的表達發(fā)生明顯變化。

    胰島素是一種蛋白質激素,通過IIS信號通路發(fā)揮作用,可調節(jié)生物細胞的生長、代謝及繁殖等(Oldham and Hafen,2003;Wullschleger et al.,2006;Corona et al.,2007)。本研究發(fā)現(xiàn)1日齡蛹與1日齡羽化工蜂、3日齡幼蟲與1日齡羽化工蜂的胰島素分泌信號通路顯著富集,通過對胰島素分泌及胰島素信號通路中的6個差異表達基因進行分析,結果表明,從3日齡幼蟲到1日齡成蟲間,ILP-2、InR-2和LOC551668基因呈現(xiàn)出先上調后下調的表達趨勢,且下調幅度較明顯;而LOC408818和LOC412815基因呈先下調后上調的表達趨勢,下調幅度較明顯;LOC725647基因的表達則持續(xù)下調。李兆英(2013)研究發(fā)現(xiàn),意大利蜜蜂工蜂在幼蟲期的脂肪體細胞數(shù)量增長較快,而在蛹早期出現(xiàn)脂肪體細胞凋亡,之后組建成蟲新的脂肪體,與本研究中的LOC412815基因調控結果基本一致。此外,mTOR調節(jié)相關蛋白和40S核糖體蛋白S6可調節(jié)細胞的生長、增殖和凋亡(Miron and Sonenberg,2001;Wolschin et al.,2011),故推測LOC725647和LOC551668基因可能參與工蜂胚后發(fā)育過程中脂肪體細胞的增殖和凋亡過程。de Azevedo和Hartfelder(2008)研究發(fā)現(xiàn),西方蜜蜂工蜂ILP2基因從3齡幼蟲到5齡呈上調表達趨勢,在5齡幼蟲攝食期間顯著上升,之后呈下調表達;InR-2基因從3齡幼蟲到5齡整體也呈上調趨勢,5齡幼蟲攝食期后開始下調。說明胰島素信號通路可能參與了工蜂幼蟲期的營養(yǎng)調控、脂肪體合成,以及蛹期的脂肪體凋亡過程。

    4 結論

    昆蟲激素生物合成通路相關差異表達基因調控與西方蜜蜂工蜂各蟲態(tài)JH滴度變化規(guī)律一致,氧化磷酸化信號通路則與各蟲態(tài)的營養(yǎng)攝入和活動行為相關,而胰島素分泌通路涉及各蟲態(tài)的JH水平、脂肪體合成及行為分化調控??梢?,昆蟲激素生物合成、胰島素分泌和氧化磷酸化3種信號通路在西方蜜蜂工蜂生長發(fā)育調控中發(fā)揮著重要作用。

    參考文獻:

    杜宇,周丁丁,萬潔琦,盧家軒,范小雪,范元嬋,陳恒,熊翠玲,鄭燕珍,付中民,徐國鈞,陳大福,郭睿. 2020. 意大利蜜蜂工蜂中腸發(fā)育過程中的差異基因表達譜及調控網絡[J]. 中國農業(yè)科學,53(1):201-212. [Du Y,Zhou D D,Wan J Q,Lu J X,F(xiàn)an X X,F(xiàn)an Y C,Chen H,Xiong C L,Zheng Y Z,F(xiàn)u Z M,Xu G J,Chen D F,Guo R. 2020. Profiling and regulation network of differentially expressed genes during the development process of Apis mellifera ligustica workers midgut[J]. Scientia Agricultura Sinica,53(1):201-212.] doi:10.3864/j.issn.0578-1752.2020.01.019.

    高艷,朱雅楠,李秋方,蘇松坤,聶紅毅. 2020. 轉錄組學分析意大利蜜蜂腦部哺育行為相關基因[J]. 中國農業(yè)科學,53(19):4092-4102. [Gao Y,Zhu Y N,Li Q F,Su S K,Nie H Y. 2020. Transcriptomic analysis of genes related to nursing behavior in the brains of Apis mellifera ligustica[J]. Scientia Agricultura Sinica,53(19):4092-4102.] doi:10.3864/j.issn.0578-1752.2020.19.021.

    洪芳,宋赫,安春菊. 2016. 昆蟲變態(tài)發(fā)育類型與調控機制[J]. 應用昆蟲學報,53(1):1-8. [Hong F,Song H,An C J. 2016. Introduction to insect metamorphosis[J]. Chinese Journal of Applied Entomology,53(1):1-8.] doi:10. 7679/j.issn.2095-1353.2016.001.

    李成成,楊維仁,胥保華,馮倩倩. 2011. 意大利蜜蜂生長發(fā)育適宜蛋白供給水平及其對幼蟲抗氧化活性的影響[J]. 中國農業(yè)科學,44(22):4714-4720. [Li C C,Yang W R,Xu B H,F(xiàn)eng Q Q. 2011. Optimal protein levels required and their effects on larval antioxidation of Apis mellifera ligustica Spinola[J]. Scientia Agricultura Sinica,44(22):4714-4720.] doi:10.3864/j.issn.0578-1752. 2011.22.020.4293EE6F-6C74-4C82-858F-238197A4E9A1

    李茫,趙方媛,曾志將,王子龍. 2019. 蜜蜂級型分化機理[J]. 環(huán)境昆蟲學報,41(1):83-89. [Li M,Zhao F Y,Zeng Z J,Wang Z L. 2019. Mechanisms of caste differentiation in honeybees[J]. Journal of Environmental Entomology,41(1):83-89.] doi:10.3969/j.issn.1674-0858.2019.01.11.

    李艷艷,馬紅悅,李玲,譚瑤,龐保平,張恒. 2021. 沙蔥螢葉甲卵滯育的轉錄組學分析[J]. 昆蟲學報,64(10):1136-1144. [Li Y Y,Ma H Y,Li L,Tan Y,Pang B P,Zhang H. 2021. Transcriptomics analysis of egg diapause of Galeruca daurica (Coleoptera:Chrysomelidae)[J]. Acta Entomologica Sinica,64(10):1136-1144.] doi:10.16380/j.kcxb.2021.10.002.

    李兆英. 2013. 意大利蜜蜂工蜂脂肪體胚后發(fā)育過程中細胞的增殖和凋亡[J]. 昆蟲學報,56(11):1252-1257. [Li Z Y. 2013. Proliferation and programmed cell death in the fat body in workers of the Italian honeybee(Apis mellifera ligustica) during postembryonic development[J]. Acta Entomologica Sinica,56(11):1252-1257.] doi:10.16380/j.kcxb.2013.11.003.

    宋文菲,盧煥仙,黃新球,荀利杰,余玉生,李亞輝,王艷輝. 2021. 蕎麥蜜提取液對西方蜜蜂存活及Vg和Sir2基因表達量的影響[J]. 河南農業(yè)大學學報,55(4):715-720. [Song W F,Lu H X,Huang X Q,Xun L J,Yu Y S,Li Y H,Wang Y H. 2021. Effects of buckwheat honey extracts on survival and Vg and Sir2 gene expression of Apis mellifera[J]. Journal of Henan Agricultural University,55(4):715-720.] doi:10.16445/j.cnki.1000-2340.20210414.001.

    張蕾,任嵩,楊嫻婧,孫杰,廖和榮. 2020. 基于RNA-Seq 挖掘玫瑰冠雞與科寶雞胚胎期胸肌組織差異表達基因[J]. 江蘇農業(yè)學報,36(5):1237-1246. [Zhang L,Ren S,Yang X J,Sun J,Liao H R. 2020. Identification of diffe-rentially expressed genes in embryonic breast muscle tissue of Rose-crowned chicken and Cobb broilers based on RNA-Seq[J]. Jiangsu Journal of Agricultural Sciences,36(5):1237-1246.] doi:10.3969/j.issn.1000-4440.2020. 05.022.

    張慧,劉倩,黃曉磊. 2021. 社會性昆蟲級型和行為分化機制研究進展[J]. 生物多樣性,29(4):507-516. [Zhang H,Liu Q,Huang X L. 2021. Mechanisms regulating caste and behavior differentiation in social insects[J]. Biodiversity Science,29(4):507-516.] doi:10.17520/biods. 2020224.

    祝智威,付中民,隆琦,杜宇,張文德,胡穎,趙蕭,史小玉,徐細建,陳大福,郭睿. 2022. 三種微小RNA在意大利蜜蜂工蜂蛹期發(fā)育過程中的表達譜及潛在功能[J]. 昆蟲學報,65(1):53-62. [Zhu Z W,F(xiàn)u Z M,Long Q,Du Y,Zhang W D,Hu Y,Zhao X,Shi X Y,Xu X J,Chen D F,Guo R. 2022. Expression profiles and potential function of three miRNAs during the pupal development process of Apis mellifera ligustica worker[J]. Acta Entomologica Sinica,65(1):53-62.] doi:10.16380/j.kcxb.2022.01.006.

    Amdam G V,Seehuus S C. 2006. Order,disorder,death:Lessons from a superorganism[J]. Advances in Cancer Research,95:31-60. doi:10.1016/S0065-230X(06)95002-7.

    Ament S A,Corona M,Pollock H S,Robinson G E. 2008. Insulin signaling is involved in the regulation of worker division of labor in honey bee colonies[J]. Proceedings of the National Academy of Sciences of the United States of America,105(11):4226-4231. doi:10.1073/pnas.080063 0105.4293EE6F-6C74-4C82-858F-238197A4E9A1

    Barchuk A R,Cristino A S,Kucharski R,Costa L F,Sim?es Z L,Maleszka R. 2007. Molecular determinants of caste differentiation in the highly eusocial honeybee Apis mellifera[J]. BMC Developmental Biology,7(1):70. doi:10.1186/1471-213X-7-70.

    Cameron R C,Duncan E J,Dearden P K. 2013. Biased gene expression in early honeybee larval development[J]. BMC Genomics,14(1):903. doi:10.1186/1471-2164-14-903.

    Chen X,Hu Y,Zheng H Q,Cao L F,Niu D F,Yu D L,Sun Y Q,Hu S H,Hu F L. 2012. Transcriptome comparison between honey bee queen- and worker-destined larvae[J]. Insect Biochemistry and Molecular Biology,42(9):665-673. doi:10.1016/j.ibmb.2012.05.004.

    Corona M,Velarde R A,Remolina S,Moran-Lauter A,Wang Y,Hughes K A,Robinson G E. 2007. Vitellogenin,juvenile hormone, insulin signaling,and queen honey bee longevity[J]. Proceedings of the National Academy of Sciences of the United States of America,104(17):7128-7133. doi:10.1073/pnas.0701909104.

    de Azevedo S V,Hartfelder K. 2008. The insulin signaling pathway in honey bee(Apis mellifera) caste development—Differential expression of insulin-like peptides and insulin receptors in queen and worker larvae[J]. Journal of Insect Physiology,54(6):1064-1071. doi:10.1016/j.jinsphys.2008.04.009.

    Di Pasquale G,Alaux C,Le Conte Y,Odoux J F,Pioz M,Vaissière B E,Belzunces L P,Decourtye A. 2016. Variations in the availability of pollen resources affect honey bee health[J]. PLoS One,11(9):e0162818. doi:10.1371/journal.pone.0162818.

    Harpur B A,Kent C F,Molodtsova D,Lebon J M D,Alqarni A S,Owayss A A,Zayed A. 2014. Population genomics of the honey bee reveals strong signatures of positive selection on worker traits[J]. Proceedings of the National Academy of Sciences of the United States of America,111(7):2614-2619. doi:10.1073/pnas.1315506111.

    Hartfelder K,Engels W. 1998. Social insect polymorphism: hormonal regulation of plasticity in development and reproduction in the honeybee[J]. Current Topics in Deve-lopmental Biology,40:45-77. doi:10.1016/s0070-2153(08)60364-6.

    He X J,Jiang W J,Zhou M,Barron A B,Zeng Z J. 2017. A comparison of honeybee(Apis mellifera) queen,worker and drone larvae by RNA-Seq[J]. Insect Science,26(3):499-509. doi:10.1111/1744-7917.12557.

    Johnson B R,Tsutsui N D. 2011. Taxonomically restricted genes are associated with the evolution of sociality in the honey bee[J]. BMC Genomics,12:164. doi:10.1186/1471-2164-12-164.

    Kamakura M. 2011. Royalactin induces queen differentiation in honeybees[J]. Nature,473(7348):478-483. doi:10.1038/ nature10093.4293EE6F-6C74-4C82-858F-238197A4E9A1

    Kim D,Langmead B,Salzberg S L. 2015. HISAT:A fast spliced aligner with low memory requirements[J]. Nature Methods,12(4):357-360. doi:10.1038/nmeth.3317.

    Martin N,Hulbert A J,Bicudo J E P W,Mitchell T W,Else P L. 2021. The adult lifespan of the female honey bee (Apis mellifera):Metabolic rate,AGE pigment and the effect of dietary fatty acids[J]. Mechanisms of Ageing and Development,199:111562. doi:10.1016/j.mad.2021. 111562.

    Miron M,Sonenberg N. 2001. Regulation of translation via TOR signaling:Insights from Drosophila melanogaster[J]. The Journal of Nutrition,131(11):2988S-2993S. doi:10.1093/jn/131.11.2988S.

    Mutti N S,Dolezal A G,Wolschin F,Mutti J S,Gill K S,Amdam G V. 2011. IRS and TOR nutrient-signaling pathways act via juvenile hormone to influence honey bee caste fate[J]. The Journal of Experimental Biology,214(23):3977-3984. doi:10.1242/jeb.061499.

    Oldham S,Hafen E. 2003. Insulin/IGF and target of rapamycin signaling:A TOR de force in growth control[J]. Trends in Cell Biology,13(2):79-85. doi:10.1016/S0962-8924(02)00042-9.

    Patel A,F(xiàn)ondrk M K,Kaftanoglu O,Emore C,Hunt G,F(xiàn)rederick K,Amdam G V. 2007. The making of a queen:TOR pathway is a key player in diphenic caste development[J]. PLoS One,2(6):e509. doi:10.1371/journal.pone.0000 509.

    Trapnell C,Williams B A,Pertea G,Mortazavi A,Kwan G,van Baren M J,Salzberg S L,Wold B J,Pachter L. 2010. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching du-ring cell differentiation[J]. Nature Biotechnology,28:511-515. doi:10.1038/nbt.1621.

    Truman J W,Riddiford L M. 1999. The origins of insect metamorphosis[J]. Nature,401(6752):447-452. doi:10. 1038/46737.

    Verras M,Theodoraki M A,Mintzas A C. 2004. Cloning,cha-racterization,and developmental expression of the ribosomal protein S21 gene of the mediterranean fruit fly Ceratitis capitate[J]. Archives of Insect Biochemistry and Physiology,56(3):133-142. doi:10.1002/arch.20004.

    Waites C L,Garner C C. 2011. Presynaptic function in health and disease[J]. Trends in Neurosciences,34(6):326-337. doi:10.1016/j.tins.2011.03.004.

    Wang H,Zhang S W,Zeng Z J,Yan W Y. 2014. Nutrition affects longevity and gene expression in honey bee (Apis mellifera) workers[J]. Apidologie,45(5):618-625. doi:10.1007/s13592-014-0276-3.

    Wang Y,Azevedo S V,Hartfelder K,Amdam G V. 2013. Insulin-like peptides (AmILP1 and AmILP2) differentially affect female caste development in the honey bee (Apis mellifera L.)[J]. The Journal of Experimental Biology,216(23):4347-4357. doi:10.1242/jeb.085779.

    Wang Y,Ma L T,Xu B H. 2015. Diversity in life history of queen and worker honey bees,Apis mellifera L.[J]. Journal of Asia-Pacific Entomology,18(2):145-149. doi:10.1016/j.aspen.2014.11.005.

    Warner J R,Mclntosh K B. 2009. How common are extraribosomal functions of ribosomal proteins?[J]. Molecular Cell,34(1):3-11. doi:10.1016/j.molcel.2009.03.006.

    Wolschin F,Mutti N S,Amdam G V. 2011. Insulin receptor substrate influences female caste development in honeybees[J]. Biology Letters,7(1):112-115. doi:10.1098/rsbl.2010.0463.

    Wullschleger S,Loewith R,Hall M N. 2006. TOR signaling in growth and metabolism[J]. Cell,124(3):471-484. doi:10.1016/j.cell.2006.01.016.

    Zhang Z Y,Li Z,Huang Q,Yan W Y,Zhang L Z,Zeng Z J. 2020. Honeybees (Apis mellifera) modulate dance communication in response to pollution by imidacloprid[J]. Journal of Asia-Pacific Entomology,23(2):477-482. doi:10.1016/j.aspen.2020.03.011.

    (責任編輯 蘭宗寶)4293EE6F-6C74-4C82-858F-238197A4E9A1

    猜你喜歡
    差異表達基因信號通路生長發(fā)育
    生物信息學分析患有乳腺癌的乳腺球樣本中與自我更新相關的關鍵基因
    下丘腦室旁核在自主神經功能障礙調節(jié)中的靶點作用
    心肌缺血再灌注損傷的發(fā)生機制及其防治策略
    冬油菜栽培技術探析
    果樹生長發(fā)育的外界環(huán)境條件探討
    果利大植物營養(yǎng)液對花生災后復壯生長發(fā)育的影響
    環(huán)境監(jiān)測用青鳉魚的人工繁殖研究
    價值工程(2016年31期)2016-12-03 23:54:47
    從信號通路角度分析中藥治療兒童白血病的研究進展
    條斑紫菜優(yōu)良品系的基因芯片表達譜分析
    高溫脅迫下草坪草高羊茅差異表達基因的分子研究
    欧美zozozo另类| 一级毛片 在线播放| 欧美最新免费一区二区三区| 日韩在线高清观看一区二区三区| av线在线观看网站| 精品99又大又爽又粗少妇毛片| 色视频www国产| 狂野欧美白嫩少妇大欣赏| 日本一二三区视频观看| 亚洲国产最新在线播放| 91精品伊人久久大香线蕉| 国产亚洲最大av| 国产一区亚洲一区在线观看| 亚洲国产av新网站| 在线观看av片永久免费下载| 欧美日韩一区二区视频在线观看视频在线| 亚洲无线观看免费| 久久精品熟女亚洲av麻豆精品| 黄色欧美视频在线观看| 涩涩av久久男人的天堂| 国产91av在线免费观看| 狠狠精品人妻久久久久久综合| 建设人人有责人人尽责人人享有的 | 国产极品天堂在线| 亚洲欧美一区二区三区黑人 | 亚洲国产精品一区三区| 我的女老师完整版在线观看| 日本av免费视频播放| 国产精品福利在线免费观看| 亚洲真实伦在线观看| 男女啪啪激烈高潮av片| 国内少妇人妻偷人精品xxx网站| 成年美女黄网站色视频大全免费 | 日本av手机在线免费观看| 国产综合精华液| 有码 亚洲区| 色哟哟·www| 国产精品欧美亚洲77777| 精品久久久久久久久av| 国产男女内射视频| 一本—道久久a久久精品蜜桃钙片| 免费播放大片免费观看视频在线观看| 亚洲成人中文字幕在线播放| 一区二区三区精品91| 天天躁夜夜躁狠狠久久av| 在线观看av片永久免费下载| 亚洲四区av| 卡戴珊不雅视频在线播放| 久久精品久久精品一区二区三区| 插阴视频在线观看视频| 国产片特级美女逼逼视频| 日本一二三区视频观看| 欧美日韩国产mv在线观看视频 | 免费人成在线观看视频色| 国产免费又黄又爽又色| 老师上课跳d突然被开到最大视频| av线在线观看网站| 涩涩av久久男人的天堂| 国产免费又黄又爽又色| 久久婷婷青草| 人妻 亚洲 视频| 日日摸夜夜添夜夜添av毛片| 国产精品人妻久久久久久| 中国美白少妇内射xxxbb| 熟女av电影| 国产探花极品一区二区| 一个人看视频在线观看www免费| 人人妻人人澡人人爽人人夜夜| 国产精品一区二区三区四区免费观看| 性高湖久久久久久久久免费观看| 少妇高潮的动态图| 国产黄片美女视频| 成人亚洲精品一区在线观看 | 一区二区av电影网| 日本wwww免费看| 国产精品国产三级国产av玫瑰| 精品国产乱码久久久久久小说| 草草在线视频免费看| 大码成人一级视频| 成人影院久久| 嫩草影院入口| 在线免费十八禁| 久久精品久久久久久久性| 久久精品国产亚洲av天美| tube8黄色片| 在线观看人妻少妇| 久久精品熟女亚洲av麻豆精品| 中文字幕人妻熟人妻熟丝袜美| 黄色欧美视频在线观看| 午夜免费观看性视频| 欧美激情国产日韩精品一区| 岛国毛片在线播放| 久久人妻熟女aⅴ| 2022亚洲国产成人精品| 国产真实伦视频高清在线观看| 少妇人妻一区二区三区视频| 哪个播放器可以免费观看大片| 精华霜和精华液先用哪个| 九九久久精品国产亚洲av麻豆| 亚洲国产av新网站| 久久人人爽人人爽人人片va| 国产精品国产三级国产av玫瑰| 国产亚洲午夜精品一区二区久久| 91久久精品国产一区二区三区| av国产精品久久久久影院| 国模一区二区三区四区视频| 欧美精品亚洲一区二区| 婷婷色av中文字幕| 日日啪夜夜爽| 99热这里只有是精品50| 久热这里只有精品99| 18+在线观看网站| 成人高潮视频无遮挡免费网站| 国产精品久久久久久久电影| 男人舔奶头视频| 少妇丰满av| 亚洲av.av天堂| 有码 亚洲区| 美女福利国产在线 | 国产深夜福利视频在线观看| 久久婷婷青草| 成人高潮视频无遮挡免费网站| 波野结衣二区三区在线| 午夜福利在线观看免费完整高清在| 国产免费福利视频在线观看| 国产 一区精品| 搡老乐熟女国产| 91精品国产国语对白视频| 男人爽女人下面视频在线观看| 超碰97精品在线观看| 欧美一级a爱片免费观看看| 国产伦理片在线播放av一区| 色综合色国产| 免费观看av网站的网址| 国产午夜精品久久久久久一区二区三区| 99热网站在线观看| av一本久久久久| 91精品国产国语对白视频| 久久人人爽人人片av| 尤物成人国产欧美一区二区三区| 少妇的逼水好多| 内射极品少妇av片p| 精品熟女少妇av免费看| 日本午夜av视频| 又粗又硬又长又爽又黄的视频| 嫩草影院新地址| 亚洲av免费高清在线观看| 亚洲av不卡在线观看| 国产高清三级在线| 人人妻人人爽人人添夜夜欢视频 | 少妇熟女欧美另类| 国产大屁股一区二区在线视频| 亚洲国产日韩一区二区| 国产亚洲5aaaaa淫片| 国产成人精品婷婷| 性色avwww在线观看| 91精品国产九色| 欧美老熟妇乱子伦牲交| 成人毛片60女人毛片免费| www.色视频.com| 少妇猛男粗大的猛烈进出视频| 免费看av在线观看网站| 国产精品人妻久久久久久| 交换朋友夫妻互换小说| 日韩大片免费观看网站| 国产精品久久久久久av不卡| 啦啦啦啦在线视频资源| 欧美老熟妇乱子伦牲交| 91午夜精品亚洲一区二区三区| 有码 亚洲区| 亚洲精品成人av观看孕妇| 免费看不卡的av| 成人毛片a级毛片在线播放| 精品午夜福利在线看| 日韩欧美精品免费久久| 日本色播在线视频| 丰满人妻一区二区三区视频av| 国产免费一区二区三区四区乱码| 特大巨黑吊av在线直播| 国产伦精品一区二区三区四那| 国产免费一级a男人的天堂| 97超视频在线观看视频| 欧美成人一区二区免费高清观看| 老师上课跳d突然被开到最大视频| 丰满少妇做爰视频| 欧美成人午夜免费资源| 国产成人午夜福利电影在线观看| 亚洲欧美一区二区三区黑人 | 建设人人有责人人尽责人人享有的 | 中文在线观看免费www的网站| 国产成人精品福利久久| 欧美日韩在线观看h| 91久久精品国产一区二区三区| 亚洲欧美中文字幕日韩二区| 亚洲人成网站高清观看| 国产av码专区亚洲av| 日日撸夜夜添| 一级毛片我不卡| 最近最新中文字幕大全电影3| 人体艺术视频欧美日本| 国产欧美另类精品又又久久亚洲欧美| 高清欧美精品videossex| 国产乱人偷精品视频| 亚洲av欧美aⅴ国产| 91在线精品国自产拍蜜月| 一级爰片在线观看| 黄片wwwwww| 久久久色成人| 黄色配什么色好看| 丰满乱子伦码专区| 观看免费一级毛片| 深夜a级毛片| 99久久精品国产国产毛片| 亚洲无线观看免费| 日本猛色少妇xxxxx猛交久久| 一级av片app| 精品熟女少妇av免费看| 美女福利国产在线 | 日韩大片免费观看网站| 免费看av在线观看网站| 国产乱人视频| 国产在视频线精品| 色综合色国产| 亚洲精品国产色婷婷电影| 亚洲图色成人| 哪个播放器可以免费观看大片| 在线 av 中文字幕| 九九在线视频观看精品| 久久青草综合色| 国产成人精品一,二区| 日本av免费视频播放| 国内精品宾馆在线| 日韩国内少妇激情av| 国产精品人妻久久久影院| 美女视频免费永久观看网站| 天天躁夜夜躁狠狠久久av| 六月丁香七月| 一个人看视频在线观看www免费| 午夜激情久久久久久久| 伊人久久国产一区二区| 黄片wwwwww| 国产人妻一区二区三区在| 久久鲁丝午夜福利片| 国产亚洲91精品色在线| 中文字幕人妻熟人妻熟丝袜美| 欧美精品人与动牲交sv欧美| 久久综合国产亚洲精品| 大又大粗又爽又黄少妇毛片口| 免费播放大片免费观看视频在线观看| 久久久久国产精品人妻一区二区| 亚洲欧美精品自产自拍| 午夜老司机福利剧场| 人人妻人人爽人人添夜夜欢视频 | 美女xxoo啪啪120秒动态图| 亚洲av成人精品一区久久| 精品久久久久久久久亚洲| 国产精品一区www在线观看| av天堂中文字幕网| 深爱激情五月婷婷| 中文字幕久久专区| 国产精品一及| 国产一级毛片在线| 久久久午夜欧美精品| 大香蕉97超碰在线| 国产黄片美女视频| 亚洲aⅴ乱码一区二区在线播放| 日韩一区二区视频免费看| 草草在线视频免费看| 久久精品国产亚洲网站| 两个人的视频大全免费| 久久 成人 亚洲| 80岁老熟妇乱子伦牲交| 一本色道久久久久久精品综合| 国产一级毛片在线| 中文欧美无线码| 黄色视频在线播放观看不卡| 成年美女黄网站色视频大全免费 | 久久综合国产亚洲精品| 99久久精品一区二区三区| 亚洲伊人久久精品综合| 午夜精品国产一区二区电影| 观看av在线不卡| 久久精品夜色国产| 国产乱人视频| 乱系列少妇在线播放| av.在线天堂| 久久 成人 亚洲| 观看免费一级毛片| 成人国产麻豆网| 超碰97精品在线观看| 国产爱豆传媒在线观看| 在线 av 中文字幕| 亚洲欧美精品自产自拍| 我要看黄色一级片免费的| www.av在线官网国产| 一级二级三级毛片免费看| 久久这里有精品视频免费| 国产成人免费观看mmmm| 精品亚洲乱码少妇综合久久| 99久久精品热视频| 亚洲精品乱码久久久v下载方式| 国产午夜精品久久久久久一区二区三区| 熟女人妻精品中文字幕| 夜夜看夜夜爽夜夜摸| 毛片一级片免费看久久久久| 女性生殖器流出的白浆| 国产免费视频播放在线视频| 亚洲最大成人中文| 午夜免费鲁丝| kizo精华| 国产精品精品国产色婷婷| 久久婷婷青草| 国产亚洲午夜精品一区二区久久| 国产欧美日韩精品一区二区| 大码成人一级视频| 久久国产精品男人的天堂亚洲 | av视频免费观看在线观看| av又黄又爽大尺度在线免费看| 国产乱人偷精品视频| 久久精品国产自在天天线| 啦啦啦啦在线视频资源| 国产一区二区三区av在线| 亚洲精品第二区| 波野结衣二区三区在线| 国模一区二区三区四区视频| 99精国产麻豆久久婷婷| 丰满迷人的少妇在线观看| 国产爽快片一区二区三区| av在线观看视频网站免费| 能在线免费看毛片的网站| 成年女人在线观看亚洲视频| 国产欧美另类精品又又久久亚洲欧美| 亚洲人成网站高清观看| 自拍欧美九色日韩亚洲蝌蚪91 | 亚洲第一区二区三区不卡| 王馨瑶露胸无遮挡在线观看| 久久国产精品大桥未久av | 久久久久久久国产电影| 国产一区二区在线观看日韩| 国产爽快片一区二区三区| 婷婷色综合大香蕉| 纯流量卡能插随身wifi吗| 日本av免费视频播放| 国产视频内射| 亚洲欧美日韩无卡精品| 婷婷色av中文字幕| 观看av在线不卡| 国产一级毛片在线| 少妇丰满av| 如何舔出高潮| 最黄视频免费看| 国产精品久久久久久久久免| 哪个播放器可以免费观看大片| 性色av一级| 日本与韩国留学比较| 久久久久性生活片| 亚洲美女黄色视频免费看| 国产精品国产三级国产专区5o| 亚洲一区二区三区欧美精品| 色视频www国产| 国产黄频视频在线观看| 91精品国产九色| 日本色播在线视频| 熟妇人妻不卡中文字幕| 搡女人真爽免费视频火全软件| 中文字幕免费在线视频6| 一区在线观看完整版| 美女视频免费永久观看网站| 99热国产这里只有精品6| 午夜精品国产一区二区电影| 精品一区二区免费观看| 少妇精品久久久久久久| 一边亲一边摸免费视频| 久久久欧美国产精品| 久久久精品94久久精品| 国产毛片在线视频| 最近中文字幕高清免费大全6| 日本黄色日本黄色录像| 91精品国产国语对白视频| 性高湖久久久久久久久免费观看| 久久韩国三级中文字幕| 国产有黄有色有爽视频| 男人爽女人下面视频在线观看| 亚洲精品aⅴ在线观看| 国产精品一区www在线观看| 久久热精品热| 韩国高清视频一区二区三区| 亚洲天堂av无毛| 久久久久久久大尺度免费视频| 少妇被粗大猛烈的视频| 久久久久久久久久久丰满| 亚洲国产av新网站| 亚洲人成网站高清观看| 夫妻午夜视频| 人妻一区二区av| 久久久久久久精品精品| 三级经典国产精品| 一区二区三区乱码不卡18| 亚洲电影在线观看av| 亚洲av免费高清在线观看| av在线蜜桃| 人妻少妇偷人精品九色| 只有这里有精品99| 嘟嘟电影网在线观看| 美女主播在线视频| 又爽又黄a免费视频| 亚洲精品乱久久久久久| 99久久精品一区二区三区| 精品一区在线观看国产| 一个人看视频在线观看www免费| 欧美zozozo另类| 人人妻人人澡人人爽人人夜夜| 日韩欧美精品免费久久| 两个人的视频大全免费| 青春草国产在线视频| 国产精品无大码| 干丝袜人妻中文字幕| 久久久亚洲精品成人影院| 大香蕉97超碰在线| 国产精品久久久久久精品电影小说 | 狂野欧美白嫩少妇大欣赏| 久久久久久久久久久免费av| 精品午夜福利在线看| 亚洲精品国产av蜜桃| 一个人看的www免费观看视频| 夫妻午夜视频| 九九爱精品视频在线观看| 欧美精品一区二区大全| 91精品伊人久久大香线蕉| 在线播放无遮挡| 高清av免费在线| av在线app专区| 国产真实伦视频高清在线观看| 乱系列少妇在线播放| 日本-黄色视频高清免费观看| 亚洲,一卡二卡三卡| 久久久欧美国产精品| 国产亚洲91精品色在线| 伊人久久国产一区二区| 亚洲成人中文字幕在线播放| 免费在线观看成人毛片| 国产免费福利视频在线观看| 欧美日韩国产mv在线观看视频 | av国产精品久久久久影院| 日韩成人伦理影院| 国产精品免费大片| 国产色婷婷99| 十分钟在线观看高清视频www | 久久精品国产亚洲网站| 国精品久久久久久国模美| 一个人看视频在线观看www免费| 少妇猛男粗大的猛烈进出视频| 国产熟女欧美一区二区| 97精品久久久久久久久久精品| 久久99精品国语久久久| 久久久久久久国产电影| xxx大片免费视频| 午夜免费观看性视频| 欧美性感艳星| 国产精品一区二区在线观看99| 婷婷色综合www| 亚洲av日韩在线播放| 乱系列少妇在线播放| 街头女战士在线观看网站| 九九爱精品视频在线观看| 黑人高潮一二区| 国产又色又爽无遮挡免| 国产免费视频播放在线视频| av在线蜜桃| 99热这里只有是精品在线观看| 观看av在线不卡| 国产大屁股一区二区在线视频| 国产精品三级大全| 蜜桃在线观看..| 亚洲aⅴ乱码一区二区在线播放| 国产精品久久久久久久电影| 99热全是精品| 国产精品av视频在线免费观看| 亚洲人成网站高清观看| 一级二级三级毛片免费看| h日本视频在线播放| 女性被躁到高潮视频| 2022亚洲国产成人精品| 直男gayav资源| 国产精品免费大片| 亚洲最大成人中文| 亚洲四区av| 国产精品偷伦视频观看了| 亚洲国产成人一精品久久久| 在线观看三级黄色| 亚洲无线观看免费| 18禁裸乳无遮挡免费网站照片| 国产高潮美女av| 国产69精品久久久久777片| 精品一区二区免费观看| 国产在线男女| 少妇猛男粗大的猛烈进出视频| 大话2 男鬼变身卡| 免费看日本二区| 一本—道久久a久久精品蜜桃钙片| 久久久欧美国产精品| 在线观看免费高清a一片| av在线蜜桃| 国产精品久久久久久精品古装| 国产精品一及| 尾随美女入室| 亚洲精品国产av成人精品| 婷婷色麻豆天堂久久| 国产91av在线免费观看| 一级a做视频免费观看| 亚洲国产日韩一区二区| 女性被躁到高潮视频| 国产一区二区三区av在线| 老女人水多毛片| 久久影院123| h日本视频在线播放| 国产精品一区www在线观看| 精品久久久久久久久亚洲| 久久国产精品男人的天堂亚洲 | 高清午夜精品一区二区三区| 人妻系列 视频| 日本vs欧美在线观看视频 | av在线观看视频网站免费| 亚洲精品一区蜜桃| 国产精品爽爽va在线观看网站| 黄色日韩在线| 97精品久久久久久久久久精品| 日韩不卡一区二区三区视频在线| 精品视频人人做人人爽| 女人十人毛片免费观看3o分钟| 人妻夜夜爽99麻豆av| 国产v大片淫在线免费观看| 亚洲av福利一区| 欧美人与善性xxx| 2021少妇久久久久久久久久久| 免费高清在线观看视频在线观看| av黄色大香蕉| 成人影院久久| 熟女电影av网| 亚洲av综合色区一区| 日韩中文字幕视频在线看片 | 一区二区三区乱码不卡18| 日产精品乱码卡一卡2卡三| 中文字幕人妻熟人妻熟丝袜美| 中国国产av一级| 成人亚洲欧美一区二区av| 少妇人妻精品综合一区二区| 亚洲美女视频黄频| 国产精品人妻久久久久久| 能在线免费看毛片的网站| 免费人妻精品一区二区三区视频| 国产 一区 欧美 日韩| 青春草亚洲视频在线观看| 在线天堂最新版资源| 妹子高潮喷水视频| 777米奇影视久久| 不卡视频在线观看欧美| 在线免费十八禁| 少妇人妻 视频| 人人妻人人看人人澡| 最后的刺客免费高清国语| 国产精品福利在线免费观看| 成人美女网站在线观看视频| av在线播放精品| 精品人妻偷拍中文字幕| 丝瓜视频免费看黄片| 国产精品一区二区在线不卡| 亚洲国产高清在线一区二区三| 男人狂女人下面高潮的视频| 一级片'在线观看视频| 性高湖久久久久久久久免费观看| 亚洲精品第二区| 最近最新中文字幕免费大全7| 欧美+日韩+精品| 精品一区二区三区视频在线| 亚洲av成人精品一二三区| 蜜桃在线观看..| 国产精品久久久久成人av| 美女主播在线视频| 国产在线男女| 亚洲精品国产av成人精品| 哪个播放器可以免费观看大片| 国产欧美日韩精品一区二区| 一区二区三区免费毛片| 亚洲美女黄色视频免费看| 男女无遮挡免费网站观看| 一二三四中文在线观看免费高清| 久久久久久九九精品二区国产| 亚洲国产精品国产精品| 欧美日韩视频高清一区二区三区二| 男女免费视频国产| 国产爽快片一区二区三区| 激情 狠狠 欧美| av.在线天堂| 中文字幕亚洲精品专区| 国产亚洲最大av| 免费观看在线日韩| 久久久久久久国产电影| 国产高清国产精品国产三级 | 青春草国产在线视频| 国产男人的电影天堂91| 亚洲经典国产精华液单| 美女高潮的动态| 免费久久久久久久精品成人欧美视频 | 国产 一区精品| 午夜免费观看性视频| 午夜福利影视在线免费观看| 美女主播在线视频| 蜜桃在线观看..| 色婷婷久久久亚洲欧美| 亚洲怡红院男人天堂| 亚洲国产精品999| 日韩亚洲欧美综合| 成人国产麻豆网| 高清视频免费观看一区二区|