郜文,孫秀梅,金衍健,郝青,傅宇,葉茂盛,楊承虎,郭遠(yuǎn)明
(1.浙江海洋大學(xué) 海洋與漁業(yè)研究所,浙江 舟山 316021; 2.浙江省海洋水產(chǎn)研究所浙江省海洋漁業(yè)資源可持續(xù)利用技術(shù)研究重點(diǎn)實(shí)驗(yàn)室,浙江 舟山 316021)
固相萃取凈化-氣相色譜-負(fù)化學(xué)源質(zhì)譜法測定近岸海洋環(huán)境中的甲氧基多溴聯(lián)苯醚
郜文1,2,孫秀梅2*,金衍健2,郝青2,傅宇1,2,葉茂盛1,2,楊承虎2,郭遠(yuǎn)明2
(1.浙江海洋大學(xué) 海洋與漁業(yè)研究所,浙江 舟山 316021; 2.浙江省海洋水產(chǎn)研究所浙江省海洋漁業(yè)資源可持續(xù)利用技術(shù)研究重點(diǎn)實(shí)驗(yàn)室,浙江 舟山 316021)
甲氧基多溴聯(lián)苯醚(methoxypolybrominated diphenyl ethers, MeO-PBDEs)廣泛存在于生物體和海洋環(huán)境。以象山海域的生物體和沉積物為樣本,采用固相萃取凈化-氣相色譜-負(fù)化學(xué)源質(zhì)譜法,檢測了6種MeO-PBDEs,結(jié)果顯示,當(dāng)目標(biāo)分析物濃度為0.1~20.0 μg?L-1時(shí),線性關(guān)系良好(R2gt;0.999),檢出限為0.13~0.22 μg?kg-1,定量限為0.42~0.72 μg?kg-1,實(shí)際樣品的平均回收率為71.2%~116.2%。MeO-PBDEs的分布狀況調(diào)查結(jié)果顯示,藻類樣品中僅檢出6-MeO-BDE-47,且濃度較低,其他生物體中檢出3種MeO-PBDEs,檢出率為31.3%,濃度為0.21~2.72 μg?kg-1。沉積物中無MeO-PBDEs被檢出。
甲氧基多溴聯(lián)苯醚;氣相色譜-負(fù)化學(xué)源質(zhì)譜;固相萃取凈化;海洋環(huán)境
甲氧基多溴聯(lián)苯醚(methoxypolybrominated diphenyl ethers,MeO-PBDEs)是持久性有機(jī)污染物多溴聯(lián)苯醚(PBDEs)的甲氧基結(jié)構(gòu)衍生物。多溴聯(lián)苯醚是一種廣泛用于紡織、塑料和電子產(chǎn)品等的添加型溴系阻燃劑[1],由于其在生產(chǎn)、使用過程中不易揮發(fā)且難降解,對(duì)環(huán)境及生物造成持久影響,被《斯德哥爾摩公約》列為具有持久性、遷移性和生物累積性的持久性有機(jī)污染物。已有研究顯示,MeO-PBDEs是天然有機(jī)物,主要源自海綿、藻類等生物,也可由PBDEs、OH-PBDEs通過生物轉(zhuǎn)化、光轉(zhuǎn)化等生成[2-5]。由于PBDEs、OH-PBDEs和MeO-PBDEs具有相似的結(jié)構(gòu)和性質(zhì)[6-7],并可相互轉(zhuǎn)化,因此普遍認(rèn)為MeO-PBDEs可能具有PBDEs和OH-PBDEs的毒性,影響甲狀腺效應(yīng)、免疫毒性和神經(jīng)行為[8],并改變生殖行為,導(dǎo)致胚胎出現(xiàn)致命性或非致命性畸形,降低繁殖成功率[9],其對(duì)雌性激素的抑制作用已得到證實(shí)[10]。
在世界各地環(huán)境中均已檢出MeO-PBDEs。在亞洲地區(qū),如我國渤海、遼東灣和長江流域的各個(gè)營養(yǎng)層級(jí)生物體及我國香港和日本人體的乳汁、血清和肝臟中,均曾檢出MeO-PBDEs[5],濃度為2~420 μg?kg-1。在歐洲地區(qū),如瑞典的魚卵中,英國北海海域的海豹、海豚體內(nèi),均檢出了6-MeOBDE-47和2apos;-MeO-BDE-68,濃度最高達(dá)483 μg?kg-1[15-16]。在非洲突尼斯地區(qū),人體的乳汁、血清中,檢出了6種MeO-PBDEs,海洋生物體內(nèi)檢出了8種MeO-PBDEs,濃度為0.39~286 μg?kg-1[17-18]。在澳洲南部海岸,發(fā)現(xiàn)了89種天然生成的MeO-PBDEs[17]。SUN等[18]在極地地區(qū)海洋食物網(wǎng)中發(fā)現(xiàn)了MeO-PBDEs的生物富集和營養(yǎng)轉(zhuǎn)移。在美國、加拿大等地的環(huán)境中也存在MeO-PBDEs[19-21]。
常見的MeO-PBDEs檢測方法有,氣相色譜-負(fù)化學(xué)源質(zhì)譜(GC-NCI/MS)[22]、氣相色譜-電子捕獲檢測器(GC-ECD)[23]、氣相色譜-高分辨質(zhì)譜[24]、氣相色譜-負(fù)化學(xué)電離源-質(zhì)譜(GC-ECNI-MS)等儀器分析方法。ZHANG等[3]采用GC-NCI/MS方法結(jié)合液液萃取技術(shù)檢測到BeWo細(xì)胞內(nèi)含6-MeO-BDE-47、2apos;-MeO-BDE-68等MeO-PBDEs,回收率為88.9%±18.5%。LIU等[12]采用固相萃取、酸性硅膠柱、無水硫酸鈉凈化等方法,對(duì)海洋生物樣品和沉積物進(jìn)行液相色譜-電噴霧電離-三重四級(jí)桿質(zhì)譜分析,回收率為71%~113%,方法檢測限為2 μg?kg-1(干重)?;诖?,本實(shí)驗(yàn)選擇固相萃取,輔以EMR-Lipid柱以及濃硫酸凈化的方法,通過相應(yīng)洗脫劑對(duì)樣品進(jìn)行選擇性洗脫,達(dá)到分離凈化的目的。依據(jù)MeO-PBDEs溴代數(shù)和結(jié)構(gòu)性質(zhì)特征,選擇氣相色譜-負(fù)化學(xué)源質(zhì)譜進(jìn)行檢測,分析象山海域生物體和沉積物中MeO-PBDEs的累積特征。
7890B-7000C型氣相色譜-質(zhì)譜聯(lián)用儀(Agilent);R210旋轉(zhuǎn)蒸發(fā)儀(瑞士Buchi公司);Centrifuge5810高速離心機(jī)(德國Eppendorf公司);N-EVAP-112氮吹儀(美國Organomation公司);超聲波清洗器(上??茖?dǎo)超聲儀器有限公司);MS3渦混合器(德國IKA公司);12通道固相萃取裝置(美國Suplco公司);恒溫振蕩器。
正己烷、二氯甲烷和丙酮(農(nóng)殘級(jí));濃硫酸;有機(jī)微孔濾膜(0.22 μm,上海安譜科學(xué)儀器有限公司);弗羅里硅土柱(500 mg,3 mL)、中性氧化鋁柱(500 mg,3 mL)、EMR-Lipid固相萃取柱(500 mg,3 mL)、硅膠柱(500 mg,3 mL)均購自上海安譜科學(xué)儀器有限公司。
目標(biāo)化合物包括6種MeO-PBDEs標(biāo)準(zhǔn)品:3apos;-MeO-BDE-28、3-MeO-BDE-47、5-MeO-BDE-47,濃度均為10 μg?mL-1;2apos;-MeO-BDE-68、6-MeO-BDE-47、4-MeO-BDE-42,濃度均為50 μg?mL-1。所有標(biāo)準(zhǔn)品均購自美國AccuStandard公司。
準(zhǔn)確移取6種MeO-PBDEs混合標(biāo)準(zhǔn)品(1.0 μg?mL-1)0.1 mL,分別溶于5 mL正己烷溶液,配制成濃度為20 μg?L-1的混合標(biāo)準(zhǔn)儲(chǔ)備溶液,-20 ℃貯存,備用。用正己烷溶液配制質(zhì)量濃度分別為0.1,0.2,0.5,1.0,2.0,10.0,20.0 μg?L-1的MeO-PBDEs混合標(biāo)準(zhǔn)工作溶液。
在象山海域采集20份沉積物樣品和102份海洋生物樣品,涉及20種魚類、12種甲殼類(9種蝦、2種蟹和1種龜足)、4種頭足類、1種腹足類和3種藻類,如表1所示。現(xiàn)場采集足夠數(shù)量的完好生物樣品,冷凍后運(yùn)回實(shí)驗(yàn)室,取魚類的肌肉,甲殼類、腹足類和頭足類的軟組織以及藻類制樣,真空冷凍干燥。采集沉積物樣品后,濾去水分,剔除礫石、木屑、雜草及貝殼等動(dòng)植物殘?bào)w,攪拌均勻后裝入棕色玻璃瓶中,冷藏運(yùn)回實(shí)驗(yàn)室,經(jīng)實(shí)驗(yàn)室真空冷凍干燥后,避光保存。所有樣品密封后,于-20 ℃貯存。
表1 象山海域生物樣品信息Table 1 Sampling information of organisms in Xiangshan sea area
1.4.1 樣品的提取
準(zhǔn)確稱取0.5 g海洋生物樣品(干樣)于50 mL具塞離心管中,加入10 mL二氯甲烷/正己烷(體積比為1∶1),渦旋2 min,超聲提取5 min,以6 000 r?min-1離心,取上清液轉(zhuǎn)移至離心管。重復(fù)提取一次,合并提取液于同一離心管中,加入2 mL水,再緩慢加入5 mL濃硫酸,封口,于恒溫(20 ℃)振蕩箱中振蕩2 h。將酸化樣品離心,取上清液轉(zhuǎn)移至旋蒸瓶,加入10 mL二氯甲烷/正己烷(體積比為1∶1),重復(fù)提取一次,合并上清液,并旋蒸至近干,用1 mL正己烷復(fù)溶,待凈化。
準(zhǔn)確稱取0.5 g沉積物樣品(干樣)于50 mL具塞離心管中,提取酸化過程同海洋生物樣品,在提取液中加入1 g活化后的銅粉,超聲15 min、靜置2 h后轉(zhuǎn)移至旋蒸瓶,旋蒸至近干,用1 mL正己烷復(fù)溶,待凈化。
1.4.2 樣品的凈化
用EMR-Lipid固相萃取柱對(duì)提取樣品進(jìn)行凈化。小柱用5 mL丙酮活化,提取液上樣,用5 mL二氯甲烷洗脫,收集洗脫液氮吹濃縮至近干,加入1 mL正己烷定容。定容后的溶液過微孔濾膜,收集于氣相小瓶,待進(jìn)樣分析。
1.5.1 氣相色譜條件
色譜柱為DB-5MS毛細(xì)管柱(30 m×0.25 mm×0.25 μm);色譜柱升溫程序:初始溫度為70 ℃,以30 ℃?min-1升至210 ℃,再以5 ℃?min-1升至300 ℃,保持10 min;進(jìn)樣口溫度為280 ℃;進(jìn)樣量為1 μL;進(jìn)樣方式為不分流進(jìn)樣。
1.5.2 質(zhì)譜條件
電離方式為電子轟擊電離(EI)源、負(fù)化學(xué)電離(NCI)源;離子源溫度為150 ℃;四極桿溫度為150 ℃;轉(zhuǎn)移管溫度為280 ℃;溶劑延遲時(shí)間為5 min;碰撞氣流速為1.5 mL?min-1,淬滅氣流速為2.25 mL?min-1;掃描模式為選擇離子掃描(SIM)。
為確定最佳檢測條件,對(duì)氣相色譜-串聯(lián)質(zhì)譜的進(jìn)樣口溫度、檢測器溫度、升溫程序和離子源等因素進(jìn)行實(shí)驗(yàn)。比較EI源和NCI源對(duì)目標(biāo)化合物的分析結(jié)果。先對(duì)6種MeO-PBDEs標(biāo)準(zhǔn)溶液進(jìn)行EI源分析,再用SIM模式建立定量方法,其中6-MeO-BDE-47、2apos;-MeO-BDE-68、3-MeO-BDE-47、5-MeO-BDE-47、4-MeO-BDE-42、3apos;-MeO-BDE-28的掃描離子質(zhì)荷比(m/z)分別為340.7,355.8,515.7,262.9,277.9,435.7,其他色譜條件與NCI源模式相同。各目標(biāo)組分在EI源模式下基線不穩(wěn)定,靈敏度較差,部分目標(biāo)峰在監(jiān)測總離子流時(shí)色譜圖響應(yīng)較低。NCI源的電離方式是電離反應(yīng)氣,使其與樣品發(fā)生反應(yīng),使樣品分子電離,對(duì)于含有較強(qiáng)吸電子基團(tuán)的化合物,負(fù)離子的檢測靈敏度較高。各目標(biāo)組分在NCI源模式下峰形好,基線平滑,檢測靈敏度高,且分離效果較好。因此,選擇NCI源模式。6種MeO-PBDEs標(biāo)準(zhǔn)品在NCI源模式下的總離子流色譜如圖1所示。
圖1 6種MeO-PBDEs標(biāo)準(zhǔn)品的總離子流色譜(20 μg?L-1)Fig.1 Total ion chromatogram of six MeO-PBDEs diphenyl ethers (20 μg?L-1)
通過對(duì)比加速溶劑萃?。?5]、索氏提?。?6]和超聲提取3種提取方式的加標(biāo)回收率,確定沉積物樣品中MeO-PBDEs的最佳提取方式。圖2(a)(b)(c)分別為不同提取方式下低、中、高濃度水平目標(biāo)化合物的加標(biāo)回收率,可知,加速溶劑萃取、索氏提取、超聲提取的平均加標(biāo)回收率分別為77.5%~109.8%,83.9%~111.2%,76.3%~101.9%,均能較好地提取目標(biāo)化合物。其中,超聲提取耗時(shí)短,溶劑使用量小,且能滿足提取效率需求,符合綠色原則。因此,選用超聲提取法。
圖2 不同提取方式對(duì)沉積物樣品中MeO-PBDEs回收率的影響(n=3)Fig.2 Recoveries of MeO-PBDEs in sediments by different extraction methods (n=3)
2.3.1 固相萃取柱的選擇
考查中性氧化鋁柱、硅膠柱、弗羅里硅土柱、EMR-Lipid固相萃取柱等對(duì)樣品回收率的影響。稱取12份干燥后的樣品各0.5 g,分為4組,每組3個(gè)平行樣,每組樣品加入1 mL 濃度為10 μg?L-1的6種MeO-PBDEs混合標(biāo)準(zhǔn)溶液,采用超聲提取法提取MeO-PBDEs。用5 mL丙酮活化、保持柱體濕潤,上樣后收集流出液,用5 mL二氯甲烷洗脫。
不同固相萃取柱對(duì)生物體樣品中MeO-PBDEs的平均回收率的影響如圖3所示。可知,中性氧化鋁柱難以去除脂肪,樣品難以通過萃取柱導(dǎo)致萃取柱堵塞,凈化過程耗時(shí)過長,樣品平均回收率為28.1%~55.2%,相對(duì)標(biāo)準(zhǔn)偏差(relative standard deviation,RSD)為10.3%~71.9%。硅膠柱的樣品平均回收率也較低,為39.1%~71.0%,RSD為3.6%~46.6%。弗羅里硅土柱凈化過程相對(duì)較短,樣品平均回收率為37.2%~78.9%,但受基質(zhì)影響較大,且對(duì)脂肪和藻類中色素的凈化能力較弱。EMR-Lipid固相萃取柱的樣品平均回收率為78.3%~99.7%,RSD為4.8%~6.5%,由于EMR-Lipid固相萃取柱是一種新型油脂吸附劑,結(jié)合前期酸化處理,能更好地降低基質(zhì)干擾,減少實(shí)驗(yàn)時(shí)間,提高實(shí)驗(yàn)效率和平均回收率。
圖3 不同固相萃取柱對(duì)生物樣品中MeO-PBDEs回收率的影響(n=3)Fig.3 Recoveries of MeO-PBDEs in marine organisms samples by different solid phase extraction column (n=3)
2.3.2 酸化時(shí)間的確定
用二氯甲烷/正己烷(體積比為1∶1)提取樣品,用硫酸酸化,結(jié)合EMR-Lipid固相萃取柱,以達(dá)到去除樣品中脂肪、色素等雜質(zhì)干擾的目的,但若酸化時(shí)間過短,則影響雜質(zhì)的去除;若酸化時(shí)間過長,則影響目標(biāo)化合物的回收率。選取魚類、甲殼類和藻類樣品,加入10 μg?L-1的MeO-PBDEs標(biāo)準(zhǔn)品,每組設(shè)置3個(gè)平行樣,酸化時(shí)間分別設(shè)為0,2,4,8和10 h,實(shí)驗(yàn)結(jié)果如圖4所示。可知,當(dāng)酸化時(shí)間為0時(shí),樣品回收率為73.9%~89.6%,且基質(zhì)干擾效應(yīng)較強(qiáng);當(dāng)酸化時(shí)間為2 h和4 h時(shí),樣品回收率分別為88.0%~108.9%和77.5%~100.4%。當(dāng)酸化時(shí)間為8 h和10 h時(shí),樣品回收率分別為62.5%~93.5%和59.8%~90.7%。可知,采用2 h酸化處理能有效提高樣品回收率,且降低基質(zhì)的干擾效應(yīng),因此,選擇2 h作為硫酸酸化時(shí)間。
圖4 不同酸化時(shí)間對(duì)生物樣品中MeO-PBDEs回收率的影響(n=3)Fig.4 Recoveries of MeO-PBDEs in marine environment by different acidification time (n=3)
取已配制的MeO-PBDEs混合標(biāo)準(zhǔn)工作溶液,并按上述條件進(jìn)行測定,以3倍信噪比計(jì)算檢出限,以10倍信噪比計(jì)算定量限。MeO-PBDEs的線性相關(guān)系數(shù)、檢出限和定量限如表2所示??芍琈eO-PBDEs的響應(yīng)在考查范圍內(nèi)線性關(guān)系良好(R2gt;0.999),檢出限為0.13~0.22 μg?kg-1,定量限為0.42~0.72 μg?kg-1,靈敏度高。
表2 線性相關(guān)系數(shù)、檢出限和定量限Table 2 Linearity range,correlation coefficient, detection limit and quantitative limits
分別以加標(biāo)回收率和RSD衡量準(zhǔn)確度和精密度。在4種生物樣品中分別添加濃度為1,10,20 μg?L-1的MeO-PBDEs混合標(biāo)準(zhǔn)工作溶液,計(jì)算不同加標(biāo)水平下MeO-PBDEs的加標(biāo)回收率與RSD,結(jié)果如表3所示??芍?,不同加標(biāo)水平下MeO-PBDEs在4種生物樣品中的加標(biāo)回收率為76.2%~116.2%,RSD為0.2%~9.7%,準(zhǔn)確度和精密度滿足實(shí)際樣品分析要求。
表3 不同加標(biāo)水平下MeO-PBDEs在4種生物樣品中的加標(biāo)回收率與RSDTable 3 Recoveries and RSD of MeO-PBDEs in four marine organism samples at different spiked levels
在20種共40份魚類樣品中,16份樣品檢出了MeO-PBDEs,檢出率為40.0%,平均檢出濃度為1.23 μg?kg-1。6-MeO-BDE-47的檢出率為40.0%,其在中華海鯰中的檢出濃度最高,為2.04 μg?kg-1;在鳳鯽和紅狼牙蝦虎魚中檢出了 2apos;-MeO-BDE-68,檢出濃度分別為0.93 μg?kg-1和0.28 μg?kg-1,如圖5所示。
圖5 象山海域魚類樣品中檢出的MeO-PBDEs濃度Fig.5 Concentration of MeO-PBDEs in fishes samples from Xiangshan sea area
圖6 象山海域甲殼類樣品中檢出的MeO-PBDEs濃度Fig.6 Concentration of MeO-PBDEs in curstaceans samples from Xiangshan sea area
在甲殼類樣品中,共有5份蝦樣品檢出了MeO-PBDEs,檢出率為16.1%,平均濃度為1.71 μg?kg-1。2apos;-MeO-BDE-68和6-MeO-BDE-47最高濃度均檢出于口蝦姑A47樣品,分別為1.70和2.72 μg?kg-1;3-MeO-BDE-47檢出于青尖蝦A53樣品,濃度為0.48 μg?kg-1。蟹樣品中的MeO-PBDEs檢出率為27.8%,平均濃度為0.90 μg?kg-1,最高濃度為1.45 μg?kg-1,且檢出樣品均為三疣梭子蟹。其中樣品A89,A94,A95中檢出了6-MeO-BDE-47,濃度為0.57~1.45 μg?kg-1;樣品A86,A95中檢出了2apos;-MeO-BDE-68,濃度分別為0.41和0.49 μg?kg-1;樣品A88中檢出了3-MeO-BDE-47,濃度為0.55 μg?kg-1,如圖6所示。此外,在龜足樣品A72中檢出了2apos;-MeO-BDE-68,濃度為0.98 μg?kg-1。
頭足類和腹足類樣品中MeO-PBDEs的檢出率為33.3%,在長蛸和荔枝螺中均檢出了6-MeO-BDE-47,濃度分別為0.81和0.72 μg?kg-1。藻類樣品,僅在石莼中檢出了少量6-MeO-BDE-47。
20份沉積物樣品中均未檢出MeO-PBDEs。采用索氏提取和加速溶劑萃取方式對(duì)結(jié)果進(jìn)行驗(yàn)證,同樣未檢出MeO-PBDEs。
根據(jù)MeO-PBDEs的檢出情況,象山海域內(nèi)洄游種生物體樣品中MeO-PBDEs的檢出率遠(yuǎn)高于定居種海洋生物體樣品,藻類被認(rèn)為是MeO-PBDEs的主要生產(chǎn)者,但本實(shí)驗(yàn)僅在石莼中檢出了少量6-MeO-BDE-47。結(jié)合沉積物樣品中未檢出MeO-PBDEs,推測象山海域MeO-PBDEs的直接來源不多,可能存在外源輸入或生物轉(zhuǎn)化。象山海域內(nèi)海洋生物體樣品中MeO-PBDEs的檢出率達(dá)29.4%,且在所有檢出的30份生物體樣品中,有23份樣品涉及10種生物均為經(jīng)濟(jì)價(jià)值較高且常見的海鮮消費(fèi)品。因此,應(yīng)持續(xù)關(guān)注象山海域MeO-PBDEs的污染狀況。
海洋生物體中MeO-PBDEs濃度一般在μg?kg-1水平,對(duì)樣品分析提出了較高要求。采用氣相色譜-負(fù)化學(xué)源質(zhì)譜法,輔以固相萃取凈化樣品,建立了海洋環(huán)境中MeO-PBDEs的檢測方法。通過前處理及優(yōu)化,方法的基質(zhì)干擾低、靈敏度較高、重現(xiàn)性好、回收率穩(wěn)定,能夠滿足近岸海洋環(huán)境中MeO-PBDEs的檢測要求。研究發(fā)現(xiàn),象山海域海洋生物體中已普遍存在MeO-PBDEs,其中,6-MeOBDE-47、3-MeO-BDE-47和2apos;-MeO-BDE-68被檢出,未來需進(jìn)一步探討MeO-PBDEs的富集機(jī)制及來源途徑。
[1]WANG S, WANG S W,SHAH S H, et al. A density functional theory/time-dependent density functional theory study of the structure-related photochemical properties of hydroxylated polybrominated diphenyl ethers and methoxylated polybrominated diphenyl ethers and metal ion effects[J]. Environmental Science and Pollution Research, 2020,27(9): 9297-9306. DOI:10. 1007/s11356-019-07538-0
[2]HAGLUND P S, ZOOK D R,BUSER H-R, et al. Identification and quantification of polybrominated diphenyl ethers and methoxy-polybrominated diphenyl ethers in Baltic biota[J]. Environmental Science amp; Technology, 1997,31(11):3281-3287. DOI:10. 1021/es9702834
[3]ZHANG X L, CHENG X M,YU Y L, et al. Insight into the transplacental transport mechanism of methoxylated polybrominated diphenyl ethers using a BeWo cell monolayer model[J]. Environmental Pollution, 2020,265(A): 114836. DOI:10.1016/j.envpol.2020.114836
[4]DAHLGREN E, LINDQVIST D,DAHLGREN H, et al. Trophic transfer of naturally produced brominated aromatic compounds in a Baltic Sea food chain[J]. Chemosphere,2016, 144:1597-1604. DOI:10.1016/j.chemosphere.2015.10.024
[5]OCHIAI M, NOMIYAMA K,ISOBE T, et al. Polybrominated diphenyl ethers (PBDEs)and their hydroxylated and methoxylated analogues in the blood of harbor,Dallapos;s and finless porpoises from the Japanese coastal waters[J]. Marine Environmental Research, 2017,128: 124-132. DOI:10.1016/j.marenvres.2016.11.004
[6]張帆,余應(yīng)新,張東平,等. 溴系阻燃劑在環(huán)境及人體中的存在和代謝轉(zhuǎn)化[J]. 化學(xué)進(jìn)展, 2009,21(6): 1364-1372.
ZHANG F, YU Y X,ZHANG D P, et al. Metabolism and transformation of brominated flame retardants existing in environment and human body[J]. Progress in Chemical, 2009, 21(6):1364-1372.
[7]CRUZ R, MENDES E,MAULVAULT A L, et al. Bioaccessibility of polybrominated diphenyl ethers and their methoxylated metabolites in cooked seafood after using a multi-compartment in vitro digestion model[J]. Chemosphere,2020, 252:126462. DOI:10.1016/j.chemosphere.2020.126462
[8]ERIKSSON P, FISCHER C,WALLIN M, et al. Impaired behaviour,learning and memory, in adult mice neonatally exposed to hexabromocyclododecane(HBCDD)[J]. Environmental Toxicology and Pharmacology, 2006, 21(3):317-322. DOI:10. 1016/j.etap.2005.10.001
[9]FERNIE K J, MAYNE G,SHUTT J L, et al. Evidence of immunomodulation in nestling American kestrels (Falco sparverius)exposed to environmentally relevant PBDEs[J]. Environmental Pollution, 2005,138(3): 485-493. DOI:10.1016/j.envpol.2005.04.008
[10]VARSHAVSKY J, SMITH A,WANG A, et al. Heightened susceptibility:A review of how pregnancy and chemical exposures influence maternal health[J]. Reproductive Toxicology, 2020, 92:14-56. DOI:10. 1016/j.reprotox.2019.04.004
[11]SUN J T, LIU J Y,LIU Y W, et al. Hydroxylated and methoxylated polybrominated diphenyl ethers in mollusks from Chinese coastal areas[J]. Chemosphere,2013, 92(3):322-328. DOI:10. 1016/j.chemosphere.2013.03.042
通過信息化系統(tǒng),提供了項(xiàng)目考核與績效測量的基準(zhǔn)所需要的工作內(nèi)容、工作量、完成時(shí)間、完成效果等關(guān)鍵要素的數(shù)據(jù),有助于軍工科研單位建立一套以貢獻(xiàn)為導(dǎo)向、以執(zhí)行率為參考、以效果為考核的評(píng)價(jià)體系,實(shí)現(xiàn)合理有效的評(píng)價(jià)機(jī)制,充分發(fā)揮人員工作積極性。
[12]LIU Y W, LIU J Y,YU M, et al. Hydroxylated and methoxylated polybrominated diphenyl ethers in a marine food web of Chinese Bohai Sea and their human dietary exposure[J]. Environmental Pollution, 2018,233: 604-611. DOI:10.1016/j.envpol.2017.10.105
[13]ZHANG K, WAN Y, AN L H, et al. Trophodynamics of polybrominated diphenyl ethers and methoxylated polybrominated diphenyl ethers in a marine food web[J]. Environmental Toxicology and Chemistry, 2010,29(12):2792-2799. DOI:10. 1002/etc.334
[14]ZHENG S C, WANG P,SUN H Z, et al. Tissue distribution and maternal transfer of persistent organic pollutants in Kentish Plovers (Charadrius alexandrines)from Cangzhou Wetland, Bohai Bay,China[J]. Science of the Total Environment,2018, 612:1105-1113. DOI:10.1016/j.scitotenv.2017. 08.323
[15]NORDL?F U, HELANDER B,BIGNERT A, et al. Levels of brominated flame retardants and methoxylated polybrominated diphenyl ethers in eggs of white-tailed sea eagles breeding in different regions of Sweden[J]. Science of the Total Environment, 2010,409: 238-246. DOI:10.1016/j.scitotenv.2010.09.042
[16]WEIJS L, LOSADA S,DAS K, et al. Biomagnification of naturally-produced methoxylated polybrominated diphenyl ethers (MeO-PBDEs)in harbour seals and harbour porpoises from the Southern North Sea[J]. Environment International, 2009,35(6): 893-899. DOI:10.1016/j.envint.2009.03.006
[17]WEIJS L, COVACI A,STEVENSON G, et al. Concentrations of some legacy pollutants have increased in South Australian bottlenose dolphins from 1989 to 2014[J]. Environmental Research,2020, 189:109834. DOI:10.1016/j.envres.2020.109834
[18]SUN H Z, LI Y M,HAO Y F, et al. Bioaccumulation and trophic transfer of polybrominated diphenyl ethers and their hydroxylated and methoxylated analogues in polar marine food webs[J]. Environmental Science amp; Technology, 2020,54(23):15086-15096. DOI:10. 1021/acs.est.0c05427
[19]SCHULTZ I R, KUO L J,CULLINAN V, et al. Occupational and dietary differences in hydroxylated and methoxylated PBDEs and metals in plasma from Puget Sound, Washington,USA region volunteers[J]. Science of the Total Environment, 2020,714: 136566. DOI:10.1016/j.scitotenv.2020.136566
[20]CADE S E, KUO L J,SCHULTZ L R. Polybrominated diphenyl ethers and their hydroxylated and methoxylated derivatives in seafood obtained from Puget Sound,WA[J]. Science of the Total Environment,2018, 630:1149-1154. DOI:10.1016/j.scitotenv.2018.02.301
[21]BUTRYN D M, GROSS M S,CHI L H, et al. “One-shot”analysis of polybrominated diphenyl ethers and their hydroxylated and methoxylated analogs in human breast milk and serum using gas chromatography-tandem mass spectrometry[J]. Analytica Chimica Acta, 2015,892: 140-147. DOI:10.1016/j.aca.2015.08.026
[22]季潔云,馮超,盧大勝,等. 生物樣品中多溴聯(lián)苯醚及其代謝物檢測方法的研究進(jìn)展[J]. 環(huán)境與職業(yè)醫(yī)學(xué), 2018,35(3): 246-252. DOI:10.13213/j.cnki.jeom.2018.17543
JI J Y, FENG C,LU D S, et al. Research progress on detection methods for polybrominated diphenyl ethers and their metabolites in biological samples[J]. Journal of Environmental and Occupational Medicine, 2018,35 (3): 246-252. DOI:10.13213/j.cnki.jeom.2018.17543
[23]劉秀娟,周志明,王巧玲,等. MSPD-GC-ECD測定血液中甲氧基多溴聯(lián)苯醚[J]. 分析試驗(yàn)室,2019,38(11):1268-1272. DOI:10.13595/j.cnki.issn1000-0720.2019.011901
LIU X J, ZHOU Z M,WANG Q L, et al. Determination of trace methoxylated polybrominated diphenyl ethers in blood by MSPD-GC-ECD[J]. Chinese Journal of Analysis Laboratory, 2019,38(11):1268-1272.DOI:10.13595/j.cnki.issn1000-0720.2019.011901
[24]葉茂盛. 水產(chǎn)品中甲氧基、羥基多溴聯(lián)苯醚的高效質(zhì)譜分析技術(shù)研究[D]. 舟山:浙江海洋大學(xué), 2019.
YE M S. Study on High Performance Mass Spectrometry of Methoxy and Hydroxy Polybrominated Diphenyl Ethers in Aquatic Products[D]. Zhoushan: Zhejiang Ocean University,2019.
[25]都燁. 多溴聯(lián)苯醚在不同區(qū)域沉積物中的分布特征[J]. 蚌埠學(xué)院學(xué)報(bào), 2019,8(5): 26-32.
DU Y. Temporal trends of polybrominated diphenyl ethers in the sediment cores from different areas[J]. Journal of Bengbu University, 2019,8(5): 26-32.
[26]張付海,陳鑫,田丙正,等. 加速溶劑同時(shí)萃取和凈化-氣相色譜-三重四極桿串聯(lián)質(zhì)譜測定土壤和沉積物中8種多溴聯(lián)苯醚[J]. 中國環(huán)境監(jiān)測,2019, 35(4):141-148. DOI:10.19316/j.issn.1002-6002. 2019.04.17
ZHANG F H, CHEN X,TIAN B Z, et al. Determination of 8 PBDEs in soil and sediment by accelerated solvent simultaneous extraction and clean-up with gas chromatography-triple quadrupole mass spectrometry[J]. Environmental Monitoring in China, 2019,35(4): 141-148.DOI:10.19316/j.issn.1002-6002.2019.04.17
Determination of methoxypolybrominated diphenyl ethers in the coastal marine environment using solid-phase extraction and gas chromatography coupled with negative chemical ionization mass spectrometry
GAO Wen1,2, SUN Xiumei2, JIN Yanjian2, HAO Qing2, FU Yu1,2, YE Maosheng1,2, YANG Chenghu2, GUO Yuanming2
(1. Institute of Marine and Fisheries,Zhejiang Ocean University,Zhoushan316021,Zhejiang Province,China;2. Key Laboratory of Sustainable Utilization of Technology Research for Fishery Resource of Zhejiang Province,Zhejiang Marine Fisheries Research Institute,Zhoushan316021,Zhejiang Province,China)
Methoxypolybrominated diphenyl ethers (MeO-PBDEs) were widely present in marine organisms and the marine environment. An analytical method of six methoxypolybrominated diphenyl ethers for biological samples and sediment samples from Xiangshan Sea area using solid-phase extraction and gas chromatography coupled with negative chemical ionization mass spectrometry was developed and optimized. The developed method exhibited satisfying linearity in the range of 0.1-20.0 μg?L-1 (R2gt;0.999). The detection limit (LOD) and limit of quantitation (LOQ) for MeO-PBDEs were 0.13-0.22 μg?kg-1and 0.42-0.72 μg?kg-1respectively. The spiked recovery was 71.2%-116.2%. The method was applied to the analysis of marine organisms and sediments collected from Xiangshan sea area. All kinds of MeO-PBDEs were not detected in sediment samples. Only 6-MeO-BDE-47 was detected in algae samples with low concentration. Three MeO-PBDEs were detected in other biological samples, and the ratio of detection was 31.3% with a concentration range of 0.21-2.72 μg?kg-1MeO-PBDEs were not detected in sediment samples.
methoxypolybrominated diphenyl ethers; gas chromatography-negative chemical ionization mass spectrometry; solid-phase extraction; marine environment
X 834
A
1008?9497(2022)03?344?10
10.3785/j.issn.1008-9497.2022.03.012
2021?01?21.
國家自然科學(xué)基金資助項(xiàng)目(21407127);浙江省科技廳項(xiàng)目(2018C37024,LGF22B070004).
郜文(1995—),ORCID:https://orcid.org/0000-0001-6354-8645,女,碩士研究生,主要從事水域環(huán)境管理與評(píng)估研究.
通信作者,ORCID:https://orcid.org/0000-0002-9547-6452,E-mail:sunxiumei82@sina.com.