鄭素佩,趙青宇,封建湖
(長安大學(xué)理學(xué)院,陜西西安 710064)
基于WENO重構(gòu)保號的四階熵穩(wěn)定格式
鄭素佩,趙青宇*,封建湖
(長安大學(xué)理學(xué)院,陜西西安 710064)
為提高一維雙曲守恒律方程數(shù)值求解格式的分辨率和精度,提出了一種基于加權(quán)本質(zhì)非振蕩(weighted essentially non-oscillatory,WENO)重構(gòu)保號的四階熵穩(wěn)定格式。該格式主要包含高階熵守恒通量和數(shù)值耗散項,通過在單元交界面處用拉格朗日多項式對熵變量進行有限差分WENO重構(gòu),證明了重構(gòu)前后跳躍值滿足保號性,論證了所構(gòu)造格式的熵穩(wěn)定性。在數(shù)值算例中,將空間半離散格式與四階Runge-Kutta格式相結(jié)合,并將該格式與熵穩(wěn)定格式進行了比較,結(jié)果表明,該格式具有四階精度、較高的分辨率和魯棒性,且不產(chǎn)生非物理振蕩。
雙曲守恒律方程;WENO重構(gòu);保號性;四階;熵穩(wěn)定
雙曲守恒律方程的數(shù)值計算在空氣動力學(xué)、物理學(xué)和海洋學(xué)等領(lǐng)域[1-3]有重要應(yīng)用,可構(gòu)造既能銳利地捕捉激波又可避免數(shù)值解在激波等間斷區(qū)域出現(xiàn)偽振蕩的高精度格式,一直廣受關(guān)注。TADMOR等[4]定義了一類滿足離散熵等式且具有二階精度的熵守恒格式。該格式在光滑區(qū)域保持總熵不變,在間斷區(qū)域需添加適當(dāng)?shù)臄?shù)值黏性項,以避免出現(xiàn)偽振蕩,即熵穩(wěn)定格式。ISMAIL等[5]提出了一種既能捕捉激波又能滿足熵不等式的熵穩(wěn)定格式,但該格式僅具有一階精度。LEFLOCH等[6]用二階熵守恒通量通過線性組合的方式構(gòu)造了高階熵守恒格式。為得到高精度、高分辨率的熵穩(wěn)定格式,需構(gòu)造高階的數(shù)值耗散項。FJORDHOLM等[7]提出了一種將高階熵守恒通量與基于本質(zhì)非振蕩(essentially non-oscillatory,ENO)[8]重構(gòu)且滿足符號性質(zhì)的耗散相結(jié)合的高階熵穩(wěn)定格式,然而ENO重構(gòu)僅從眾多模板中選取一個最優(yōu)模板,浪費了其他模板的信息。加權(quán)本質(zhì)非振蕩(weighted essentially non-oscillatory,WENO)[9]重構(gòu)解決了ENO重構(gòu)存在的問題,廣受學(xué)者關(guān)注。馮娟娟等[10]用WENO-Z+重構(gòu)的熵穩(wěn)定格式求解交通流模型。鄭素佩等[11]提出,在單元交界面對守恒變量進行三階WENO-Z 重構(gòu)。這些重構(gòu)均基于經(jīng)典的WENO重構(gòu),而SHU[12]的有限差分WENO重構(gòu)更為靈活。基于有限差分WENO重構(gòu),F(xiàn)JORDHOLM等[13]提出了一種三階信號保持加權(quán)本質(zhì)非振蕩(sign preserving weighted essentially non-oscillatory,SP-WENO)重構(gòu)方法,使權(quán)重滿足保號性。BISWAS等[14]提出了基于三階WENO和總變異遞減(total variation diminishing,TVD)[15]重構(gòu)的低耗散熵穩(wěn)定格式。遺憾的是,這些格式的精度和分辨率均較低。
本文基于WENO重構(gòu)的保號性,在單元交界面處對熵變量進行五階重構(gòu),并結(jié)合高階熵守恒格式,提出求解一維雙曲守恒律方程的四階熵穩(wěn)定格式。數(shù)值結(jié)果表明,所構(gòu)造格式的分辨率有一定提高,且無偽振蕩。
考慮一維雙曲守恒律方程
則該格式熵守恒,且具有二階精度,其數(shù)值熵通量為
LEFLOCH等[6]通過線性組合二階熵守恒格式構(gòu)造了任意偶數(shù)階熵守恒格式,其中四階和六階熵守恒格式分別為
考慮熵守恒通量在光滑區(qū)域表現(xiàn)良好、在激波等間斷區(qū)域存在非物理振蕩現(xiàn)象,適當(dāng)增加耗散項,以獲得熵穩(wěn)定的數(shù)值通量。
數(shù)值算例中的耗散算子詳見文獻[5,7]。
則格式(6)熵穩(wěn)定(詳見文獻[7])。
因此格式(6)熵穩(wěn)定。對于標(biāo)量守恒律方程,在單元交界面處需滿足
對于守恒律方程組,在單元交界面處需滿足
基于上述數(shù)值通量知識,需尋找滿足保號性質(zhì)的重構(gòu),以得到高階熵穩(wěn)定通量。
在單元交界面處,對熵變量進行五階有限差分WENO重構(gòu)??紤]單元交界面左側(cè)處的重構(gòu)包含,,3個模板,用拉格朗日插值構(gòu)造插值多項式,基于不同模板上插值多項式的凸組合所得的重構(gòu)值為
則
基于熵守恒通量和高階熵穩(wěn)定通量理論,對熵變量進行WENO重構(gòu),因重構(gòu)前后跳躍值滿足保號性,證明了所構(gòu)造格式熵的穩(wěn)定性,其數(shù)值通量為
算例1 線性對流方程
算例1的數(shù)值結(jié)果如表1所示。由表1可知,所構(gòu)造格式在光滑區(qū)域具有四階精度。事實上,耗散項的熵變量采用的是五階WENO重構(gòu),表1中的結(jié)果由熵守恒項和時間方向的離散項取四階精度得到。
表1 算例1的數(shù)值結(jié)果Table1 Numerical results of example 1
算例2 無黏Burgers方程
算例3 大型潰壩問題
圖1 算例2的數(shù)值結(jié)果Fig. 1 Numerical results of example 2
圖2 算例3的數(shù)值結(jié)果Fig.2 Numerical results of example 3
算例4 Sod激波管問題
圖3 算例4的數(shù)值結(jié)果Fig.3 Numerical results of example 4
算例5 Lax激波管問題
圖4 算例5的數(shù)值結(jié)果Fig. 4 Numerical results of example 5
算例6 Shu-Osher問題
圖5 算例6的數(shù)值結(jié)果Fig. 5 Numerical results of example 6
算例7 低密度流問題
圖6 算例7的數(shù)值結(jié)果Fig.6 Numerical results of example 7
滿足保號性的高階重構(gòu)是構(gòu)造高階熵穩(wěn)定格式的一種可行選擇。提出了一種求解雙曲守恒律方程的四階熵穩(wěn)定格式,由拉格朗日插值構(gòu)造的多項式在單元交界面處對熵變量進行有限差分WENO重構(gòu),并由重構(gòu)前后的跳躍值滿足保號性證明了所構(gòu)造格式是嚴(yán)格熵穩(wěn)定的。數(shù)值算例結(jié)果表明,所構(gòu)造格式不僅精度有所提高,而且可銳利捕捉激波、接觸間斷和稀疏波等間斷區(qū)域,并有效改善了抹平現(xiàn)象。
[1]張海軍.求解淺水波方程的熵穩(wěn)定格式研究[D].西安:長安大學(xué),2018.
ZHANG H J. The Research of Entropy Stable Schemes for Shallow Water Equations[D]. Xiapos;an:Changapos;an University,2018.
[2]王令,鄭素佩. 基于移動網(wǎng)格的熵穩(wěn)定格式求解淺水波方程[J]. 水動力學(xué)研究與進展(A輯),2020,35(2):188-193. DOI:10.16076/j.cnki.cjhd.2020. 02.006
WANG L,ZHENG S P. Solving shallow water wave equation based on moving grid entropy stable scheme[J]. Chinese Journal of Hydrodynamics, 2020,35(2):189-193. DOI:10.16076/j.cnki.cjhd.2020.02.006
[3]賈豆,鄭素佩.求解二維Euler方程的旋轉(zhuǎn)通量混合格式[J].應(yīng)用數(shù)學(xué)和力學(xué),2021,42(2):170-179.DOI:10.21656/1000-0887.410196
JIA D, ZHENG S P. A hybrid schemes of rotational flux for solving 2D Euler equations [J]. Applied Mathematics and Mechanics, 2021,42(2):170-179. DOI:10.21656/1000-0887.410196
[4]TADMOR E. The numerical viscosity of entropy stable schemes for systems of conservation laws I[J]. Mathematics of Computation, 1987,49(179):91-103. DOI:10.2307/2008251
[5]ISMAIL F, ROE P L. Affordable,entropy-consistent Euler flux functions II: Entropy production at shocks[J]. Journal of Computational Physics,2009,228(15):5410-5436. DOI:10.1016/j.jcp. 2009.04.021
[6]LEFLOCH P G, MERCIER J M,ROHDE C. Fully discrete, entropy conservative schemes of arbitrary order[J]. SIAM Journal on Numerical Analysis, 2002,40(5): 1968-1992. DOI:10.1137/s003614290240069x
[7]FJORDHOLM U S, MISHRA S,TADMOR E. Arbitrarily high-order accurate entropy stable essentially non-oscillatory schemes for systems of conservation laws[J]. SIAM Journal on Numerical Analysis, 2012,50(2):544-573. DOI:10.1137/110836961
[8]HARTEN A, ENGQUIST B,OSHER S, et al. Uniformly high order accurate essentially non-oscillatory schemes III[C]// Upwind and High-Resolution Schemes. Berlin / Heidelberg: Springer,1987: 218-290.
[9]LIU X D, OSHER S,CHAN T. Weighted essentially non-oscillatory schemes[J]. Journal of Computational Physics, 1994,115(1): 200-212. DOI:10.1006/jcph.1994.1187
[10]馮娟娟. 高分辨率數(shù)值格式在交通流方程的應(yīng)用[D]. 西安:長安大學(xué),2019.
FENG J J. High-Resolution Scheme in Application of Traffic Flow Equations[D]. Xiapos;an:Changapos;an University,2019.
[11]鄭素佩,王苗苗,王令.基于WENO-Z重構(gòu)的Osher-Solomon格式求解淺水波方程[J].水動力學(xué)研究與進展(A輯),2020,35(1):90-99. DOI:10.16076/j.cnki.cjhd.2020.01.014
ZHENG S P,WANG M M,WANG L. Reconstructing Osher-Solomon scheme based on WENO-Z for shallow water equation[J]. Chinese Journal of Hydrodynamics,2020,35(1):90-99. DOI:10.16076/j.cnki.cjhd.2020.01.014
[12]SHU C W. High order weighted essentially non-oscillatory schemes for convection dominated problems[J]. SIAM Review,2009, 51(1):82-126. DOI:10.1137/070679065
[13]FJORDHOLM U S, RAY D. A sign preserving WENO reconstruction method[J]. Journal of Scientific Computing, 2016,68(1): 42-63.
[14]BISWAS B, DUBEY R K. Low dissipative entropy stable schemes using third order WENO and TVD reconstructions[J]. Advances in Computational Mathematics, 2018,44(4): 1153-1181. DOI:10. 1007/s10444-017-9576-2
[15]HARTEN A. On a class of high resolution total-variation-stable finite-difference schemes[J]. SIAM Journal on Numerical Analysis, 1984,21(1): 1-23. DOI:10.2307/2157043
[16]LAX P D. Weak solutions of nonlinear hyperbolic equations and their numerical computation[J]. Communications on Pure and Applied Mathematics, 2005,7(1):198-232. DOI:10.1007/0-387-28148-7_16
[17]LAX P D. Hyperbolic systems of conservation laws and the mathematical theory of shock waves [C]//11th of SIAM Regional Conferences Lectures in Applied Mathematics. Philadelphia:Society for Industrial and Applied Mathematics,1973:1-48.
[18]DAFERMOS C M. Hyperbolic systems of conservation laws[C]// Systems of Nonlinear Partial Differential Equations. Berlin/Dordrecht:Springer, 1983: 25-70. DOI:10.1007/978-94-009-7189-9_2
[19]JIANG G S, SHU C W. Efficient implementation of weighted ENO schemes[J]. Journal of Computational Physics, 1996,126(1): 202-228. DOI:10.1006/jcph.1996.0130
[20]李彬彬. 基于移動網(wǎng)格的高分辨率算法[D].西安:長安大學(xué),2019.
LI B B. High-Resolution Algorithms Based on Adaptive Moving Mesh[D]. Xiapos;an: Changapos;an University,2019.
The fourth order entropy stable scheme based on sign-preserving WENO reconstruction
ZHENG Supei, ZHAO Qingyu, FENG Jianhu
(School of Science,Changapos;an University,Xiapos;an710064,China)
In order to effectively improve the resolution and accuracy of the numerical scheme for solving one dimensional hyperbolic conservation laws, a fourth order entropy stable scheme based on sign-preserving WENO reconstruction is proposed. The scheme mainly contains high order entropy conservation flux and numerical dissipation term, where the dissipation operator is reconstructed by finite difference WENO using Lagrange polynomials on the entropy variable at the cell interface, which proves that the jump on the reconstructed values and the original values satisfy sign-preserving property at the discontinuous position, and the newly constructed scheme is entropy stable. Finally, in several numerical experiments, we combined the spatial semi-discrete scheme with the fourth-order Runge-Kutta method to advance in the time direction, and compared the constructed scheme with the entropy stable scheme, the results demonstrate that the scheme has fourth order accuracy, high resolution and the robust numerical performance, and there is no physical oscillation.
hyperbolic conservation laws; WENO reconstruction; sign-preserving; fourth order; entropy stable
O 241.82;O 354
A
1008?9497(2022)03?329?07
10.3785/j.issn.1008-9497.2022.03.010
2021?06?21.
國家自然科學(xué)基金資助項目(11971075);陜西省自然科學(xué)基金青年項目(2020JQ-338,2020JQ-342).
鄭素佩(1978—),ORCID:https//orcid.org/0000-0003-2502-6998,女,博士,副教授,主要從事科學(xué)與工程中的高性能計算技術(shù)研究,E-mail:zsp2008@chd.edu.cn.
通信作者,ORCID:https//orcid.org/0000-0001-7574-6917,E-mail:1214742342@qq.com.