王澤
(廣東金融學(xué)院 互聯(lián)網(wǎng)金融與信息工程學(xué)院,廣東 廣州 510521)
一類雙擴(kuò)散對流方程組的解對Lewis系數(shù)的連續(xù)依賴性研究
王澤
(廣東金融學(xué)院 互聯(lián)網(wǎng)金融與信息工程學(xué)院,廣東 廣州 510521)
研究了有界區(qū)域內(nèi)多孔介質(zhì)中一類雙擴(kuò)散擾動(dòng)模型的解的結(jié)構(gòu)穩(wěn)定性。首先得到了一些有用的先驗(yàn)估計(jì),然后利用這些先驗(yàn)估計(jì)構(gòu)建了解的差所滿足的一階微分不等式,最后通過積分該微分不等式,建立了解對Lewis系數(shù)的連續(xù)依賴性結(jié)果。該結(jié)果表明,用雙擴(kuò)散擾動(dòng)模型描述多孔介質(zhì)中的流體流動(dòng)是準(zhǔn)確的。
雙擴(kuò)散對流方程組;連續(xù)依賴性;Rayleigh系數(shù);Lewis系數(shù)
結(jié)構(gòu)穩(wěn)定性是指模型本身的穩(wěn)定性。傳統(tǒng)的穩(wěn)定性研究主要針對初始數(shù)據(jù)的連續(xù)依賴性,而實(shí)際上方程系數(shù)、方程組本身以及邊界數(shù)據(jù)的變化對解的影響很大。文獻(xiàn)[1]詳細(xì)介紹了結(jié)構(gòu)穩(wěn)定性的本質(zhì)。本文旨在通過對結(jié)構(gòu)穩(wěn)定性的研究幫助理解模型(或方程組)在物理中的適用性。在實(shí)際建模過程中,數(shù)據(jù)的測量和計(jì)算都不可避免存在誤差,誤差時(shí)刻存在,若一個(gè)微小的誤差導(dǎo)致解急劇變化,說明方程組是不穩(wěn)定的,用該方程組反映物理性質(zhì)亦是不準(zhǔn)確的。因此,結(jié)構(gòu)穩(wěn)定性的研究對物理建模至關(guān)重要。
多孔介質(zhì)在現(xiàn)實(shí)生活中廣泛存在,很多物質(zhì)都由多孔介質(zhì)材料制作而成。對多孔介質(zhì)中流體方程組解的性態(tài)研究已成為數(shù)學(xué)與力學(xué)領(lǐng)域的熱點(diǎn)問題。已有結(jié)果主要集中在Brinkman,Darcy和Forchheimer方程組。NIELD等[2]和STRAUGHAN[3]對這些方程組進(jìn)行了廣泛討論。PAYNE等[4]討論了Brinkman,Darcy,F(xiàn)orchheimer和其他多孔介質(zhì)方程的Saint-Venant原則,主要研究了多孔介質(zhì)中流體方程組的空間衰減估計(jì)結(jié)果。FRANCHI等[5]、PAYNE等[6]、LIN等[7]研究了多孔介質(zhì)中流體方程組的結(jié)構(gòu)穩(wěn)定性,近年來,取得了一些新結(jié)果[8-21]。雙擴(kuò)散對流問題在現(xiàn)實(shí)生活中應(yīng)用廣泛,相關(guān)研究可見文獻(xiàn)[22-23]。本文將繼續(xù)研究這類雙擴(kuò)散對流問題,研究其解的穩(wěn)定性問題,所討論的方程組含速度、壓力、溫度以及濃度擾動(dòng)。有關(guān)這類方程組的詳細(xì)介紹可參見文獻(xiàn)[3,24-25]。
下文所用符號約定如下:
初始條件為
下文安排如下:首先得到一些有用的先驗(yàn)估計(jì),接著借助這些先驗(yàn)估計(jì),構(gòu)建解的差所滿足的微分不等式,通過積分該不等式得到需要的結(jié)構(gòu)穩(wěn)定性結(jié)果。有關(guān)雙擴(kuò)散擾動(dòng)模型的結(jié)構(gòu)穩(wěn)定性的研究,目前尚無文獻(xiàn)涉及。由于溫度滿足的方程與Brinkman,F(xiàn)orchheimer及Darcy類方程組不同,導(dǎo)致無法估計(jì)溫度最大值。同時(shí)由于速度方程組不含拉普拉斯項(xiàng),使得速度的梯度估計(jì)難度加大。所給的溫度與濃度擾動(dòng)的邊界條件為Robin邊界,此時(shí)與均為正常數(shù),如何處理邊界項(xiàng)是一大難點(diǎn)。本文通過其他估計(jì)較好地解決了這些問題。
為得到結(jié)論,需要以下引理。
對式(6)利用Schwarz不等式,可得
由式(7),即可得到式(4)。
證明 對于梯度,有恒等式
對于式(15)右邊第2項(xiàng),由散度定理、式(2)和式(4),可得
聯(lián)合式(15)和式(16),可得
令
則
對于式(19),由Gronwall不等式,可得
將式(20)代入式(17),可得
將式(20)代入式(18),可得
令
則
由Gronwall不等式,可得
將式(26)和式(20)代入式(8),可得
證明 利用文獻(xiàn)[27]的結(jié)果,有
邊界條件為
初始條件為
定理1可分解為以下5個(gè)引理進(jìn)行證明。
引理6得證。
對于式(42)右邊第2項(xiàng),由散度定理和式(36),可得
對于式(42)右邊第3項(xiàng),由散度定理和式(36),可得
對于式(42)右邊第4項(xiàng),由散度定理和式(36),可得
聯(lián)合式(42)~式(45),可得
對于式(49)右邊第2項(xiàng),由散度定理和式(36),可得
聯(lián)合式(49)和式(50),并由H?lder不等式,可得
證明 聯(lián)合式(40)、式(41)、式(48)和式(53),可得
令
則有
由Gronwall不等式,可得
定理1得證。
[1]AMES K A, STRAUGHAN B. Non-standard and Improperly Posed Problems[M]. San Diego:Academic press, 1997.
[2]NIELD D A, BEJAN A. Convection in Porous Media[M]. Berlin: Springer,1992.
[3]STRAUGHAN B. Stability and Wave Motion in Porous Media[M]. Berlin: Springer,2008.
[4]PAYNE L E, SONG J C. Spatial decay in a double diffusive convection problem in Darcy flow[J]. Journal of Mathematical Analysis and Applications, 2007,330(2): 864-875. DOI:10. 1016/j.jmaa.2006.08.013
[5]FRANCHI F, STRAUGHAN B. Continuous dependence and decay for the Forchheimer equations[J]. Proceedings of the Royal Society A (Mathematical,Physical and Engineering Sciences),2003, 459(2040):3195-3202. DOI:10.1098/rspa. 2003.1169
[6]PAYNE L E, STRAUGHAN B. Structural stability for the Darcy equations of flow in porous media[J]. Proceedings of the Royal Society A (Mathematical,Physical and Engineering Sciences),1998, 454(1974):1691-1698. DOI:10.1098/rspa.1998. 0227
[7]LIN C H, PAYNE L E. Structural stability for a Brinkman fluid[J]. Mathematical Methods in the Applied Sciences, 2007,30(5): 567-578. DOI:10. 1002/mma.799
[8]CHEN W H, LIU Y. Structural stability for a Brinkman-Forchheimer type model with temperature-dependent solubility[J]. Boundary Value Problems, 2016,2016(1): 55. DOI:10.1186/s13661-016-0558-y
[9]CICHO? M, YANTIR A. On continuous dependence of solutions of dynamic equations[J]. Applied Mathematics and Computation, 2015,252: 473-483. DOI:10.1016/j.amc.2014.12.047
[10]MA H P, LIU B. Exact controllability and continuous dependence of fractional neutral integro-differential equations with state-dependent delay[J]. Acta Mathematica Scientia, 2017,37(1): 235-258. DOI:10.1016/S0252-9602(16)30128-X
[11]WU H L, REN Y,HU F. Continuous dependence property of BSDE with constraints[J]. Applied Mathematics Letters, 2015,45: 41-46. DOI:10. 1016/j.aml.2015.01.002
[12]HARFASH A J. Structural stability for two convection models in a reacting fluid with magnetic field effect[J]. Annals Henri Poincaré, 2014, 15(12):2441-2465. DOI:10.1007/s00023-013-0307-z
[13]LI Y F, LIN C H. Continuous dependence for the nonhomogeneous Brinkman-Forchheimer equations in a semi-infinite pipe[J]. Applied Mathematics and Computation, 2014,244: 201-208. DOI:10.1016/j.amc.2014.06.082
[14]LIU Y, XIAO S Z. Structural stability for the Brinkman fluid interfacing with a Darcy fluid in an unbounded domain[J]. Nonlinear Analysis (Real World Applications),2018, 42:308-333. DOI:10. 1016/j.nonrwa.2018.01.007
[15]LIU Y, XIAO S Z,LIN Y W. Continuous dependence for the Brinkman-Forchheimer fluid interfacing with a Darcy fluid in a bounded domain[J]. Mathematics and Computers in Simulation, 2018,150: 66-82. DOI:10.1016/j.matcom.2018.02.009
[16]LIU Y. Continuous dependence for a thermal convection model with temperature-dependent solubility[J]. Applied Mathematics and Computation, 2017,308: 18-30. DOI:10.1016/j.amc.2017.03.004
[17]李遠(yuǎn)飛. 大尺度海洋大氣動(dòng)力學(xué)三維黏性原始方程對邊界參數(shù)的連續(xù)依賴性[J]. 吉林大學(xué)學(xué)報(bào)(理學(xué)版),2019,57(5): 1053-1059. DOI:10.13413/j.cnki.jdxblxb.2019038
LI Y F. Continuous dependence on boundary parameters for three-dimensional viscous primitive equation of large-scale ocean atmospheric dynamics[J]. Journal of Jilin University(Science Edition),2019, 57(5):1053-1059. DOI:10.13413/j.cnki.jdxblxb.2019038
[18]李遠(yuǎn)飛.原始方程組對黏性系數(shù)的連續(xù)依賴性[J]. 山東大學(xué)學(xué)報(bào)(理學(xué)版),2019,54(12):12-23. DOI:10.6040/j.issn.1671-9352.0.2019.539
LI Y F. Continuous dependence on the viscosity coefficient for the primitive equations[J]. Journal of Shandong University(Science Edition), 2019,54(12):12-23. DOI:10.6040/j.issn.1671-9352.0. 2019.539
[19]李遠(yuǎn)飛,郭連紅.具有邊界反應(yīng)Brinkman-Forchheimer型多孔介質(zhì)的結(jié)構(gòu)穩(wěn)定性[J]. 高校應(yīng)用數(shù)學(xué)學(xué)報(bào),2019,34(3): 315-324.
LI Y F, GUO L H. Structural stability on boundary reaction terms in a porous medium of Brinkman-Forchheimer type[J]. Applied Mathematics:A Journal of Chinese Universities, 2019,34(3): 315-324.
[20]李遠(yuǎn)飛. 海洋動(dòng)力學(xué)中二維黏性原始方程組解對熱源的收斂性[J]. 應(yīng)用數(shù)學(xué)和力學(xué), 2020,41(3):339-352. DOI:10.21656/1000-0887.400176
LI Y F. Convergence results on heat source for 2D viscous primitive equations of ocean dynamics[J]. Applied Mathematics and Mechanics, 2020,41(3): 339-352. DOI:10.21656/1000-0887.400176
[21]CIARLETTA M, STRAUGHAN B,TIBULLO V. Structural stability for a thermal convection model with temperature-dependent solubility[J]. Nonlinear Analysis (Real World Applications), 2015,22: 34-43. DOI:10.1016/j.nonrwa.2014.07.012
[22]DEEPIKA N. Linear and nonlinear stability of double-diffusive convection with the Soret effect[J]. Transport in Porous Media, 2018,121:93-108. DOI:10.1007/s11242-017-0949-2
[23]HARFASH A J, CHALLOOB H A. Slip boundary conditions and through flow effects on double-diffusive convection in internally heated heterogeneous Brinkman porous media[J]. Chinese Journal of Physics, 2018,56(1): 10-22. DOI:10.1016/j.cjph.2017.11.023
[24]STRAUGHAN B. Anisotropic inertia effect in microfluidic porous thermosolutal convection[J]. Microfluidics and Nanofluidics, 2014,16: 361-368. DOI:10.1007/s10404-013-1208-7
[25]STRAUGHAN B. Heated and salted below porous convection with generalized temperature and solute boundary conditions[J]. Transport in Porous Media, 2020,131: 617-631. DOI:10.1007/s11242-019-01359-y
[26]WEATHERBURN C E. Differential Geometry of Three Dimensions[M]. London:Cambridge University Press, 1980.
[27]LIN C H, PAYNE L E. Continuous dependence on the Soret coefficient for double diffusive convection in Darcy flow[J]. Journal of Mathematical Analysis and Applications, 2008,342(1): 311-325. DOI:10. 1016/j.jmaa.2007.11.036
Continuous dependence of solutions of a class of double diffusion convection equations on Lewis coefficients
WANG Ze
(School of Internet Finance and Information Engineering,Guangdong University of Finance,Guangzhou510521,China)
This paper studies the structural stability for solutions of a double diffusion perturbation model in porous medium in a bounded domain. We firstly obtain some useful a priori estimates. Using these a priori estimates, we then formulate a first order differential inequality that the solution satisfies. Finally, by integrating the inequality, we get the result of continuous dependence for the solutions on the Lewis coefficient. This result shows that it is accurate for the double diffusion perturbation model to be used to describe the flow in porous media.
double diffusion convection equations; continuous dependence; Rayleigh coefficient; Lewis coefficient
O 175
A
1008?9497(2022)03?300?08
10.3785/j.issn.1008-9497.2022.03.006
2020?06?22.
廣州市科技計(jì)劃項(xiàng)目(201707010126).
王澤(1969—),ORCID:https://orcid.org/0000-0001-5208-5059,男,碩士,副教授,主要從事數(shù)據(jù)挖掘、人工智能、偏微分方程等研究,E-mail:20-030@gduf.edu.cn.