• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A GPU-based general numerical framework for plasma simulations in terms of microscopic kinetic equations with full collision terms

    2022-06-01 07:55:38JunjieZHANG張俊杰XinZHANG張?chǎng)?/span>GuoliangPENG彭國良andZepingREN任澤平
    Plasma Science and Technology 2022年5期
    關(guān)鍵詞:張?chǎng)?/a>俊杰

    Junjie ZHANG (張俊杰), Xin ZHANG (張?chǎng)?, Guoliang PENG (彭國良),2 and Zeping REN (任澤平)

    1 Northwest Institute of Nuclear Technology, Xi’an 710024, People’s Republic of China

    2 College of Mechanical and Electrical Engineering, Beijing Institute of Technology, Beijing 100081,People’s Republic of China

    Abstract We have proposed a general numerical framework for plasma simulations on graphics processing unit clusters based on microscopic kinetic equations with full collision terms.Our numerical algorithm consistently deals with both long-range(classical forces in the Vlasov term)and short-range (quantum processes in the collision term) interactions.Providing the relevant particle masses,charges and types(classical,fermionic or bosonic),as well as the external forces and the matrix elements(in the collisional integral),the algorithm consistently solves the coupled multi-particle kinetic equations.Currently,the framework is being tested and applied in the field of relativistic heavy-ion collisions; extensions to other plasma systems are straightforward.Our framework is a potential and competitive numerical platform for consistent plasma simulations.

    Keywords: plasma simulations, GPU clusters, microscopic kinetic equations, Jefimenko’s equations, relativistic heavy-ion collisions, quark-gluon plasma

    1.Introduction

    1.1.Motivation

    Plasma systems are of both theoretical and practical importance[1-5].The usual methods used to simulate plasma systems are magneto-hydrodynamic equations of conservation laws when the systems are in near-thermal equilibrium[6-8].However,there are many cases where the systems are far from thermal states, especially when particle production or chemical reaction processes are involved [9-11].In these highly non-thermal circumstances, one has to solve coupled Boltzmann-Maxwell equations instead.

    The microscopic kinetic theory,i.e.the Boltzmann equation(BE)with full collision terms,is a widely used theoretical tool to describe the evolution of the system from non-equilibrium to thermal state [12-14].Providing proper configurations, the BE framework is able to give essential details of the momentum,spin, color and many other (microscopic) degrees of freedom.When coupled with external forces, such as electromagnetic(EM)and gravitational forces,the BE framework can be utilized to describe non-equilibrium plasma systems in a fully consistent way[15,16].For example,in a non-thermal plasma system,the charged particles scatter and generate EM fields in the medium.These EM fields will in turn affect the subsequent motions of these particles.A consistent way to take into account both the EM interactions and the particle scatterings is by using coupled Boltzmann-Maxwell equations:

    whereFμν= ?μAν- ?ν Aμis the EM tensor andfa(t,x,p)is the single particle distribution function for particle speciesawith chargeQa,C[fa(t,x,p)]is the collisional integral defnied in equation (11), and the four-momentum and four-current are denoted aspμandjν.The four-current for the interacting particles is given by

    whereNais the microscopic degeneracy factor.For classical particlesNa=1.epresents the external four-current density,which should be provided separately.

    Given the consistency for handling both the long-range interactions and the short-range scatterings, it is of both theoretical and practical importance to establish a general numerical framework for plasma simulations based on the microscopic kinetic equations with full collision terms.

    1.2.Challenges for solving the coupled microscopic kinetic equations

    Historically,consistently solving the six-dimensional coupled relativistic Boltzmann-Maxwell equations has always been a challenging task,even with the help of supercomputers with a few hundred petaflops [15, 16].

    Consistently solving the coupled Boltzmann-Maxwell equations is difficult in various aspects.First, the full collisional integrals in BEs are high-dimensional[17-19].At each phase point, one needs to perform a numerical integration algorithm for the collision term.For 104time steps, we have to evaluate up to 1011integrations in total(e.g.the grid size of the phase space is206).Second, the Maxwell equations are numerically challenging on a spatial grid of size203(this size is mainly restricted by the BE on one Tesla V100 Card).The‘dilute’ grid density forces one to abandon the finite difference method for solving the Maxwell equations and to adopt an integral form of the retarded potential algorithm, which is resource-consuming [20].Third, the physical system is usually expanding(such as in relativistic heavy-ion collisions[21-23]).

    The BE with full collisional integrals is a differentialintegral equation whose left-hand side involves differentiation in the six-dimensional phase space and the right-hand side involves an integration of the momentum space with up to nine dimensions for binary collisions.From the point of view of computational physics, neither side is easy to handle because of these large numerical dimensions.The toughest part of the full collisional BE is the high integration in momentum space (momentum integration is ‘non-local’ in terms of the momentum space).The ‘non-local’ property of the collisional integrals suggests that we should avoid dividing and distributing the momentum space on different cards.Thus, only the spatial domain can be divided onto different machines (nodes/cards).When we exchange the data in spatial boundaries, the corresponding three-dimensional momentum space should also be exchanged, making the exchanged data very large.Therefore, when solving the BE, we want to use as few nodes as possible.A graphics processing unit(GPU)card generally contains a few thousand parallel cores with each core having a clock rate a little less than 1 GHz, which is about 1/3-1/2 of a single central processing unit(CPU).From the estimation of the total clock rate, a GPU with 6000 cores (e.g.NVIDIA A100) is roughly equivalent to 60 CPUs(e.g.Intel i9-9960X).If we were to use CPUs, 60 CPUs usually require four nodes, compared with only one GPU card.This is the main reason that GPU is more suitable for BEs.

    1.3.Microscopic kinetic equations on GPU clusters

    With the state-of-the-art GPU [24, 25] clusters, a paradigm shift could be encountered.In this regard,we have designed a highly scalable framework to solve the coupled relativistic Boltzmann-Maxwell equations on multi-GPU clusters in Python language.Our aim is to handle the coupled equations with a certain level of accuracy for practical applications.The maximum capability of the grid resolution can reach approximately 106for quark-gluon plasma (QGP) systems and 206for classical plasma systems on one Tesla V100 card.For QGP systems, the algorithm takes around a day for a complete evolution on one Tesla V100 Card, and less consumption time is expected if a simpler form of the collision term is adopted (this is the case for non-relativistic systems)or if more GPU cards are involved.For practical applications,we have also designed several APIs for future development and implementation in other plasma systems.Our framework is a promising direction for first-principal plasma simulations on GPUs.

    The paper is organized as follows.In section 2, we will briefly introduce the relevant equations and the proposed numerical framework based on our previous work with JefiGPU [26], ZMCintegral [27-29] and RBG [11].In section 3, we perform a toy model simulation that resembles parts of the AuAu collisions in the STAR experiments[30].In section 4, we conclude the current framework.

    2.Numerical framework of the coupled relativistic Boltzmann-Maxwell equations

    2.1.Theoretical set-up

    To solve equations(5)-(8)numerically,we first express these coupled relativistic Boltzmann-Maxwell equations as follows:

    wherefa(x,p,t)is the phase space distribution function for particle speciesa,Eand B are the electric and magnetic fields in the laboratory frame,qais the electric charge carried by speciesa, andis the relativistic Lorentz factor defined by the drift velocityva.The external forcesFaacting upon the particles in the Vlasov term might involve EM interactions, gravitational interactions, etc.The collision termCa, which takes into account the short-range interactions of particle scatterings,is high-dimensional integrations of the form

    where the quantum corrections in the collision integral are defined asandThe invariant matrix elementMab?cdcan be directly obtained from the first-principal quantum calculations,e.g.for QGP, we use the tree-level Quantum Chromodynamics(QCD) calculations.

    Note that the energy and momentum conservations for particle scatterings are guaranteed by the restrictionδ(4)(k1+k2-k3-p).For 2?2 scatterings (two incident particles and two outgoing particles)the particle numbers are always conserved, therefore

    2.2.Numerical framework

    The general structure of the RBG-Maxwell framework(relativistic BEs coupled to Maxwell equations on GPUs) is illustrated in figure 1.The framework contains three main modules: the external force (EF) module, the BE solver module and the EM solver module.When the physical system is in an external field such as the gravitational field, the EM field or any other ambient external field, the EF module will provide forces to the particles at all the time steps.The BE solver, after receiving the external forces, gives the new particle state in terms of particle scatterings.These particles,if carrying charges, will provide the electric sources to the EM solver.The framework is highly scalable on GPU clusters.

    Figure 1.General structure of the RBG-Maxwell framework.The BE and EM solvers are revised from our previous packages JefiGPU(arXiv: 2104.05426) and RBG (arXiv: 1912.04457).At each time step, the BE solver provides the charge and current densities to the EM solver, which then gives the EM fields at the next time step.

    The above framework is performed in Python with the Numba, Ray and Cupy packages with high scalability.For phase space size 106, time steps 104and seven particle species,it takes around a day for a complete evolution on one Tesla V100 card(the invariant matrix element takes the form of the tree-level QCD calculations).For classical systems with constant matrix element, the phase space size can reach up to206on one Tesla V100 card with a similar evaluation time (about a day).

    In the current form, the framework contains collision terms of five-dimensional integrations involving seven particle species (u, d, s quarks, their anti-quarks and gluons).The direct Monte Carlo method is adopted to evaluate the collisional integral at each phase space point.Furthermore, since the BEs require a much smaller time step than the Maxwell equations, we have also used a stratified time step to balance the coupling of the BEs and the Maxwell equation for a stable numerical time evolution.For a strict particle number conservation in the collision terms, we have performed the symmetric sampling method mentioned in RBG [11], where the Monte Carlo integrations are evaluated by the CUDA atomic operation.The drifting and Vlasov terms are discretized by the usual upwind difference for numerical stability.The Maxwell equations are directly solved by JefiGPU[26], which is also scalable on GPU clusters.

    Based on the previous work in [11] and [26], we have developed the RBG-Maxwell framework.Unlike in the previous implementations, we have made several essential changes in the RBG-Maxwell framework such that a stable and highly scalable simulation of the relativistic plasma is possible.

    First of all,as an extension of[26],we have added highscaling functionality in the Jefimenko solver.The source regions and the observable regions are treated differently in the scaling procedure.On each GPU card we associate it with a rectangular spatial domain.The charged particles on the specific card (say card 0) generate the EM fields to all other observational regions on other GPU cards(say cards 1,2,and 3).At each time step,the plasma on card 0 generates the EM fields on cards 0, 1, 2 and 3.These EM fields are firstly obtained and saved on the GPU memory of card 0.Similarly,on card 2,we have EM fields on cards 0,1,2 and 3,etc.After the evaluation of the Jefimenko solver on all cards in parallel,the EM fields are exchanged across all GPU cards.Since the EM fields do not involve the momentum space, the exchanged data size is not large.

    Figure 2.Evolution of the net charge density in the reaction plane.We can see that the partons are initially centered along z = 0.With the expansions of the partons, the densities decrease and eventually spread over a large region.

    Figure 3.Evolution of the current density in the reaction plane.The currents initially point to the z-direction.With the pressure gradient and the EM interactions,the partons spread outward.Meanwhile,we also see the repulsion of the electric charges at x = 0 and z = 0 after 3 fm/c, which is consistent with that in figure 2.

    Figure 4.Evolution of the EM field in the reaction plane.Since the partons are moving along the z-direction,the electric fields mainly point to the x-direction in the first few time steps.Electric fields from the spectator are initially pointing to the line of x = 0 due to the electric fields from the spectators.Along with the time evolution,the electric fields tend to point outward due to the charge repulsion from the participants.

    Secondly,we have changed the strategy of the scaling in the BE.Since in[11]only a small number of spatial grids are used,the scaling of the BE is implemented via the distribution of sampling points in Monte Carlo integrations.In the RBGMaxwell framework, due to the relatively larger number of spatial grids and the non-local property of the momentum integrations, we divide the spatial domain onto different machines(nodes/cards),and exchange the data on the spatial ghost boundaries.In the usual computation, a GPU server contains up to 16 GPU cards, hence only 16 sub-domains in the spatial coordinate are used.Data exchange among 16 parallel cards is small compared with CPU-based clusters.

    Finally,for a stable time-dependent evolution,we have to make sure that the distribution function always remains positive in each time step.In some time steps,the distribution function may be negative due to the updating.In these circumstances,we have to choose a small time step dt′ such that the updating of the distribution function is small.To perceive this functionality, we use the iteration relation dt′ = dt/n,wherenis a positive integer, dt′is the reduced time step,and dtis the initial used time step.This process is quite essential,otherwise the evolution will be extremely unstable.

    3.Simulation of a toy model quark-gluon system

    We have applied the RBG-Maxwell framework to the field of relativistic heavy-ion collisions.The simulation is performed in a system of seven particle species involving u,d,s quarks,their anti-quarks and gluons.The matrix elements in equation (11) can be found in [11].

    The computational domain is restricted in a six-dimensional phase space of size [-6 fm, 6 fm] × [-7 fm, 7 fm] ×[-6 fm, 6 fm] × [-1.2 GeV, 1.2 GeV] × [-1.2 GeV,1.2 GeV] × [-2 GeV, 2 GeV] with grid sizes 41 × 1×41 × 19 × 5 ×39.The initial momentum condition is inspired by the CGC [31] scenario,

    where the saturation scaleQs=1GeV [32] andt0~1/Qs~0.2fm/c [10, 33].We set the parameterξ= 1.4 [34] to introduce the anisotropy of the initial pressure.Note that equation(15)is defnied in the comoving frame whereis symmetric in terms ofpz.In heavy-ion collisions, different spatial pointsr′ in the overlapping region possess different initial net momentum,making the distribution,r′,p)asymmetric inpz.To apply equation(15), we first boost the region at pointsr′ to its comoving frame according to the net momentum; then, we sample the initial distribution following equation (15); finally, we boost the region back to the laboratory frame.The coefficients= 0.996?and= 1.14?,where the factor?~0.1 is chosen such that the total net charge of all partons in the rapidity range[-0.5,0.5]is consistent with the AMPT[35-37]calculations.?~ 0.1 indicates that only 10%of the particles in the overlapping regions are left to form the medium.The other 90% of particles in the overlapped region simply bypass one another and contribute to the decreasing background EM fields,denoted asin equation (6).The background EM fields generated by the spectators are obtained via the equations in[38] with impact parameterb= 8 fm.Hence,consists of two parts: one from the spectators and one generated by the particles that bypass one another in the overlapping regions.is the reciprocal of the coupling constant=3.33[39]andThe spatial boundary is taken to be the absorption boundary.The momentum boundary is chosen to have periodical boundary conditions since very few particles are present in the larger momentum grids.

    Figures 2-4 depict the calculated results of the evolution of the charge densities, current densities and the induced EM fields in the reaction plane (xoz plane).

    In the evolution of QGP, several stages are considered:pre-equilibrium, relativistic hydrodynamics and hadronization.By combining our framework with the hadronization process, we can calculate the charge-odd directed flowΔv,1which is the difference between the directed flows of charged particles and their anti-particles (one can refer to [40] for more details).In [40], the obtained results in the slopes ofv1andΔv1in mid-rapidity are in qualitative agreement with the STAR data,and the obtained electric and magnetic fields have opposite contributions tov1andΔv1but with the same magnitude.The results are insensitive to the values of the coupling constant and can be understood by a simple sum rule in a naive coalescence picture of hadronization.

    4.Conclusion

    We have proposed a general numerical framework for solving the coupled relativistic Boltzmann-Maxwell equations on GPU clusters.We have simulated a toy model quark-gluon system in relativistic heavy-ion collisions as an example to verify our code,and given the corresponding evolution of the charge and current densities as well as the induced EM fields.For a mimic of the STAR AuAu experiments using the RBGMaxwell framework, readers can refer to [40] for more details.More examples and accurate comparisons will be conducted in our future work.Our work is in principle equivalent to the PIC-MCC method, since in PIC-MCC, a consistent behavior of the particle scattering and the EM effects is also considered.However, our method is different from the PIC-MCC method in terms of the collision terms.In our method, we can simply adopt the cross-sections directly from the first-principal calculations, but for PIC-MCC it requires some sort of rescaling, which depends on the empirical analysis and experimental data.

    Our work will be beneficial to various fields concerning the plasma system with full binary collisions.For instance,in the field of near-space plasma,hydron ions and oxygen atoms can collide and produce free electrons; these particles evolve under the influence of both the EM fields and the scatterings.In these conditions, the coupled Boltzmann-Maxwell equations can be of importance.Moreover, in system-generated EM pulses,the electrons are generated and moving in the atmosphere.In this process, collisions between electrons and air molecules are frequent,and hence require a self-consistent description of both the scatterings and the EM effects.

    Acknowledgments

    The authors are thankful for the technical support from Prof Qun Wang and Shi Pu from the University of Science and Technology of China and Xin-Li Sheng from the Central China Normal University.The work was supported by National Natural Science Foundation of China (No.12105227).

    ORCID iDs

    猜你喜歡
    張?chǎng)?/a>俊杰
    High-order effect on the transmission of two optical solitons
    二次函數(shù)應(yīng)用及綜合題
    “畫家陳”
    Insights into the adsorption of water and oxygen on the cubic CsPbBr3 surfaces: A first-principles study
    Exact solution of the Gaudin model with Dzyaloshinsky–Moriya and Kaplan–Shekhtman–Entin–Wohlman–Aharony interactions*
    能自律者為俊杰
    文苑(2020年7期)2020-08-12 09:36:36
    俊杰印象
    海峽姐妹(2019年11期)2019-12-23 08:42:18
    表演大師
    我的同桌
    張?chǎng)?、靳政景觀設(shè)計(jì)作品
    老女人水多毛片| 伊人亚洲综合成人网| 日韩中字成人| 午夜福利在线免费观看网站| 深夜精品福利| 亚洲第一av免费看| 精品少妇一区二区三区视频日本电影 | 一区二区日韩欧美中文字幕| 纯流量卡能插随身wifi吗| 精品少妇一区二区三区视频日本电影 | 久久国产精品男人的天堂亚洲| 一边摸一边做爽爽视频免费| 天堂8中文在线网| 久久久久视频综合| av免费观看日本| 超色免费av| 国产黄色免费在线视频| 免费女性裸体啪啪无遮挡网站| av有码第一页| 久久亚洲国产成人精品v| 国产精品蜜桃在线观看| 麻豆精品久久久久久蜜桃| 国产免费视频播放在线视频| 久久99精品国语久久久| 亚洲欧美一区二区三区黑人 | 免费av中文字幕在线| www.精华液| 亚洲av福利一区| 日韩大片免费观看网站| 国产精品人妻久久久影院| 日韩一卡2卡3卡4卡2021年| 观看av在线不卡| 亚洲欧洲国产日韩| 最黄视频免费看| 欧美bdsm另类| 国产一区二区三区av在线| 亚洲av电影在线进入| 欧美成人精品欧美一级黄| 搡老乐熟女国产| 精品福利永久在线观看| 亚洲伊人色综图| 高清不卡的av网站| 午夜日本视频在线| 在线观看一区二区三区激情| 精品卡一卡二卡四卡免费| 久久久久精品久久久久真实原创| 捣出白浆h1v1| 韩国av在线不卡| 欧美中文综合在线视频| 老鸭窝网址在线观看| 在线观看免费视频网站a站| 亚洲av免费高清在线观看| 熟女少妇亚洲综合色aaa.| 欧美精品一区二区大全| 亚洲精品视频女| 91午夜精品亚洲一区二区三区| 伊人亚洲综合成人网| 丝袜人妻中文字幕| 国产黄色免费在线视频| 久久99精品国语久久久| 波多野结衣一区麻豆| 亚洲精品美女久久久久99蜜臀 | 欧美激情 高清一区二区三区| 深夜精品福利| 亚洲精品日本国产第一区| 免费在线观看视频国产中文字幕亚洲 | 美女视频免费永久观看网站| 黄色视频在线播放观看不卡| 99久久精品国产国产毛片| 美女国产高潮福利片在线看| 免费观看无遮挡的男女| 王馨瑶露胸无遮挡在线观看| 中文字幕精品免费在线观看视频| 亚洲欧美清纯卡通| 男男h啪啪无遮挡| 咕卡用的链子| 高清欧美精品videossex| 国产精品熟女久久久久浪| 国产精品久久久久久精品电影小说| videossex国产| 亚洲av免费高清在线观看| 国产 精品1| 欧美日韩av久久| 侵犯人妻中文字幕一二三四区| 亚洲三区欧美一区| 国产精品久久久久久久久免| 97在线人人人人妻| 性色av一级| 亚洲精品av麻豆狂野| 日韩成人av中文字幕在线观看| 中文精品一卡2卡3卡4更新| 青草久久国产| 国产在线免费精品| 欧美老熟妇乱子伦牲交| 亚洲视频免费观看视频| 欧美老熟妇乱子伦牲交| 亚洲中文av在线| 久久人妻熟女aⅴ| 亚洲激情五月婷婷啪啪| 日韩一本色道免费dvd| 欧美精品人与动牲交sv欧美| 欧美亚洲 丝袜 人妻 在线| av在线观看视频网站免费| 日本色播在线视频| 国产黄频视频在线观看| 两性夫妻黄色片| 日本午夜av视频| 亚洲av.av天堂| √禁漫天堂资源中文www| 美女xxoo啪啪120秒动态图| 国产精品久久久久久av不卡| 日韩免费高清中文字幕av| 久久国内精品自在自线图片| 亚洲国产色片| 97人妻天天添夜夜摸| 一级黄片播放器| 国产精品久久久久久久久免| 亚洲国产欧美日韩在线播放| 97在线人人人人妻| 久久久欧美国产精品| 久久久久久久久久久免费av| 日本-黄色视频高清免费观看| 一级片免费观看大全| 天天躁夜夜躁狠狠久久av| 亚洲国产精品一区二区三区在线| 国产精品一区二区在线观看99| 日本免费在线观看一区| 99精国产麻豆久久婷婷| 美女脱内裤让男人舔精品视频| 在线看a的网站| 日韩av在线免费看完整版不卡| 2022亚洲国产成人精品| av在线观看视频网站免费| 国产极品粉嫩免费观看在线| 国产麻豆69| 一级毛片 在线播放| 2018国产大陆天天弄谢| 欧美中文综合在线视频| 久久久国产一区二区| 中国国产av一级| av国产精品久久久久影院| 亚洲国产欧美网| 五月天丁香电影| 高清欧美精品videossex| 热99国产精品久久久久久7| 日韩 亚洲 欧美在线| 欧美亚洲日本最大视频资源| 韩国精品一区二区三区| 最黄视频免费看| 国产一区二区三区av在线| 大码成人一级视频| 久久人人爽人人片av| 寂寞人妻少妇视频99o| 亚洲精品一区蜜桃| 老司机亚洲免费影院| 国产综合精华液| 久久久久视频综合| 哪个播放器可以免费观看大片| 90打野战视频偷拍视频| 国产色婷婷99| 侵犯人妻中文字幕一二三四区| 99久久精品国产国产毛片| 综合色丁香网| 美女国产视频在线观看| av网站免费在线观看视频| 久久久久精品人妻al黑| 国产av精品麻豆| 欧美亚洲 丝袜 人妻 在线| 99热国产这里只有精品6| 免费不卡的大黄色大毛片视频在线观看| 美女xxoo啪啪120秒动态图| 一本久久精品| 亚洲国产欧美日韩在线播放| 久久精品国产亚洲av天美| a级片在线免费高清观看视频| 国产av精品麻豆| 大香蕉久久成人网| 中国三级夫妇交换| 婷婷色综合大香蕉| 一本—道久久a久久精品蜜桃钙片| 亚洲精品国产一区二区精华液| 成人影院久久| 国产免费视频播放在线视频| 观看av在线不卡| 在线观看三级黄色| 日本爱情动作片www.在线观看| 欧美人与性动交α欧美精品济南到 | 成人亚洲欧美一区二区av| 高清黄色对白视频在线免费看| av网站免费在线观看视频| 国产极品天堂在线| 久久这里只有精品19| 日日撸夜夜添| 国产精品三级大全| 亚洲,一卡二卡三卡| 99热全是精品| 18禁动态无遮挡网站| 天天影视国产精品| 欧美最新免费一区二区三区| 寂寞人妻少妇视频99o| 亚洲熟女精品中文字幕| xxx大片免费视频| 亚洲精品久久午夜乱码| 女性被躁到高潮视频| 人妻系列 视频| 免费看av在线观看网站| 午夜免费男女啪啪视频观看| 久久鲁丝午夜福利片| 寂寞人妻少妇视频99o| 国产成人免费观看mmmm| 一级片'在线观看视频| 午夜免费鲁丝| 女性被躁到高潮视频| 欧美精品亚洲一区二区| 在线观看一区二区三区激情| 久久久欧美国产精品| 免费高清在线观看日韩| 丝袜人妻中文字幕| 一本—道久久a久久精品蜜桃钙片| 久久韩国三级中文字幕| 丰满少妇做爰视频| 国产免费一区二区三区四区乱码| 建设人人有责人人尽责人人享有的| 激情视频va一区二区三区| 欧美精品高潮呻吟av久久| 久久久久久久亚洲中文字幕| 午夜福利在线免费观看网站| 亚洲欧美一区二区三区黑人 | 成年女人毛片免费观看观看9 | 日韩一本色道免费dvd| 久久精品亚洲av国产电影网| √禁漫天堂资源中文www| 亚洲,一卡二卡三卡| 美国免费a级毛片| 久久久久网色| 狠狠精品人妻久久久久久综合| 久久精品国产a三级三级三级| 成人影院久久| av国产精品久久久久影院| 一级a爱视频在线免费观看| 国语对白做爰xxxⅹ性视频网站| 国产乱来视频区| 国产乱来视频区| 美女午夜性视频免费| 免费在线观看完整版高清| 精品国产一区二区三区久久久樱花| 亚洲欧美色中文字幕在线| 亚洲,欧美精品.| 免费女性裸体啪啪无遮挡网站| 国产免费现黄频在线看| 视频在线观看一区二区三区| 亚洲精品乱久久久久久| 欧美日韩视频高清一区二区三区二| 欧美 亚洲 国产 日韩一| 国产欧美日韩一区二区三区在线| 国产精品香港三级国产av潘金莲 | 精品人妻在线不人妻| 大香蕉久久网| av在线观看视频网站免费| 少妇的丰满在线观看| 久久韩国三级中文字幕| 亚洲五月色婷婷综合| 亚洲少妇的诱惑av| videosex国产| 国产精品成人在线| 精品久久蜜臀av无| 91精品伊人久久大香线蕉| av女优亚洲男人天堂| 99久久人妻综合| 十八禁网站网址无遮挡| a级毛片在线看网站| 色吧在线观看| 精品久久蜜臀av无| 日本av手机在线免费观看| 国产精品久久久久久精品古装| 午夜福利乱码中文字幕| 免费观看在线日韩| 婷婷色综合大香蕉| 久久午夜综合久久蜜桃| 亚洲欧美一区二区三区久久| 亚洲国产欧美日韩在线播放| 久久精品aⅴ一区二区三区四区 | av.在线天堂| 男人操女人黄网站| 夫妻午夜视频| 9191精品国产免费久久| 国产精品国产三级国产专区5o| 如何舔出高潮| 蜜桃在线观看..| 色网站视频免费| 久久久久精品久久久久真实原创| 亚洲欧洲精品一区二区精品久久久 | 中文字幕最新亚洲高清| 黄色视频在线播放观看不卡| 亚洲三区欧美一区| 熟女av电影| 麻豆av在线久日| 中文精品一卡2卡3卡4更新| 免费在线观看视频国产中文字幕亚洲 | 欧美日韩亚洲高清精品| 久久国产精品男人的天堂亚洲| 国产熟女欧美一区二区| 国产黄色免费在线视频| 观看美女的网站| 国产精品免费视频内射| 天天影视国产精品| 精品国产一区二区三区久久久樱花| av免费在线看不卡| 午夜老司机福利剧场| 99久久人妻综合| 99国产精品免费福利视频| 国产有黄有色有爽视频| 夫妻午夜视频| 免费日韩欧美在线观看| 黑人巨大精品欧美一区二区蜜桃| 亚洲精品美女久久av网站| 一区在线观看完整版| 视频在线观看一区二区三区| 多毛熟女@视频| 久久国内精品自在自线图片| 久久久久精品性色| 青春草视频在线免费观看| 熟女电影av网| 国产成人91sexporn| 久久97久久精品| 啦啦啦啦在线视频资源| 欧美97在线视频| 欧美老熟妇乱子伦牲交| 久久99蜜桃精品久久| 色哟哟·www| av不卡在线播放| 亚洲av电影在线进入| 汤姆久久久久久久影院中文字幕| 高清av免费在线| 国产视频首页在线观看| 校园人妻丝袜中文字幕| 飞空精品影院首页| 老汉色av国产亚洲站长工具| 黄片无遮挡物在线观看| 精品一区二区免费观看| 91精品伊人久久大香线蕉| 亚洲伊人色综图| 90打野战视频偷拍视频| 最新的欧美精品一区二区| 亚洲精品国产色婷婷电影| 国产精品免费视频内射| 免费看不卡的av| 这个男人来自地球电影免费观看 | 日韩一本色道免费dvd| 亚洲av电影在线观看一区二区三区| 韩国高清视频一区二区三区| 欧美黄色片欧美黄色片| 只有这里有精品99| 成人国语在线视频| 啦啦啦在线免费观看视频4| 国产亚洲精品第一综合不卡| 国产成人精品无人区| 成人漫画全彩无遮挡| 久久人人爽人人片av| 人妻一区二区av| 精品国产一区二区久久| 国产精品嫩草影院av在线观看| 成年人免费黄色播放视频| 人人澡人人妻人| 另类亚洲欧美激情| 中国三级夫妇交换| 国产精品久久久av美女十八| 亚洲欧美成人综合另类久久久| 一区二区三区激情视频| 日韩av不卡免费在线播放| 一本大道久久a久久精品| 国产有黄有色有爽视频| videossex国产| 夫妻性生交免费视频一级片| 黄片播放在线免费| 欧美av亚洲av综合av国产av | 日韩制服骚丝袜av| 精品少妇一区二区三区视频日本电影 | 性色av一级| 只有这里有精品99| 黄网站色视频无遮挡免费观看| 国产精品国产三级专区第一集| 亚洲一区中文字幕在线| 中文字幕另类日韩欧美亚洲嫩草| 又黄又粗又硬又大视频| 色网站视频免费| av国产久精品久网站免费入址| 久久国产精品大桥未久av| 一区二区三区四区激情视频| 久久精品国产亚洲av涩爱| 欧美精品av麻豆av| 久久精品aⅴ一区二区三区四区 | 亚洲精品在线美女| 国产女主播在线喷水免费视频网站| 一区二区三区四区激情视频| 久久久国产欧美日韩av| 99香蕉大伊视频| 亚洲一区中文字幕在线| 日韩精品免费视频一区二区三区| 亚洲国产av新网站| 超碰97精品在线观看| 国产精品 国内视频| 国产高清国产精品国产三级| 女人高潮潮喷娇喘18禁视频| 免费不卡的大黄色大毛片视频在线观看| 婷婷成人精品国产| 亚洲美女黄色视频免费看| 亚洲四区av| 免费大片黄手机在线观看| 国产高清国产精品国产三级| 男女无遮挡免费网站观看| 亚洲天堂av无毛| 超碰97精品在线观看| 成人毛片60女人毛片免费| 青青草视频在线视频观看| 在线观看人妻少妇| 欧美日韩精品成人综合77777| 亚洲一区中文字幕在线| 久久国产精品大桥未久av| 熟女少妇亚洲综合色aaa.| 国产精品久久久久久精品电影小说| 国产av精品麻豆| 啦啦啦中文免费视频观看日本| av视频免费观看在线观看| 免费在线观看黄色视频的| 女的被弄到高潮叫床怎么办| 麻豆av在线久日| 久久精品久久精品一区二区三区| 热99久久久久精品小说推荐| 亚洲av男天堂| 亚洲少妇的诱惑av| av免费观看日本| 久久精品夜色国产| 免费人妻精品一区二区三区视频| 黄色视频在线播放观看不卡| 午夜福利在线观看免费完整高清在| 女性被躁到高潮视频| 久久久久久久久久人人人人人人| 久久国产亚洲av麻豆专区| 成人免费观看视频高清| 夫妻午夜视频| 男女无遮挡免费网站观看| 亚洲av男天堂| 成年动漫av网址| av片东京热男人的天堂| 91精品伊人久久大香线蕉| 日本欧美视频一区| 亚洲一级一片aⅴ在线观看| 另类精品久久| 麻豆av在线久日| 午夜老司机福利剧场| 精品人妻熟女毛片av久久网站| 亚洲天堂av无毛| 嫩草影院入口| 香蕉精品网在线| 美国免费a级毛片| 中文字幕制服av| 亚洲欧美成人精品一区二区| 久久精品国产自在天天线| 久久精品国产综合久久久| 久久国产亚洲av麻豆专区| 在线观看美女被高潮喷水网站| 女人高潮潮喷娇喘18禁视频| 人体艺术视频欧美日本| av网站在线播放免费| 欧美 日韩 精品 国产| 精品国产露脸久久av麻豆| 日日撸夜夜添| 99久久精品国产国产毛片| 欧美老熟妇乱子伦牲交| 亚洲一级一片aⅴ在线观看| 亚洲一区中文字幕在线| 国产不卡av网站在线观看| 一级毛片 在线播放| 一边摸一边做爽爽视频免费| 夫妻性生交免费视频一级片| 99九九在线精品视频| 国产成人精品在线电影| 亚洲婷婷狠狠爱综合网| 91精品三级在线观看| 大片免费播放器 马上看| 夫妻性生交免费视频一级片| 毛片一级片免费看久久久久| 欧美日本中文国产一区发布| 国产成人av激情在线播放| 亚洲中文av在线| av卡一久久| 90打野战视频偷拍视频| 美国免费a级毛片| 欧美激情高清一区二区三区 | 国产精品成人在线| 99热全是精品| 这个男人来自地球电影免费观看 | 国产又爽黄色视频| 精品午夜福利在线看| 美女午夜性视频免费| 啦啦啦在线观看免费高清www| 80岁老熟妇乱子伦牲交| 国产视频首页在线观看| 99国产精品免费福利视频| 一级毛片我不卡| 亚洲欧美精品自产自拍| 亚洲国产色片| 免费高清在线观看视频在线观看| 久久久久国产精品人妻一区二区| 国产精品国产三级专区第一集| 久久久久久免费高清国产稀缺| 一区在线观看完整版| 超碰97精品在线观看| 一级毛片 在线播放| 天天影视国产精品| 黑人猛操日本美女一级片| 18+在线观看网站| 毛片一级片免费看久久久久| 免费女性裸体啪啪无遮挡网站| 亚洲四区av| 欧美精品一区二区大全| 女人被躁到高潮嗷嗷叫费观| 少妇人妻 视频| 高清在线视频一区二区三区| 最近最新中文字幕免费大全7| 国产成人午夜福利电影在线观看| 国产精品女同一区二区软件| 国产成人精品福利久久| 色播在线永久视频| 日韩av在线免费看完整版不卡| 国产无遮挡羞羞视频在线观看| 如日韩欧美国产精品一区二区三区| 亚洲欧美日韩另类电影网站| 免费在线观看黄色视频的| 亚洲图色成人| 国产精品亚洲av一区麻豆 | 岛国毛片在线播放| 亚洲婷婷狠狠爱综合网| 制服丝袜香蕉在线| 老汉色∧v一级毛片| 欧美bdsm另类| 日本91视频免费播放| 9色porny在线观看| 日韩熟女老妇一区二区性免费视频| 日日爽夜夜爽网站| 美女脱内裤让男人舔精品视频| 一级黄片播放器| 日本色播在线视频| 日韩制服丝袜自拍偷拍| 99久久中文字幕三级久久日本| 欧美变态另类bdsm刘玥| 免费观看性生交大片5| 夫妻性生交免费视频一级片| av国产久精品久网站免费入址| 日韩一本色道免费dvd| 激情视频va一区二区三区| 欧美bdsm另类| 久久精品熟女亚洲av麻豆精品| 国产精品 欧美亚洲| 黄片小视频在线播放| 国产1区2区3区精品| 亚洲av日韩在线播放| 国产精品一二三区在线看| av福利片在线| 妹子高潮喷水视频| 国产国语露脸激情在线看| 高清在线视频一区二区三区| 自拍欧美九色日韩亚洲蝌蚪91| 久久毛片免费看一区二区三区| 日日摸夜夜添夜夜爱| 国产av码专区亚洲av| 欧美精品亚洲一区二区| 黄片无遮挡物在线观看| 国产xxxxx性猛交| 精品一区在线观看国产| 亚洲国产精品999| 亚洲欧洲精品一区二区精品久久久 | 在线观看国产h片| 国产探花极品一区二区| 观看美女的网站| 亚洲第一区二区三区不卡| 99久久精品国产国产毛片| 麻豆av在线久日| 飞空精品影院首页| 看非洲黑人一级黄片| 999久久久国产精品视频| 各种免费的搞黄视频| 国产xxxxx性猛交| 亚洲内射少妇av| 午夜福利,免费看| 看免费av毛片| av网站免费在线观看视频| 亚洲欧美中文字幕日韩二区| 婷婷色麻豆天堂久久| 18禁观看日本| 国产欧美日韩综合在线一区二区| 在线亚洲精品国产二区图片欧美| 日韩制服骚丝袜av| 久久精品aⅴ一区二区三区四区 | av卡一久久| 视频在线观看一区二区三区| 香蕉精品网在线| 色哟哟·www| 亚洲成av片中文字幕在线观看 | 久久久国产欧美日韩av| 午夜久久久在线观看| 99re6热这里在线精品视频| av女优亚洲男人天堂| 久久免费观看电影| 久久久精品区二区三区| 免费久久久久久久精品成人欧美视频| a级片在线免费高清观看视频| 搡老乐熟女国产| 性高湖久久久久久久久免费观看| 日本欧美国产在线视频| 久久精品亚洲av国产电影网| 亚洲av在线观看美女高潮| 大片电影免费在线观看免费| 波野结衣二区三区在线|