• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Exact solution of the Gaudin model with Dzyaloshinsky–Moriya and Kaplan–Shekhtman–Entin–Wohlman–Aharony interactions*

    2021-05-24 02:24:48FaKaiWen溫發(fā)楷andXinZhang張鑫
    Chinese Physics B 2021年5期
    關鍵詞:張鑫

    Fa-Kai Wen(溫發(fā)楷) and Xin Zhang(張鑫)

    1State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics,Wuhan Institute of Physics and Mathematics,Chinese Academy of Sciences,Wuhan 430071,China

    2Fakult¨at f¨ur Mathematik und Naturwissenschaften,Bergische Universit¨at Wuppertal,42097 Wuppertal,Germany

    Keywords: integrable models,Gaudin model,Bethe ansatz,Bethe states

    1. Introduction

    The Gaudin model is an important integrable system with long-range interaction.[1]It is closely related to the central spin model[2,3]and BCS model,[4–9]which has been widely used in the study of metallic nanoparticles,[10]quantum dots,[11]noisy spins,[12]Rydberg atoms,[13]and so on.Based on the exact solutions of the Gaudin model,its correlation functions,[14]quantum dynamics[15–18]and coherence[19]have always been the focus of research.

    The Gaudin Hamiltonian can be constructed by taking the quasi-classical expansion of the transfer matrix of the spin chain.[20–24]For the periodic case, the corresponding Gaudin Hamiltonian includes the external field on the central spin(B)and Heisenberg exchange interaction(Ak). For the open case,the corresponding Gaudin Hamiltonian also includes the Dzyaloshinsky–Moriya (DM) interaction (Dk)[25,26]and the Kaplan–Shekhtman–Entin–Wohlman–Aharony(KSEA)interaction(Mk),[27,28]i.e.,

    where N is the number of spins. The constants B, Ak,Dkand Mkare defined below and their values rely on the boundary parameters and a set of inhomogeneous parameters{θ1,...,θN}. For the generic open cases, the corresponding Gaudin Hamiltonian has no obvious reference state due to the U(1)symmetry breaking(i.e.,the total spin along z-direction is not conserved). This leads to employing the conventional Bethe ansatz methods to approach the eigenvalues and Bethe states of the model very involved. With the help of the offdiagonal Bethe ansatz(ODBA)method,[29,30]the eigenvalues of the XXX model with generic open boundaries were given in Ref. [31]. Recently, the Gaudin model has been revisited many times.[32–34]However, the Bethe states of the Gaudin Hamiltonian(1)are still absent.

    In this paper, one of our aims is to construct the Bethe states of the Gaudin model (1). By employing some gauge transformations, we obtain the operators and reference state for constructing the Bethe states, respectively. Taking the quasi-classical expansion of the Bethe states of the spin chain,we obtain the Bethe states of the Gaudin model (1). We also study the degeneration of the Bethe states when the model recovers the U(1)symmetry.

    The rest of this paper is organized as follows. In Section 2, we present the ODBA solutions of the Gaudin model.In Section 3, with the help of the ODBA solutions, we construct the Bethe states of the Gaudin model. The Bethe states,eigenvalues and Bethe ansatz equations recovering that of the Gaudin model with the U(1)symmetry are given in Section 4.We summarize our results and give some discussions in Section 5. Some technical proofs are given in Appendix A.

    2. ODBA solutions

    The integrability of the Gaudin model is associated with the R-matrix

    where u is the spectral parameter and η is the crossing parameter. The R-matrix satisfies the quantum Yang–Baxter equation

    Here R21(u)=P12R12(u)P12with P12being the usual permutation operator. In what follows, we adopt the standard notations: for any matrix O ∈End(V),Okis an embedding operator in the tensor space V ?V ?···, which acts as O on the k-th space and as identity on the other factor spaces;Rkl(u)is an embedding operator of R-matrix in the tensor space,which acts as an identity on the factor spaces except for the k-th and l-th ones.[35]

    The general reflection matrices are given by[31]

    which satisfy the reflection equation(RE)

    The dual K-matrix K+(u)is

    which satisfies the dual RE

    The parameters ˉξ and ?2depend on the crossing parameter η.Expansion of ˉξ and ?2with respect to η is as follows:

    Using the normalization(6),we have

    and the double-row monodromy matrix

    Then the transfer matrix is given by

    With the same procedure introduced in Ref.[36],one can obtain the commutativity of the transfer matrix [t(u),t(v)]=0,which ensures the integrability of the model. Expanding the transfer matrix t(u) at the point u=θjaround η =0,[36]we obtain

    where the constants in the Hamiltonian (1) are expressed in terms of the boundary parameters in the corresponding Kmatrices given in Eqs.(4)and(6)as follows:

    where the function Q(u) is parameterized by N parameters{λj|j=1,...,N}

    and the functions a(u), d(u), F(u) and the constant chare given by

    By using the relation(14),the energy Ejof the Gaudin Hamiltonian Hjcan be obtained,

    and the N Bethe roots{λk|k=1,...,N}should satisfy a set of Bethe ansatz equations(BAEs),

    3. Bethe states of the Gaudin model

    With the above relations,the transfer matrix t(u)can be rewritten as

    Then, the boundary K?(u) matrix can be transformed into a lower triangular matrix

    and an upper triangular matrix

    Here we use the following notations for the gauge transformed matrices: ?O=GOG?1, ˉO= ˉGOˉG?1and ?O= ?GO ?G?1,where O is an arbitrary matrix in the auxiliary space. With the gauge transformation matrices ˉG and ?G,we introduce the following new reference states:

    Using a similar method in Ref.[37],we construct the left and right Bethe states of the inhomogeneous XXX Heisenberg spin chain with the generic open boundaries

    The proofs are given in Appendix A.

    With the relation (14), the Bethe state of the inhomogeneous XXX Heisenberg spin chain can be expanded as[21]

    Table 1. Solutions of BAEs (23) for the case of N = 3, j = 1, {θk} ={1.19,2.20,3.58}, ξ =0.8i, ξ(1) =1.2, =0.3, =0.5, h=0.2i,=0.7i. The symbol n indicates the number of the eigenvalues, =Hj|ψ〉?|ψ〉, and is the corresponding energy. The energy calculated from Eq.(22)is the same as that from the exact diagonalization of the Gaudin Hamiltonian(1).

    Table 1. Solutions of BAEs (23) for the case of N = 3, j = 1, {θk} ={1.19,2.20,3.58}, ξ =0.8i, ξ(1) =1.2, =0.3, =0.5, h=0.2i,=0.7i. The symbol n indicates the number of the eigenvalues, =Hj|ψ〉?|ψ〉, and is the corresponding energy. The energy calculated from Eq.(22)is the same as that from the exact diagonalization of the Gaudin Hamiltonian(1).

    λ1 λ2 λ3 Enj ?nj n 0.4038 1.7040+1.4436i 1.7040?1.4436i ?3.0624 10?15 1 4.6639 0.4788+1.0420i 0.4788?1.0420i ?2.4126 10?15 2 0.5266 2.5061+0.4493i 2.5061?0.4493i ?1.7616 10?14 3 0.4888i 4.0676+0.9174i 4.0676?0.9174i ?1.6133 10?14 4 5.1762 3.9424+2.6895i 3.9424?2.6895i 0.6952 10?14 5 3.0069 2.8496+1.4388i 2.8496?1.4388i 1.3880 10?13 6 4.1829 2.1283+0.2312i 2.1283?0.2312i 3.1108 10?13 7 1.7049 2.0069+1.1388i 2.0069?1.1388i 3.6559 10?14 8

    Here|ψ〉is the Bethe state of the Gaudin model(1)

    where

    4. Degeneration of the Bethe states

    Table 2.Solutions of BAEs(23)for the case of N=3, j=1,{θk}={1.19,2.20,3.58},ξ =0.8i,ξ(1)=1.2,h=0.3,=0.5,=0.002i,=0.007i. The symbol n indicates the number of the eigenvalues,=Hj|ψ〉?|ψ〉,and is the corresponding energy. The energy calculated from Eq.(22)is the same as that from the exact diagonalization of the Gaudin Hamiltonian(1).

    Table 2.Solutions of BAEs(23)for the case of N=3, j=1,{θk}={1.19,2.20,3.58},ξ =0.8i,ξ(1)=1.2,h=0.3,=0.5,=0.002i,=0.007i. The symbol n indicates the number of the eigenvalues,=Hj|ψ〉?|ψ〉,and is the corresponding energy. The energy calculated from Eq.(22)is the same as that from the exact diagonalization of the Gaudin Hamiltonian(1).

    λ1 λ2 λ3 Enj ?nj n 0.6702i 2.9192i 201.9838i ?2.1993 10?15 1 7.9077 4.1051i 0.6465i ?1.9808 10?15 2 0.6290i 150.8937+112.0518i 150.8937?112.0518i ?1.8505 10?15 3 0.5616i 2.8851 201.9208i ?1.3606 10?15 4 414.2882 319.1713+309.7090i 319.1713?309.7090i 0.4192 10?14 5 3.1386 150.8727+112.0845i 150.8727?112.0845i 0.9067 10?14 6 1.7485 150.8866+112.0628i 150.8866?112.0628i 2.9248 10?14 7 1.4945+0.4144i 1.4945?0.4144i 201.9353i 3.1405 10?14 8

    Table 3. Values of in solutions of BAEs(23)for the case of N=2, j=1,{θk}={1.19,2.20},ξ =0.8i,ξ(1)=1.2,=0,=0.7,h(1)y2 =0. The symbol n indicates the number of the eigenvalues.

    Table 3. Values of in solutions of BAEs(23)for the case of N=2, j=1,{θk}={1.19,2.20},ξ =0.8i,ξ(1)=1.2,=0,=0.7,h(1)y2 =0. The symbol n indicates the number of the eigenvalues.

    h(1)x 2 0.1i 0.01i 0.001i 0.0001i n=2 1.0602i 0.8967i 0.8945i 0.8944i n=3 ?1.4794+2.6527i ?1.4817+2.6450i ?1.4818+2.6449i ?1.4818+2.6449i 1.4794+2.6527i 1.4817+2.6450i 1.4818+2.6449i 1.4818+2.6449i n=4 0.9070i 0.8946i 0.8944i 0.8944i

    Table 4. Values of in solutions of BAEs (23) for the case of N =3, j=1, {θk}={1.19,2.20,3.58}, ξ =0.8i, ξ(1) =1.2, hx1 =0,=0.7,h(1)y2 =0. The symbol n indicates the number of the eigenvalues.

    Table 4. Values of in solutions of BAEs (23) for the case of N =3, j=1, {θk}={1.19,2.20,3.58}, ξ =0.8i, ξ(1) =1.2, hx1 =0,=0.7,h(1)y2 =0. The symbol n indicates the number of the eigenvalues.

    h(1)x 2 0.1i 0.01i 0.001i 0.0001i n=1 ?1.8265 ?1.7893 ?1.7889 ?1.7889 n=3 ?0.9704+1.3890i ?0.9925+1.3368i ?0.9928+1.3363i ?0.9928+1.3363i 0.9704+1.3890i 0.9925+1.3368i 0.9928+1.3363i 0.9928+1.3363i n=4 ?1.7661 ?1.7886 ?1.7889 ?1.7889 3.6823i 3.6699i 3.6698i 3.6698i n=5 ?2.7384+2.8368i ?2.7435+2.8273i ?2.7435+2.8272i ?2.7435+2.8272i 2.7384+2.8368i 2.7435+2.8273i 2.7435+2.8272i 2.7435+2.8272i n=6 ?1.0033+1.3612i ?0.9929+1.3365i ?0.9928+1.3363i ?0.9928+1.3363i 1.0033+1.3612i 0.9929+1.3365i 0.9928+1.3363i 0.9928+1.3363i n=7 ?0.9792+1.3762i ?0.9927+1.3367i ?0.9928+1.3363i ?0.9928+1.3363i 0.9792+1.3762i 0.9927+1.3367i 0.9928+1.3363i 0.9928+1.3363i n=8 ?1.7814 ?1.7888 ?1.7889 ?1.7889

    This fact gives rise to

    The numerical solutions of BAEs(46)and the corresponding eigenvalues(45)and Bethe states(43)of the Gaudin Hamiltonian(1)for N=3 are listed in Table 5.

    Table 5. Solutions of BAEs (46) for the case of N = 3, j = 1, {θk} ={1.19,2.20,3.58}, ξ =0.8i, ξ(1) =1.2, hx1 =0.4, hy1 =0.7. The symbol n indicates the number of the eigenvalues, ?nj =Hj|ψ〉?Enj|ψ〉, and Enj is the corresponding energy. The energy Enj calculated from Eq. (45) is the same as that from the exact diagonalization of the Gaudin Hamiltonian(1).

    5. Conclusion

    In summary, we have obtained the explicit closed-form expression of the Bethe states of the Gaudin model with DM and KSEA interactions. Taking the Gaudin model as a concrete example,we have studied the degeneration of the Bethe states(40). This method provide some insights into the degeneration of the Bethe states for other integral models without U(1)symmetry. In the near future,we will study the correlation functions and quantum dynamics of the Gaudin model(1)based on the results in this paper.

    Appendix A:Proof of Eqs.(37)and(38)

    In this appendix, we will construct the left Bethe state(37) and right Bethe state (38) of the inhomogeneous XXX Heisenberg spin chain.

    A.1. Separation-of-variables(SoV)basis

    With the help of the gauge transformation G, we introduce two local states of site n

    It is easy to check that these states satisfy the orthogonal relationsj〈a|b〉k=δa,bδj,k, where a,b=1,2 and j,k=1,...,N.Using the above local states,we define

    The SoV states can be constructed as[37]

    It is easy to derive

    A.2. Eigenstates of the inhomogeneous XXX Heisenberg spin chain

    In Ref. [37], the key to construct the eigenstates 〈Ψ|of the transfer matrix t(u) is to calculate the scalar product 〈Ψ|θp1,...,θpn〉 with the SoV basis and the inhomogeneous T–Q relation (A16). For convenience, we denote〈Ψ|θp1,...,θpn〉as

    The eigenstates 〈Ψ| can be decomposed as a unique linear combination of the basis

    where p1<···<pnand pn+1<···<pN.

    Based on the SoV basis and the inhomogeneous T–Q relation (A16), we construct the eigenstates of the transfer matrix t(u) (or the Hamiltonian HXXX= ?lnt(u)/?u|u=0).The benefit of this approach is that an reference states is not needed. Next,we construct the Bethe states of the inhomogeneous XXX Heisenberg spin chain using the SoV basis and the scalar product in Eq.(A13).

    Acknowledgment

    F.K.Wen would like to thank K.Hao for useful discussions. X.Zhang thanks the Alexander von Humboldt Foundation for financial support.

    猜你喜歡
    張鑫
    High-order effect on the transmission of two optical solitons
    以綜合之道破解綜合之題
    A GPU-based general numerical framework for plasma simulations in terms of microscopic kinetic equations with full collision terms
    二次函數(shù)應用及綜合題
    Insights into the adsorption of water and oxygen on the cubic CsPbBr3 surfaces: A first-principles study
    Erratum to: Seabed domes with circular depressions in the North Yellow Sea*
    Seabed domes with circular depressions in the North Yellow Sea*
    Prospect for Cosmological Parameter Estimation Using Future Hubble Parameter Measurements?
    AnAnalysisoftheDualPersonalityinDr.JekyllandMr.Hyde
    張鑫、靳政景觀設計作品
    藝術評論(2016年7期)2016-05-14 00:39:31
    精品久久久久久久末码| 久久久久视频综合| 精品熟女少妇av免费看| 国产日韩欧美在线精品| 国产精品久久久久久精品电影小说 | 岛国毛片在线播放| 一级毛片aaaaaa免费看小| 蜜桃亚洲精品一区二区三区| 成年人午夜在线观看视频| 观看美女的网站| 亚洲av男天堂| av播播在线观看一区| 在线精品无人区一区二区三 | 在线看a的网站| 高清视频免费观看一区二区| 国产无遮挡羞羞视频在线观看| 一级毛片我不卡| 校园人妻丝袜中文字幕| 免费高清在线观看视频在线观看| 久久久久久久久久人人人人人人| 熟女av电影| videos熟女内射| 成年免费大片在线观看| 在现免费观看毛片| 国产精品一区二区在线不卡| 免费播放大片免费观看视频在线观看| 亚洲精品,欧美精品| 国产精品久久久久久久电影| 精品视频人人做人人爽| 欧美3d第一页| 欧美xxxx性猛交bbbb| 菩萨蛮人人尽说江南好唐韦庄| 欧美xxⅹ黑人| 日韩,欧美,国产一区二区三区| 国产亚洲av片在线观看秒播厂| 久久精品夜色国产| 女性被躁到高潮视频| 国产高清有码在线观看视频| xxx大片免费视频| 亚洲一区二区三区欧美精品| 亚洲av二区三区四区| 最近的中文字幕免费完整| 少妇裸体淫交视频免费看高清| 3wmmmm亚洲av在线观看| 国产午夜精品久久久久久一区二区三区| 成人毛片a级毛片在线播放| 伦理电影大哥的女人| 免费看不卡的av| 又黄又爽又刺激的免费视频.| 国产人妻一区二区三区在| 性色avwww在线观看| 久久综合国产亚洲精品| 高清日韩中文字幕在线| 3wmmmm亚洲av在线观看| 只有这里有精品99| 男的添女的下面高潮视频| 久久人妻熟女aⅴ| 国产在线免费精品| 国产精品麻豆人妻色哟哟久久| 免费在线观看成人毛片| 麻豆乱淫一区二区| 99久国产av精品国产电影| 亚洲va在线va天堂va国产| 日本爱情动作片www.在线观看| 日本猛色少妇xxxxx猛交久久| 我的女老师完整版在线观看| av播播在线观看一区| 在线观看av片永久免费下载| 久久久久久九九精品二区国产| 日韩欧美 国产精品| 欧美精品人与动牲交sv欧美| 国产精品久久久久久久电影| 成人毛片a级毛片在线播放| 免费观看av网站的网址| 亚洲av中文字字幕乱码综合| 99热这里只有是精品50| 精品人妻一区二区三区麻豆| 国产v大片淫在线免费观看| 少妇熟女欧美另类| 精品人妻熟女av久视频| 亚洲精品日本国产第一区| 水蜜桃什么品种好| 久久国内精品自在自线图片| 亚洲国产最新在线播放| 我要看黄色一级片免费的| 日韩欧美精品免费久久| 毛片一级片免费看久久久久| 最近中文字幕高清免费大全6| 欧美日韩视频高清一区二区三区二| 青春草亚洲视频在线观看| 亚洲内射少妇av| 丰满乱子伦码专区| 激情五月婷婷亚洲| 国产精品女同一区二区软件| 麻豆国产97在线/欧美| 搡老乐熟女国产| 久久综合国产亚洲精品| 久久久久人妻精品一区果冻| 噜噜噜噜噜久久久久久91| av又黄又爽大尺度在线免费看| 一边亲一边摸免费视频| 五月玫瑰六月丁香| 免费av中文字幕在线| 制服丝袜香蕉在线| 欧美区成人在线视频| 欧美激情极品国产一区二区三区 | 黄色一级大片看看| 国产精品一区二区三区四区免费观看| 九草在线视频观看| 伦理电影大哥的女人| 欧美区成人在线视频| 男女免费视频国产| 天天躁夜夜躁狠狠久久av| 欧美亚洲 丝袜 人妻 在线| 婷婷色麻豆天堂久久| 只有这里有精品99| 最黄视频免费看| 高清日韩中文字幕在线| 精品午夜福利在线看| xxx大片免费视频| 黑人猛操日本美女一级片| 久久ye,这里只有精品| 亚洲精品日本国产第一区| 夜夜爽夜夜爽视频| 人人妻人人爽人人添夜夜欢视频 | 美女国产视频在线观看| 久久久久久伊人网av| 亚洲内射少妇av| 日韩免费高清中文字幕av| videossex国产| 国产免费一区二区三区四区乱码| 美女cb高潮喷水在线观看| 99久国产av精品国产电影| 免费在线观看成人毛片| 晚上一个人看的免费电影| 久久久久久久国产电影| 国产在线一区二区三区精| 欧美97在线视频| 久热这里只有精品99| 亚洲性久久影院| 久久女婷五月综合色啪小说| 人体艺术视频欧美日本| 国产免费福利视频在线观看| 亚洲精品视频女| 91aial.com中文字幕在线观看| 哪个播放器可以免费观看大片| 精品一区二区免费观看| 亚洲av成人精品一二三区| 丰满人妻一区二区三区视频av| 亚洲欧洲日产国产| 我要看日韩黄色一级片| av国产久精品久网站免费入址| 亚洲欧美一区二区三区国产| 欧美丝袜亚洲另类| 超碰97精品在线观看| 老熟女久久久| 免费人成在线观看视频色| 国产毛片在线视频| 成人亚洲精品一区在线观看 | 日韩中字成人| 精品一区二区免费观看| 一级片'在线观看视频| 一级毛片久久久久久久久女| 91精品国产国语对白视频| 亚洲欧美清纯卡通| 欧美精品亚洲一区二区| 嘟嘟电影网在线观看| 观看免费一级毛片| 十八禁网站网址无遮挡 | 欧美激情极品国产一区二区三区 | 街头女战士在线观看网站| 日韩中字成人| 日韩大片免费观看网站| 欧美另类一区| av卡一久久| 国产片特级美女逼逼视频| 国产v大片淫在线免费观看| 精品亚洲乱码少妇综合久久| 美女中出高潮动态图| 精品酒店卫生间| 欧美xxⅹ黑人| 一区在线观看完整版| 中文精品一卡2卡3卡4更新| 成人特级av手机在线观看| 国产免费一区二区三区四区乱码| 国产精品嫩草影院av在线观看| 亚洲精品成人av观看孕妇| 国产爽快片一区二区三区| 欧美一级a爱片免费观看看| 国产伦在线观看视频一区| 人妻一区二区av| av天堂中文字幕网| 交换朋友夫妻互换小说| 亚洲欧洲国产日韩| 自拍欧美九色日韩亚洲蝌蚪91 | 高清日韩中文字幕在线| 偷拍熟女少妇极品色| 大香蕉97超碰在线| 狂野欧美白嫩少妇大欣赏| 极品少妇高潮喷水抽搐| 麻豆成人av视频| 男的添女的下面高潮视频| 日本vs欧美在线观看视频 | 精品久久久久久电影网| 一级毛片电影观看| 久久综合国产亚洲精品| 日本一二三区视频观看| 国产精品伦人一区二区| 国产成人精品一,二区| 亚洲无线观看免费| 午夜福利在线观看免费完整高清在| 蜜臀久久99精品久久宅男| 精品国产乱码久久久久久小说| 五月玫瑰六月丁香| 亚洲精品久久午夜乱码| 久久久成人免费电影| 亚洲精品乱久久久久久| 青春草视频在线免费观看| 国产色爽女视频免费观看| 日产精品乱码卡一卡2卡三| 亚洲av.av天堂| 天美传媒精品一区二区| av国产久精品久网站免费入址| 国产乱来视频区| 极品少妇高潮喷水抽搐| 色5月婷婷丁香| 我的老师免费观看完整版| 少妇人妻久久综合中文| 99九九线精品视频在线观看视频| 丝袜脚勾引网站| 老熟女久久久| 亚洲国产精品999| 日韩av不卡免费在线播放| 搡女人真爽免费视频火全软件| 成人特级av手机在线观看| 最后的刺客免费高清国语| 亚洲成人一二三区av| 成人综合一区亚洲| 欧美最新免费一区二区三区| 亚洲欧美精品专区久久| 国产免费一级a男人的天堂| 成年美女黄网站色视频大全免费 | 我要看黄色一级片免费的| 国产精品久久久久久精品古装| 国产av一区二区精品久久 | 久久久久精品久久久久真实原创| 免费久久久久久久精品成人欧美视频 | 国产淫语在线视频| 看十八女毛片水多多多| 22中文网久久字幕| 精品一区二区免费观看| 啦啦啦中文免费视频观看日本| 久久精品夜色国产| 一级爰片在线观看| 黄色一级大片看看| 亚洲欧美精品专区久久| 高清av免费在线| 久久国内精品自在自线图片| 97在线人人人人妻| 人人妻人人澡人人爽人人夜夜| 哪个播放器可以免费观看大片| 国产精品欧美亚洲77777| 久久国内精品自在自线图片| 丝袜喷水一区| 亚洲中文av在线| av国产免费在线观看| 天堂8中文在线网| 亚洲人与动物交配视频| 中文字幕久久专区| 熟女电影av网| 日本wwww免费看| 久久综合国产亚洲精品| 欧美精品亚洲一区二区| 老女人水多毛片| 国产男女超爽视频在线观看| 少妇人妻 视频| 91久久精品国产一区二区成人| 国产一级毛片在线| tube8黄色片| 精品少妇黑人巨大在线播放| 成年美女黄网站色视频大全免费 | 在现免费观看毛片| 老女人水多毛片| 久久女婷五月综合色啪小说| 日韩伦理黄色片| 黄色怎么调成土黄色| a级毛色黄片| 99久久精品一区二区三区| 精品熟女少妇av免费看| 久久久久久久久大av| 久久6这里有精品| 亚洲精品456在线播放app| 99re6热这里在线精品视频| 只有这里有精品99| 久久影院123| 老司机影院成人| 久久精品国产鲁丝片午夜精品| 成人亚洲精品一区在线观看 | 免费av中文字幕在线| 亚洲综合精品二区| 国产乱人偷精品视频| 成人亚洲精品一区在线观看 | 99九九线精品视频在线观看视频| 亚洲精品成人av观看孕妇| 80岁老熟妇乱子伦牲交| 午夜福利网站1000一区二区三区| 中文精品一卡2卡3卡4更新| 日韩亚洲欧美综合| 久久国产精品男人的天堂亚洲 | 午夜福利在线观看免费完整高清在| 久久精品国产自在天天线| av国产精品久久久久影院| 性色av一级| 精品少妇黑人巨大在线播放| 亚洲欧美日韩无卡精品| 国产精品女同一区二区软件| 美女视频免费永久观看网站| 亚洲,欧美,日韩| 亚洲熟女精品中文字幕| 久久久久久久精品精品| 免费看日本二区| 日本黄色日本黄色录像| 日韩中字成人| 午夜免费鲁丝| 麻豆乱淫一区二区| 久久久久精品性色| 国产 一区 欧美 日韩| 免费观看在线日韩| 国产亚洲欧美精品永久| 一本久久精品| 国产日韩欧美亚洲二区| 波野结衣二区三区在线| 精品人妻视频免费看| 国产综合精华液| 男人狂女人下面高潮的视频| 国产精品99久久久久久久久| 国产精品无大码| 91在线精品国自产拍蜜月| 国产精品伦人一区二区| 欧美激情极品国产一区二区三区 | 国产成人91sexporn| 国产在视频线精品| 一级毛片aaaaaa免费看小| 日韩人妻高清精品专区| 久久ye,这里只有精品| 男人狂女人下面高潮的视频| 国产成人精品福利久久| 高清日韩中文字幕在线| 97热精品久久久久久| 亚洲av成人精品一区久久| 成人毛片60女人毛片免费| 国产亚洲午夜精品一区二区久久| a级毛色黄片| 日本黄色日本黄色录像| 久久精品国产自在天天线| 午夜老司机福利剧场| tube8黄色片| 身体一侧抽搐| 麻豆国产97在线/欧美| 狂野欧美激情性bbbbbb| 国产伦理片在线播放av一区| 日本午夜av视频| 国模一区二区三区四区视频| av在线app专区| 日韩人妻高清精品专区| 一级毛片久久久久久久久女| 精品99又大又爽又粗少妇毛片| 久久国产精品大桥未久av | 国产精品秋霞免费鲁丝片| 午夜老司机福利剧场| 精品久久久噜噜| 午夜福利网站1000一区二区三区| 91久久精品国产一区二区三区| 国产69精品久久久久777片| 九草在线视频观看| 国产精品一及| 久久久色成人| 国产成人午夜福利电影在线观看| 国产一区二区三区av在线| 亚洲,一卡二卡三卡| 又爽又黄a免费视频| 国产精品一区二区性色av| 国产精品爽爽va在线观看网站| 青春草国产在线视频| 人体艺术视频欧美日本| 成人特级av手机在线观看| 三级国产精品片| 久久鲁丝午夜福利片| 日本vs欧美在线观看视频 | 性色avwww在线观看| 联通29元200g的流量卡| 亚洲精品乱码久久久久久按摩| 亚洲欧美日韩卡通动漫| 精品亚洲乱码少妇综合久久| 三级国产精品欧美在线观看| 在线观看国产h片| 久久精品国产a三级三级三级| 国产爱豆传媒在线观看| 少妇猛男粗大的猛烈进出视频| 最近最新中文字幕大全电影3| 精品人妻偷拍中文字幕| 午夜免费鲁丝| 丝袜喷水一区| 国产精品偷伦视频观看了| 免费观看无遮挡的男女| 国产日韩欧美在线精品| 亚洲精品久久久久久婷婷小说| 天天躁日日操中文字幕| 国产色婷婷99| 国产精品偷伦视频观看了| 美女内射精品一级片tv| 国产淫语在线视频| av播播在线观看一区| 18禁裸乳无遮挡免费网站照片| 成人午夜精彩视频在线观看| 最黄视频免费看| 日本欧美国产在线视频| kizo精华| 日本vs欧美在线观看视频 | 我要看黄色一级片免费的| 91精品一卡2卡3卡4卡| 99热网站在线观看| 久久久久国产精品人妻一区二区| 久久久久国产网址| 久久人人爽人人爽人人片va| 亚洲成人一二三区av| 国产男女超爽视频在线观看| 日本猛色少妇xxxxx猛交久久| 免费看av在线观看网站| 国产av精品麻豆| 多毛熟女@视频| 成年av动漫网址| 亚洲av欧美aⅴ国产| 国产av国产精品国产| 亚洲三级黄色毛片| 99热国产这里只有精品6| 在线免费十八禁| 免费大片黄手机在线观看| 777米奇影视久久| 欧美丝袜亚洲另类| 三级经典国产精品| av一本久久久久| 尤物成人国产欧美一区二区三区| 男女边摸边吃奶| 99久久综合免费| 久久人人爽人人爽人人片va| 国产精品久久久久成人av| 18+在线观看网站| 免费播放大片免费观看视频在线观看| 夜夜骑夜夜射夜夜干| 亚洲精品第二区| 在线亚洲精品国产二区图片欧美 | 亚洲色图综合在线观看| 国产免费又黄又爽又色| 91aial.com中文字幕在线观看| 美女cb高潮喷水在线观看| 伦精品一区二区三区| 久久久久久久久大av| 韩国av在线不卡| 久久女婷五月综合色啪小说| 噜噜噜噜噜久久久久久91| av在线老鸭窝| 少妇人妻一区二区三区视频| 老司机影院成人| 亚洲中文av在线| 中国国产av一级| 久久国产精品男人的天堂亚洲 | 黄片无遮挡物在线观看| 女性被躁到高潮视频| 黄色配什么色好看| 黑人猛操日本美女一级片| av黄色大香蕉| av播播在线观看一区| 日本欧美国产在线视频| 亚洲最大成人中文| 高清av免费在线| 伊人久久国产一区二区| 亚洲欧美日韩无卡精品| 色婷婷久久久亚洲欧美| 不卡视频在线观看欧美| 777米奇影视久久| 久久久久久久久久久丰满| 国产精品成人在线| 熟女人妻精品中文字幕| 美女脱内裤让男人舔精品视频| 亚洲,一卡二卡三卡| 午夜视频国产福利| 一本—道久久a久久精品蜜桃钙片| 亚洲av不卡在线观看| 汤姆久久久久久久影院中文字幕| av不卡在线播放| 久久国产精品大桥未久av | 成人特级av手机在线观看| 精品亚洲成国产av| 久久精品久久久久久噜噜老黄| 青春草国产在线视频| 我的老师免费观看完整版| 国产免费一区二区三区四区乱码| 91精品一卡2卡3卡4卡| 一级片'在线观看视频| 中文在线观看免费www的网站| 观看av在线不卡| 日本黄色片子视频| 午夜福利高清视频| 高清欧美精品videossex| 久久久久久久久久久免费av| 一级二级三级毛片免费看| 久热这里只有精品99| xxx大片免费视频| 亚洲av在线观看美女高潮| 少妇被粗大猛烈的视频| 成年免费大片在线观看| 婷婷色麻豆天堂久久| 亚洲欧美日韩另类电影网站 | 91久久精品国产一区二区三区| 精品久久久噜噜| 久久久久久伊人网av| 熟妇人妻不卡中文字幕| 看非洲黑人一级黄片| 久久人人爽人人片av| 男女啪啪激烈高潮av片| 麻豆成人午夜福利视频| 制服丝袜香蕉在线| 夜夜骑夜夜射夜夜干| 久久久久久久久久人人人人人人| 国产成人免费无遮挡视频| 人人妻人人爽人人添夜夜欢视频 | 22中文网久久字幕| 亚洲精品国产av成人精品| 黑丝袜美女国产一区| 国产精品久久久久久av不卡| 看免费成人av毛片| 日本av手机在线免费观看| 国产成人一区二区在线| 激情五月婷婷亚洲| 在线观看免费视频网站a站| 自拍欧美九色日韩亚洲蝌蚪91 | 亚洲人成网站在线播| 亚洲熟女精品中文字幕| 日韩一区二区三区影片| 亚洲av中文av极速乱| 久久久久精品性色| 国产免费福利视频在线观看| 国产精品久久久久成人av| 精品熟女少妇av免费看| av国产久精品久网站免费入址| 女人久久www免费人成看片| 女人十人毛片免费观看3o分钟| 亚洲国产日韩一区二区| 人人妻人人添人人爽欧美一区卜 | av在线观看视频网站免费| 国产中年淑女户外野战色| 国产爱豆传媒在线观看| 亚洲国产精品成人久久小说| av在线蜜桃| 久久久色成人| 午夜福利在线观看免费完整高清在| 国产亚洲精品久久久com| 欧美xxⅹ黑人| 成年人午夜在线观看视频| 1000部很黄的大片| av女优亚洲男人天堂| 午夜福利高清视频| 亚洲欧美一区二区三区国产| 亚洲av欧美aⅴ国产| av女优亚洲男人天堂| 22中文网久久字幕| 黄色视频在线播放观看不卡| 日韩人妻高清精品专区| 最近的中文字幕免费完整| 22中文网久久字幕| 最近的中文字幕免费完整| 这个男人来自地球电影免费观看 | av在线老鸭窝| 又粗又硬又长又爽又黄的视频| tube8黄色片| 五月玫瑰六月丁香| 国产免费又黄又爽又色| 久久久国产一区二区| 国产淫语在线视频| 麻豆国产97在线/欧美| 亚洲人成网站在线观看播放| 亚洲精品国产色婷婷电影| 国产又色又爽无遮挡免| 噜噜噜噜噜久久久久久91| 91精品一卡2卡3卡4卡| 久久人人爽av亚洲精品天堂 | 国国产精品蜜臀av免费| 亚洲av中文字字幕乱码综合| 97在线视频观看| 日韩在线高清观看一区二区三区| 成人18禁高潮啪啪吃奶动态图 | 精品国产乱码久久久久久小说| 久久久久久人妻| 亚洲av男天堂| 亚洲第一av免费看| 麻豆国产97在线/欧美| 国产成人午夜福利电影在线观看| 我要看日韩黄色一级片| 欧美人与善性xxx| 久久国产亚洲av麻豆专区| 波野结衣二区三区在线| 毛片女人毛片| 久久99精品国语久久久| 国产乱人偷精品视频| a级毛片免费高清观看在线播放| 黄色配什么色好看| 亚洲精品日本国产第一区| 国产永久视频网站| 乱系列少妇在线播放| 国内少妇人妻偷人精品xxx网站| 在线免费观看不下载黄p国产| av播播在线观看一区| 18禁动态无遮挡网站| 99热网站在线观看|