• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Unraveling the role of Ni13 catalyst supported on ZrO2 for CH4 dehydrogenation:The d-band electron reservoir

    2022-05-30 05:05:16ZHICuimeiYANGRuihongZHOUChangyuWANGGuiruDINGJiayingYANGWen
    燃料化學(xué)學(xué)報 2022年5期

    ZHI Cui-mei ,YANG Rui-hong ,ZHOU Chang-yu,* ,WANG Gui-ru ,DING Jia-ying ,YANG Wen

    (1. College of Chemical and Biological Engineering, Shanxi Key Laboratory of High Value Utilization of Coal Gangue,Taiyuan University of Science and Technology, Taiyuan 030024, China;2. Shanxi Health Vocational College, Taiyuan 030012, China;3. Shanxi Key Laboratory of Metal Forming Theory and Technology, School of Material Science and Engineering, Taiyuan University of Science and Technology, Taiyuan 030024, China)

    Abstract: The activation of C-H bonds of CH4 is a key step for the conversion of methane to chemical commodities.Loading Ni onto ZrO2 is regarded as a relatively efficient way to harness the beneficial electronic property and the fine dispersion of the Ni catalyst for CH4 dissociation. Herein we demonstrate the crucial role of Ni13 catalyst supported on ZrO2 for the dissociation of CH4. The density functional theory (DFT) results show that the ZrO2 supported Ni13 stabilizes all species better and facilitates CH4 activation. The stepwise dehydrogenations of CH4 on Ni13-ZrO2(111) exhibits longer C-H bond lengths of ISs , lower Ea, and smaller displacements between the detaching H and the remaining CHx fragment in TSs .In addition, they are also thermodynamically more feasible. However, without the ZrO2 support on Ni13, the opposite results are obtained. Consequently, the ZrO2 modified Ni13 is more superior to the original Ni13 in CH4 dehydrogenation. The electronic analysis combining DFT calculations confirmed that the larger overlap between C 2p and Ni 3d, and the electron transfer of Ni→C cause the weaker C 2p-H 1s hybridization. In addition, the reduction of electron transfer of H→C leads to a stronger interaction between Ni and C along with a weak C-H bond. Hence, the ZrO2 support serves as the d-band electron reservoir at Ni13 and it is benefit to the activation of C-H bonds in CH4 dehydrogenation.

    Key words: CH4 dehydrogenation;Ni13 catalyst;ZrO2 support;d-band electron;electron transfer

    With global warming and the depletion of crude oil reserves, the development of alternative resources attracted more attention over the past decades[1].Methane has been regarded as an important clean energy and it can be converted to various commodity chemicals[2]. The activation of methane to form CHxthrough C-H bond breaking is the key[3-11]. Hence,many efforts have been carried out to develop and design efficient catalyst for the activation of CH4.

    Transition metals such as Rh[3], La[4]and Ni[5-11]possess a remarkable catalytic activity for methane dissociation. Typically, supported Ni-based catalysts are of much interest, because of their high activity and low costs. For methane decomposition, the activity and dispersion of Ni are crucial. In other words, the more exposed sites in Ni-based catalyst, the higher reactivity.

    Firstly, the activation of C-H bond in methane needs additional electrons. Due to the abundantdorbitals, metal oxide support exhibits better electron donation ability that enhances the reactivity of Ni.Secondly, the support with higher specific surface area is extremely benefit to disperse and anchor the fine Ni particles. This has been confirmed by previous reported literatures[12-16]. Therefore, loading Ni onto a proper support can provide additional electronic property and improve the dispersion of Ni, thereby promoting the dissociation of CH4.

    In particular, ZrO2is known to have a superior electronic donor ability to enhance the Ni catalytic activity[12], although ZrO2itself has no activity for CH4dissociation[17,18]. Wang et al.[12]concluded that the Ni/ZrO2catalyst can stabilize the original Ni state due to its small size; the strong electronic donor ability of ZrO2was benefit to the formation of Ni active particles in carbon dioxide reforming of methane. Besides, the introduction of Zr ensured an excellent dispersion of Ni/Zr alloy and promoted the formation of active center, both of which facilitated the activation of the C-H bond in CH4[19], and thus, decreasing theEavalue in dry reforming of methane. Similarly, Han et al.[13]pointed out that in addition to facilitating the Ni dispersion, support can also alter the electronic property of the catalysts that influences the adsorption characteristics, the activation energy and even the reaction pathways.

    In fact, the influence of strong interaction between Ni and ZrO2on the activity and dispersion of Ni has been confirmed by the recent reports[19-23]. Thanks to the strong interaction between the support ZrO2and Ni catalyst, the dispersion of Ni active components is considerably enhanced[13,17,19-23]. Besides, the interaction between nickel and support might maintain the initial state of Ni[12]. Meanwhile, the moderate interaction,generated from the partial electron transfer between Ni and Zr, might promote the adsorptions of CHx[12]. Li et al.[24]believed that La-modified Ni/Al2O3is responsible for improving the stability and reactivity of Ni catalyst via modulating the interaction between Ni and Al2O3.

    Since the support has significant influence on the activity of Ni-based catalyst in CH4activation, it is necessary to investigate the interaction of nickel and support and the electron transfer between them. It is shown that the catalytic activity of small cluster Ni13supported on ZrO2(111) surface differs from that of large Ni(111) in the CO2hydrogenation reaction due to their different surface atomic arrangement and electronic characteristics[25]. Ni13exhibits higher catalytic activity and selectivity, as it has larger number of exposed surface atoms and more active sites with different coordination numbers[26]. Ni13has stable icosahedron configurations that contains 42 Ni-Ni bonds[27,28]. This makes Ni13can well maintain the structure during catalysis process[29]. Ni atom in the center of Ni13shows the highest coordination number,while each Vertex Ni atom of Ni13, possessing the significantly coordinatively unsaturated site, is the predominant active center for Ni catalyst. Yilmazer’s[30]stated that ethylene adsorption energy gradually increases with the decrease of Ni coordination number from 9 to 6 on Ni(111), Ni(100), Ni(110) and Ni13.Therefore, the icosahedral Ni13with Ihsymmetry shows higher the structural stability and reactivity[31,32]among different Nin[33].

    Hence, the reaction mechanism for CH4dehydrogenation on pure Ni13and Ni13supported ZrO2(111) catalysts was investigated by using DFT calculations. The effect of support on the adsorption and activation of CHx(x=0-3) was analyzed. The results suggested that the interaction between Ni and ZrO2can improve the electron delocalization of Ni and make the adsorbed CHx(x=0-3) species become more electron-rich in reaction.

    1 Computational details

    DFT calculations were performed using the Vienna Ab Initio Simulation Package (VASP), where the exchange-correlation energy functional is described with Perdew-Burke-Ernzerhof (PBE) of the generalized gradient approximation (GGA)[34]. The configurations of Ni13and Ni13-ZrO2(111) are shown in Figure 1. Ni13is obtained on the basis of the magic number cluster structure[30], the average Ni-Ni distance in Vertex-Vertex (2.444 ?) and in Center-Vertex (2.325 ?) are in line with the experimental results (2.389 and 2.274 ?,respectively)[35]and theoretical calculation[26]. Thep(3×3) slabs ZrO2(111) has nine layers. A vacuum of 15 ? is added, and a lattice parameter of 5.13 ? is used[36-38]. The top five layers are fully relaxed, while the bottom four layers are fixed at their bulk positions.The energy convergence for electronic relaxation is set to 10-5eV. All atoms are relaxed until the atomic force is less than 0.02 eV/? with a kinetic energy cutoff of 400 eV[39]. The Monkhorst-Pack 2×2×1 k-point mesh is used to Brillouin zones of sample surface[40]. The transition state is searched by using the nudged elastic band method , as described by our previous work[41].

    Figure 1 Top view correspond to Ni13 and Ni13-ZrO2(111)morphologies, respectively

    For the adsorptions and reactions on Ni13and Ni13-ZrO2(111), the adsorption energies (Eads), the activation energy (Ea) and reaction energy (ΔE) with the zeropoint-energy (ZPE) are defined according to equations(1), (2) and (3)[41,42], whereEcluster,EadsorbateandEadsorbate/clusterare the total energies of the bare cluster,the isolated adsorbate, and the optimized structures of the adsorption configuration, respectively. ΔZPEads,ΔZPEbarrierand ΔZPEreactionrefer toZPEcorrections forEads,Eaand ΔE, respectively, which are determined according to equations (4), (5) and (6)[41,42];his Planck′s constant,υirefers to the vibrational frequencies. Thedband center (εd) of Ni13and Ni13-ZrO2(111) is calculated by equation (7)[7], where ρdrepresents the density of states projected onto the Ni atoms′d-band;Eis the energy ofd-band.

    2 Results and discussion

    2.1 Adsorption of all species

    The optimization structure in DFT calculation and corresponding energy of all adsorbed species involving in CH4dissociation on Ni13and Ni13-ZrO2(111) are presented in Figure 2 and Table 1. For comparison,previous calculated results on Ni(100) and Ni4are also given in Table 1. The partial density of states (pDOS)and the differential charge density for CH adsorbed on Ni13and Ni13-ZrO2(111) are shown in Figure 3.

    Figure 2 Most stable configurations of adsorbed species involved in CH4 dissociation on Ni13 and Ni13-ZrO2(111), respectively The blue, gray, red, white and turquoise balls represent Ni, C, O, H and Zr atoms, respectively Bond length are in ?

    Figure 3 (a) Differential charge density, and (b) projected density of states (pDOS) for CH on Ni13 and Ni13-ZrO2(111)

    Table 1 Adsorption sites and adsorption energies (Eads) of the stable configurations for the adsorbed species involved in CH4 dissociation on Ni13 and Ni13-ZrO2(111), respectively

    2.1.1 Structures and energies of all adsorbed species

    As shown in Figure 2 and Table 1, CH4is weakly adsorbed at Ni-top of Ni13and Ni13-ZrO2(111) with similar adsorption energies of 0.04 and -0.02 eV,respectively. The physisorption nature of CH4arises from the van der Waals interaction between CH4and catalyst. The calculated CH4adsorption energy is in agreement with the results of An et al. (-0.01 eV)[43],despite that Roy and co-workers gave a more negative value (-0.41 eV)[6].

    The configurations for CH3, CH2, CH, C and H adsorption on Ni13-ZrO2(111) are quite similar to those on Ni13. CH3adsorbed at the Ni-bridge site of Ni13-ZrO2(111) is more stable than at Ni13; notably, the calculated CH3adsorption energy (-2.46 eV) in this work is similar to previous results (-2.37 eV), proving the credibility of current calculations[6]. CH2, CH, C and H prefer to adsorb at Ni-fold sites (Table 1), and they give higher adsorption energy on Ni13-ZrO2(111) than on Ni13. Moreover, the calculated adsorption energies of CH2and CH (-4.76 and -7.00 eV) on Ni13-ZrO2(111) are also consistent with the reported values(-4.85 and -6.71 eV) on Ni4by Roy et al. (Table 1)[6].But the C is strongly adsorbed in four-fold hollow site with adsorption energy of -8.94 eV[6]than in three-fold hollow site on Ni13-ZrO2(111) (-7.96 eV), thus signifying that C atom tends to satisfy its valence. It should be noticed that the adsorption energies of CH2(-3.76 eV), CH (-6.43 eV), C (-7.27 eV) and H (-2.36 eV) on Ni(100) obtained by Li et al.[7]are different to our results (-4.76, -7.00, -7.96 and -3.02 eV) on Ni13-ZrO2(111). This may be due to the use of different functional.[7]

    2.1.2 Stabilizing effect of ZrO2 support on all adsorbed species

    Despite the similarity in adsorption configuration and site, the adsorption strength of all these species are stronger on Ni13-ZrO2(111) than on Ni13, possibly due to the existence of ZrO2support that modifies the electronic environment of Ni13. For example, for CH adsorption, as shown in Figure 3(a), the electron accepting behavior of C and charge loss behavior of Ni occur in the yellow areas and in the scattered blue areas, respectively. An accumulation of electron density is observed on the C atom, whereas for Ni atoms bonding to C atom, the electron density is decreased. Thus, the electron transfer between Ni→C turns the chemisorbed state of free CHx[44].

    As shown in Figure 3(b), with the addition of ZrO2support, C 1sand C 2porbitals are shifted to higher value, while the Ni 3dorbital gives an opposite result. This leads to a larger overlap between C 2pand Ni 3das well as a stronger interaction between Ni and C atoms. Therefore, a strong adsorption of CH on Ni13-ZrO2(111) is observed. Similar result was also observed by Li et al.[7]: the adsorption strength of C on various Ni surfaces dependents on the mixing between C 2pand Ni 3dorbitals. Furthermore, the more downshift the Ni 3dorbital is, the more stable adsorption of CHxis[34].

    In addition, as shown in Figure 2, C-H bond distance for CH4(1.104 ?), CH3(1.143 ?), CH2(1.189 ?) and CH (1.108 ?) are significantly enlarged on Ni13-ZrO2(111), compared to that on Ni13(1.089, 1.107,1.107 and 1.107 ?, respectively). This means that the cleavage of C-H bonds in CHxis easier on Ni13-ZrO2(111).

    2.2 CH4 dissociation on Ni13 and Ni13-ZrO2(111)

    The corresponding energies of various elementary steps for CH4dissociation are listed in Table 2.Previously reported results on Ni(100) and Ni4are also given in Table 2 for comparison. The energy profile and the main configurations for the initial state (ISs),transition state (TSs) and final states (FSs) on Ni13and Ni13-ZrO2(111) are displayed in Figure 4(a) and 4(b),respectively. The values for C2formation and C elimination are calculated in Figure 5.

    Figure 4 Structures of the ISs, TSs and FSs relevant to CH4 dissociation on (a) Ni13 and (b) Ni13-ZrO2(111)Bond lengths are in ? see Figure 2 for color coding

    Figure 5 Potential energy profile of C2 formations and C eliminations on (a) Ni13 and (b) Ni13-ZrO2(111) together with the corresponding structures Bond lengths are in ? see Figure 2 for color coding

    Table 2 Activation energies the reaction energies the C-H bonds length of ISs and TSs (dC-H/?) and H displacements (?) involved in CH4 dissociation on Ni13 and Ni13-ZrO2(111)

    2.2.1 Effect of ZrO2 support on activating the C-H bonds

    We mainly focus on theEa,ΔEand the C-H bonds length of ISs and TSs. The activation energies for the dehydrogenation of CHx(x=4-1) on Ni13-ZrO2(111) are lower than on Ni13, indicating that the dehydrogenation of CHxis kinetically more favorable on the former than on the latter.

    As shown in Table 2, the calculated activation energy (Ea, 0.61 eV) on Ni13is lower than the reported result (1.23 eV) by Li et al.[7]on Ni(100), whereas that for CH3(0.46 eV) and CH2(0.48 eV) dehydrogenations are similar to the obtained values by Li et al. (0.62 and 0.22 eV)[7]and Roy et al. (0.84 and 0.33 eV)[6]. For CH dehydrogenation, the activation energy on Ni13(0.70 eV) and on Ni(100) (0.64 eV) are similar, but both of them are much lower than on Ni4cluster (1.37 eV). It should be noticed that the dissociations of CHx(x=4-1)on Ni13-ZrO2(111) are all exothermic, with more negativeΔEthan Ni13.

    For CH4→CH3+H on Ni13-ZrO2(111), it shows a lowEaof 0.14 eV, with exothermic by -0.66 eV; the C-H bond is increased from 1.104 ? in CH4to 1.122 ? in TS2-1 . After a rearrangement between H and CH3fragments, the structure of TS2-1 is obtained. Similar procedure is used for TS1-1 , despite that theEais increased to 0.61 eV, with a weak exothermic by -0.50 eV on Ni13. The C-H distance of TS1-1 is enlarged from 1.089 ? to 1.561 ?. Since the dissociation of C-H bond is more exothermic on Ni13-ZrO2(111) (TS2-1), it leads to the reduction ofEa[45]. Accordingly, the ZrO2support facilitates CH4→CH3+H, due to the strong interaction between Ni and ZrO2, being line with previous investigation[17].

    Similar to CH4→CH3+H, stepwise dehydrogenations of CH3to CH2, CH and C show lowEavalues of 0.35, 0.14 and 0.40 eV for TS2-2 , TS2-3 and TS2-4 , with exothermic by -0.47, -0.53 and-0.30 eV, respectively, on Ni13-ZrO2(111). The displacements between the detaching H and the remaining fragment are 0.519, 0.593 and 0.281 ?,respectively, as shown in Table 2. However, without ZrO2, the activation energy of TS1-2 , TS1-3 and TS1-4 is elevated to 0.46, 0.48 and 0.70 eV, along with the reduction of exothermic energy to -0.15, -0.22 and-0.07 eV, respectively. Meanwhile, the displacements between H and remaining fragments are also increased to 1.230, 0.688 and 0.372 ?, respectively (Table 2).Thus, the ZrO2support has a significant influence on CH4dissociation. This observation is consistent with the previous study[12]where the ZrO2support can modulate the electronic environment of Ni and promote the dissociation of C-H bond.

    2.2.2 Effect of ZrO2 support on the activity of CH4 dissociation

    Based onEaandΔEof CH4stepwise dehydrogenations to C, the overall activation energies of CH4dissociation on Ni13and Ni13-ZrO2(111) are calculated to be 0.61 and 0.14 eV, respectively, as plotted in Figure 4(a) and 4(b). This gives additional evidence that ZrO2support effectively promotes CH4dissociation. Similar situation is also observed in previous reports[12,19]. As stated by Han et al.[13], this is because the support can tune the adsorption behaviors,decrease the activation barrier and even adjust pathways of dry reforming of methane by modifying the Ni catalyst.

    2.2.3 C nucleation and C elimination

    Once C is formed, C nucleation may lead to coke deposition. Interestingly, as shown in Figure 5,C+H→CH, as the reverse steps of CH scission, is preferred to C+C→C2on Ni13and Ni13-ZrO2(111),suggesting that carbon deposition is unlikely to occur on both catalyst surfaces. Furthermore, the activation energy (Ea) of 1.90 eV for C+C→C2on Ni13-ZrO2(111) is similar to that of C2dimmer formation(1.89 eV)[46]. Therefore, the undesired coke deposition may be observed only when the residual C can not be timely removed from the catalyst surface[47]. Thus, both the highly dispersed Ni13and the superior electronic donor ability of ZrO2support suppress the coke deposition. This is because C nucleation is inferior to C elimination.

    2.3 Role of ZrO2 support in stabilizing Ni-C bond and activating C-H bond

    The most important steps in CH4dissociation are adsorption and dissociation, which leads to the formation of Ni-C bond and the dissociation of C-H bond, respectively. To further explore the effect of ZrO2support on CH4decomposition, the pDOS of CH3on Ni13and Ni13-ZrO2(111), as an example, is calculated in Figure 6. Accordingly, the role of ZrO2support in CH4dissociation is obtained.

    The result of electronic analysis indicates that the presence of ZrO2support broadens thed-band electrons at C of CH3bonding on Ni (Figure 6(a)). This causes a larger overlap between C 2pand Ni 3d, i.e. and a stronger interaction between Ni and C (Figure 6(b)),thereby leading to more stable adsorptions of CHx(x=3-1) and higher exothermic energy for CH4dehydrogenation. As stated by Boukelkoul et al.[48], CH4dehydrogenation on W-Cu(100) is exothermic because W-doping stabilizes better for all species. Ou et al.[44]also proved that the adsorption state becomes highly stable, when more electrons are transferred from Ni to C of CHx.

    Besides, the charge distribution on C and H is influenced due to the enhancement of electron transfer Ni→C on Ni13-ZrO2(111), whereas that of H→C is reduced. This causes a weaker C 2p-H 1shybridization than the situation on Ni13, as seen in Figure 6(c),thereby decreasing theEafor C-H bond breaking.Similar results[44]are observed on Co/Ni, where the low activation energy for C-H bond dissociation in CH4dehydrogenation resulted from the abundantd-band electrons on Co/Ni catalyst.

    Figure 6 Partial density of states for CH3 adsorbed on Ni13 and Ni13-ZrO2(111) for the role of the support ZrO2: (a) broadening d-band, (b) stabilizing Ni-C bond and(c) activating C-H bond

    As a result, the overall activation energy for CH4dissociation drastically decreases with the addition of ZrO2support. This is because ZrO2support can act as thed-band electron reservoir at Ni13that promotes the activation of C-H bond in CH4dehydrogenation reactions. As stated by Ou et al.[44], introduction of Co into Ni leaded to the downshift ofd-band center of Co/Ni that increased theEadsof the CHx, but decreased theEaof C-H bond breakage. These results are further supported by the work Li et al.[8]; the strong C-Ni chemical bonding can electronically adjust the ability of Ni atoms in adsorbing and dissociating CHx(x=4-1)species.

    3 Conclusions

    DFT calculations are used to investigate the dehydrogenation mechanism of CH4on Ni13and Ni13-ZrO2(111). The results show that ZrO2support has a significant influence on promoting CH4dissociation.

    TheEads,Ea,ΔEand the displacements of the detaching H are obtained. Although the configuration and adsorption site are similar, the adsorptions of all species involving in CH4dissociation are stronger on Ni13-ZrO2(111) than on Ni13. This is because the ZrO2support remarkably modifies the electronic environment of Ni13. Besides, introduction of the ZrO2support can obviously decreaseEaand simultaneously increaseΔEfor all the elementary steps in CH4dissociation. In particular, theEafor conversion of CH4to CH3is reduced from 0.61 eV on Ni13to 0.14 eV on Ni13-ZrO2(111). This results in the decrease of overall activation energy for CH4dissociation on Ni13-ZrO2(111) than on Ni13. Thus, the ZrO2modified Ni13can improve the activity towards CH4dissociation,compared with the pure Ni13.

    Moreover, the C-H bonds distance in the ISs of CHx(x=4-1) dissociation is significantly enlarged when the ZrO2support is added. This implies that the cleavage of C-H bonds of CHx(x=4-1) becomes easier. Based on TSs , the stepwise detachment of H from CH4to CH3, CH2, CH and C needs to shift smaller distances to reach the final state. This also benefits to decrease the activation energy (Ea) of C-H bond dissociation.

    In viewpoint of the electronic environment, the ZrO2support can broadend-band electrons at C atom bonding to Ni that enhances the electron transfer Ni→C, but reduces that of H→C. This causes a stronger interaction between Ni and C, along with the weakness of C-H polar bonds, thereby leading to a strong adsorption of CHx(x=3-1) and a lowEafor C-H bond dissociation. Hence, the presence of ZrO2support can stabilize the Ni-C bond and activate the C-H bond.The mechanistic investigation of CH4dehydrogenation over Ni13and Ni13-ZrO2(111) may provide an approach to reveal the role of ZrO2support and design new Nibased catalysts for CH4dissociation.

    中文字幕高清在线视频| 亚洲自偷自拍图片 自拍| 十八禁人妻一区二区| 日韩精品免费视频一区二区三区| 淫妇啪啪啪对白视频| xxx96com| 男人操女人黄网站| 日韩三级视频一区二区三区| 午夜福利影视在线免费观看| 在线观看免费视频日本深夜| 伊人久久大香线蕉亚洲五| 久久中文字幕人妻熟女| 久热这里只有精品99| 日韩国内少妇激情av| 亚洲男人的天堂狠狠| 色在线成人网| 一级毛片精品| 久久久久九九精品影院| 亚洲精品粉嫩美女一区| 久久精品aⅴ一区二区三区四区| 亚洲美女黄片视频| 亚洲成人久久性| 制服人妻中文乱码| 久99久视频精品免费| 日韩欧美免费精品| 亚洲国产毛片av蜜桃av| 精品不卡国产一区二区三区| av免费在线观看网站| 亚洲专区字幕在线| 一级毛片女人18水好多| 午夜精品久久久久久毛片777| www日本在线高清视频| 法律面前人人平等表现在哪些方面| 亚洲免费av在线视频| 国产亚洲欧美98| 91av网站免费观看| 成人国产一区最新在线观看| 91九色精品人成在线观看| 欧美成人免费av一区二区三区| 99riav亚洲国产免费| 女生性感内裤真人,穿戴方法视频| 此物有八面人人有两片| 日日爽夜夜爽网站| 黑人欧美特级aaaaaa片| 亚洲成a人片在线一区二区| 午夜免费观看网址| 成人av一区二区三区在线看| netflix在线观看网站| 亚洲五月天丁香| 亚洲成人精品中文字幕电影| 欧美久久黑人一区二区| 波多野结衣一区麻豆| 国产成人精品在线电影| av中文乱码字幕在线| 国产伦一二天堂av在线观看| 亚洲精品国产一区二区精华液| 午夜福利在线观看吧| 亚洲精品粉嫩美女一区| 老司机靠b影院| 亚洲中文日韩欧美视频| 精品久久久久久久久久免费视频| 伦理电影免费视频| 欧美黄色淫秽网站| 18禁国产床啪视频网站| 一本综合久久免费| 中文字幕最新亚洲高清| 精品高清国产在线一区| 中文字幕高清在线视频| 亚洲专区字幕在线| 国产欧美日韩综合在线一区二区| 国产精华一区二区三区| 91国产中文字幕| 99香蕉大伊视频| av片东京热男人的天堂| 亚洲avbb在线观看| 欧美日韩亚洲国产一区二区在线观看| 久久精品91无色码中文字幕| 精品国产亚洲在线| 国产日韩一区二区三区精品不卡| 免费久久久久久久精品成人欧美视频| 色av中文字幕| 天堂影院成人在线观看| 国产99久久九九免费精品| 亚洲黑人精品在线| 精品国产一区二区三区四区第35| 欧美成人午夜精品| 久久久久久久久免费视频了| 欧洲精品卡2卡3卡4卡5卡区| 欧美成人免费av一区二区三区| 日韩欧美在线二视频| 九色国产91popny在线| 成年女人毛片免费观看观看9| 美女 人体艺术 gogo| 99热只有精品国产| 99久久99久久久精品蜜桃| 看黄色毛片网站| 法律面前人人平等表现在哪些方面| 最近最新免费中文字幕在线| 亚洲人成电影观看| 亚洲五月天丁香| 欧美成人一区二区免费高清观看 | 久久伊人香网站| 琪琪午夜伦伦电影理论片6080| 99热只有精品国产| 大陆偷拍与自拍| 日韩欧美免费精品| 18美女黄网站色大片免费观看| 亚洲自拍偷在线| www日本在线高清视频| 看片在线看免费视频| www.精华液| 国产区一区二久久| 亚洲七黄色美女视频| 黄色成人免费大全| 欧美最黄视频在线播放免费| 91九色精品人成在线观看| 精品无人区乱码1区二区| 69av精品久久久久久| 国产精品一区二区三区四区久久 | 自拍欧美九色日韩亚洲蝌蚪91| 国产色视频综合| 国产亚洲欧美精品永久| 母亲3免费完整高清在线观看| 国产精品爽爽va在线观看网站 | 亚洲一区中文字幕在线| 热re99久久国产66热| 黑人欧美特级aaaaaa片| 成人亚洲精品av一区二区| 黄色片一级片一级黄色片| 18禁裸乳无遮挡免费网站照片 | 亚洲 国产 在线| 亚洲五月色婷婷综合| 久久精品亚洲熟妇少妇任你| x7x7x7水蜜桃| 在线观看午夜福利视频| 真人一进一出gif抽搐免费| aaaaa片日本免费| av天堂久久9| 啦啦啦观看免费观看视频高清 | 真人做人爱边吃奶动态| www.熟女人妻精品国产| 久久青草综合色| 亚洲国产欧美网| 久久久久国产精品人妻aⅴ院| 夜夜看夜夜爽夜夜摸| 欧美乱码精品一区二区三区| 丁香六月欧美| 亚洲一区二区三区不卡视频| 黑人巨大精品欧美一区二区mp4| 丝袜在线中文字幕| 国产真人三级小视频在线观看| 黄色女人牲交| 女同久久另类99精品国产91| 免费在线观看黄色视频的| 一级片免费观看大全| 亚洲人成电影观看| 老司机午夜福利在线观看视频| 色综合欧美亚洲国产小说| 高清在线国产一区| 亚洲第一欧美日韩一区二区三区| 国产欧美日韩一区二区三| 久久人人97超碰香蕉20202| 欧美激情久久久久久爽电影 | 一区二区日韩欧美中文字幕| 淫秽高清视频在线观看| 午夜福利在线观看吧| 99久久国产精品久久久| 国产精品一区二区在线不卡| 亚洲自偷自拍图片 自拍| 久久 成人 亚洲| 看片在线看免费视频| 欧美日韩精品网址| 在线十欧美十亚洲十日本专区| 波多野结衣巨乳人妻| 色老头精品视频在线观看| 女人被躁到高潮嗷嗷叫费观| 国产一区在线观看成人免费| videosex国产| 在线观看免费日韩欧美大片| 色尼玛亚洲综合影院| 免费不卡黄色视频| 美女 人体艺术 gogo| 99riav亚洲国产免费| 午夜福利在线观看吧| 国产亚洲av嫩草精品影院| 很黄的视频免费| svipshipincom国产片| 首页视频小说图片口味搜索| 久久性视频一级片| 给我免费播放毛片高清在线观看| 午夜福利视频1000在线观看 | 久久青草综合色| 欧美最黄视频在线播放免费| 国产成人av激情在线播放| 国产高清videossex| 国产av一区在线观看免费| 亚洲色图综合在线观看| 亚洲第一电影网av| 国产成人一区二区三区免费视频网站| 免费在线观看黄色视频的| 在线观看免费午夜福利视频| 国产色视频综合| 制服诱惑二区| 99精品久久久久人妻精品| 91国产中文字幕| 亚洲色图 男人天堂 中文字幕| 久久午夜亚洲精品久久| 后天国语完整版免费观看| 99在线视频只有这里精品首页| 好男人在线观看高清免费视频 | 啪啪无遮挡十八禁网站| 亚洲av熟女| 亚洲国产精品成人综合色| 制服丝袜大香蕉在线| 免费看美女性在线毛片视频| 午夜亚洲福利在线播放| 免费女性裸体啪啪无遮挡网站| 少妇裸体淫交视频免费看高清 | 午夜亚洲福利在线播放| 亚洲熟妇中文字幕五十中出| 国产亚洲欧美在线一区二区| 久久亚洲真实| 成人国语在线视频| 黄色毛片三级朝国网站| 国内久久婷婷六月综合欲色啪| 性少妇av在线| 久久久久久久精品吃奶| 欧美成人一区二区免费高清观看 | 美女扒开内裤让男人捅视频| 免费不卡黄色视频| 国产精品秋霞免费鲁丝片| 亚洲在线自拍视频| 一区二区三区激情视频| 久久天堂一区二区三区四区| а√天堂www在线а√下载| 男人操女人黄网站| 亚洲 欧美一区二区三区| 午夜两性在线视频| 他把我摸到了高潮在线观看| 母亲3免费完整高清在线观看| 性欧美人与动物交配| 黑人欧美特级aaaaaa片| 亚洲精品国产一区二区精华液| 亚洲国产欧美一区二区综合| 欧美亚洲日本最大视频资源| 变态另类成人亚洲欧美熟女 | 亚洲欧美激情在线| 亚洲精品一区av在线观看| 亚洲精品粉嫩美女一区| 欧美成狂野欧美在线观看| 国产高清有码在线观看视频 | 国产成人系列免费观看| 在线观看www视频免费| 国产精品久久久av美女十八| 亚洲av电影在线进入| 别揉我奶头~嗯~啊~动态视频| 午夜久久久久精精品| 九色亚洲精品在线播放| 日韩 欧美 亚洲 中文字幕| 国产精品香港三级国产av潘金莲| 久久婷婷人人爽人人干人人爱 | 一级毛片精品| 手机成人av网站| 999久久久国产精品视频| 婷婷六月久久综合丁香| 国产一卡二卡三卡精品| 亚洲av第一区精品v没综合| 久久久国产成人免费| 亚洲男人的天堂狠狠| 少妇 在线观看| 国产av一区二区精品久久| 免费女性裸体啪啪无遮挡网站| 大码成人一级视频| 岛国在线观看网站| 日本欧美视频一区| 亚洲国产毛片av蜜桃av| 国产蜜桃级精品一区二区三区| 色综合站精品国产| 亚洲av成人av| 国产精品二区激情视频| 日韩视频一区二区在线观看| 久9热在线精品视频| 久久人妻av系列| 午夜精品国产一区二区电影| 亚洲国产看品久久| 精品国产一区二区三区四区第35| av天堂在线播放| 国产不卡一卡二| 国产一区二区三区综合在线观看| 国产高清有码在线观看视频 | 人妻久久中文字幕网| 桃色一区二区三区在线观看| 99久久综合精品五月天人人| 91精品国产国语对白视频| 久久久久久免费高清国产稀缺| 一进一出抽搐gif免费好疼| av天堂在线播放| 国产91精品成人一区二区三区| 精品久久久久久久毛片微露脸| 免费搜索国产男女视频| av福利片在线| 九色国产91popny在线| 精品国产国语对白av| 亚洲精品中文字幕在线视频| 日本 av在线| 高清毛片免费观看视频网站| 国产精品永久免费网站| 亚洲一区二区三区色噜噜| 国产真人三级小视频在线观看| 欧美黄色片欧美黄色片| 欧美激情高清一区二区三区| 亚洲成av人片免费观看| 亚洲欧美精品综合久久99| 成熟少妇高潮喷水视频| 中文字幕av电影在线播放| 日韩精品中文字幕看吧| 亚洲自拍偷在线| 99国产精品免费福利视频| 一夜夜www| 精品一区二区三区四区五区乱码| 热re99久久国产66热| 久久人人97超碰香蕉20202| 天天添夜夜摸| 色av中文字幕| 欧美不卡视频在线免费观看 | 99热只有精品国产| 99在线人妻在线中文字幕| 真人一进一出gif抽搐免费| 中文字幕av电影在线播放| 一区二区三区高清视频在线| 免费女性裸体啪啪无遮挡网站| 国产麻豆69| netflix在线观看网站| 在线观看www视频免费| avwww免费| 亚洲性夜色夜夜综合| 日韩一卡2卡3卡4卡2021年| 香蕉久久夜色| 欧美av亚洲av综合av国产av| 亚洲国产精品成人综合色| 欧美中文综合在线视频| 国产精品野战在线观看| 精品国产国语对白av| 中文字幕精品免费在线观看视频| 九色亚洲精品在线播放| 欧美在线黄色| 一个人观看的视频www高清免费观看 | 久久精品亚洲精品国产色婷小说| 亚洲少妇的诱惑av| 国产91精品成人一区二区三区| 美女高潮到喷水免费观看| a级毛片在线看网站| 夜夜夜夜夜久久久久| 国产激情欧美一区二区| 女性被躁到高潮视频| 在线视频色国产色| 麻豆av在线久日| 久久 成人 亚洲| 村上凉子中文字幕在线| 一边摸一边抽搐一进一小说| 久久青草综合色| 国产精品久久久av美女十八| av网站免费在线观看视频| 亚洲欧洲精品一区二区精品久久久| 亚洲国产精品合色在线| 一区二区日韩欧美中文字幕| 午夜福利在线观看吧| 成人18禁高潮啪啪吃奶动态图| 国产精品1区2区在线观看.| 午夜影院日韩av| 久久人妻福利社区极品人妻图片| 色av中文字幕| 久热爱精品视频在线9| 日韩欧美三级三区| 日本一区二区免费在线视频| 中文字幕精品免费在线观看视频| 成人三级黄色视频| 国内毛片毛片毛片毛片毛片| 亚洲一码二码三码区别大吗| 久久性视频一级片| 欧美日韩亚洲国产一区二区在线观看| 欧美精品亚洲一区二区| 久热这里只有精品99| 视频在线观看一区二区三区| 怎么达到女性高潮| 老汉色∧v一级毛片| 午夜免费观看网址| 色精品久久人妻99蜜桃| 欧美日韩亚洲国产一区二区在线观看| 免费观看人在逋| 99精品久久久久人妻精品| 久久精品亚洲精品国产色婷小说| 老熟妇仑乱视频hdxx| 亚洲中文av在线| 美女 人体艺术 gogo| 亚洲av片天天在线观看| 亚洲伊人色综图| 99国产综合亚洲精品| 精品无人区乱码1区二区| 又黄又粗又硬又大视频| av欧美777| 一区二区三区精品91| 50天的宝宝边吃奶边哭怎么回事| 欧美成人午夜精品| 国产精品久久久久久精品电影 | 亚洲精品粉嫩美女一区| 69精品国产乱码久久久| 高潮久久久久久久久久久不卡| 亚洲 欧美 日韩 在线 免费| 午夜免费观看网址| 又大又爽又粗| 正在播放国产对白刺激| 亚洲五月色婷婷综合| av视频免费观看在线观看| av网站免费在线观看视频| 午夜久久久在线观看| 国产精品98久久久久久宅男小说| 久热这里只有精品99| 色精品久久人妻99蜜桃| 在线播放国产精品三级| 在线观看66精品国产| 岛国视频午夜一区免费看| 香蕉国产在线看| 午夜免费鲁丝| 在线视频色国产色| 如日韩欧美国产精品一区二区三区| 久久久久久久久中文| 国产免费av片在线观看野外av| 一级作爱视频免费观看| 亚洲va日本ⅴa欧美va伊人久久| 一区二区日韩欧美中文字幕| 日本 欧美在线| 久久午夜综合久久蜜桃| 999久久久精品免费观看国产| 黄色视频不卡| 女人精品久久久久毛片| 国产成人av激情在线播放| 日日爽夜夜爽网站| 色在线成人网| 国产精品久久视频播放| 成人18禁高潮啪啪吃奶动态图| 午夜激情av网站| 午夜福利欧美成人| 中国美女看黄片| 久久人人爽av亚洲精品天堂| 日本五十路高清| 18禁裸乳无遮挡免费网站照片 | 黄色片一级片一级黄色片| 少妇熟女aⅴ在线视频| 亚洲国产毛片av蜜桃av| cao死你这个sao货| 精品第一国产精品| 大型黄色视频在线免费观看| av在线天堂中文字幕| 制服人妻中文乱码| 亚洲中文字幕一区二区三区有码在线看 | 男人舔女人下体高潮全视频| 丝袜人妻中文字幕| 香蕉久久夜色| 亚洲男人天堂网一区| 亚洲人成伊人成综合网2020| 国产精品乱码一区二三区的特点 | АⅤ资源中文在线天堂| 高清毛片免费观看视频网站| 免费在线观看视频国产中文字幕亚洲| av视频免费观看在线观看| 亚洲人成电影免费在线| www日本在线高清视频| 亚洲国产看品久久| 丝袜人妻中文字幕| 午夜福利影视在线免费观看| 免费在线观看完整版高清| www国产在线视频色| 老司机靠b影院| 18美女黄网站色大片免费观看| 国产精品乱码一区二三区的特点 | 中文字幕最新亚洲高清| 身体一侧抽搐| 国产一区二区在线av高清观看| 欧美日韩一级在线毛片| 欧美日韩瑟瑟在线播放| 欧美老熟妇乱子伦牲交| 国产区一区二久久| 黄色成人免费大全| 99国产综合亚洲精品| 黑人欧美特级aaaaaa片| 亚洲成人精品中文字幕电影| 日韩欧美免费精品| 极品教师在线免费播放| 日本撒尿小便嘘嘘汇集6| 国产精品99久久99久久久不卡| 亚洲男人天堂网一区| 国产97色在线日韩免费| 成人特级黄色片久久久久久久| 国产精品日韩av在线免费观看 | 精品国产超薄肉色丝袜足j| 天天添夜夜摸| 99精品在免费线老司机午夜| 男女做爰动态图高潮gif福利片 | 少妇的丰满在线观看| www日本在线高清视频| 88av欧美| 十分钟在线观看高清视频www| 亚洲精品中文字幕在线视频| 一级,二级,三级黄色视频| 真人做人爱边吃奶动态| 天堂动漫精品| 可以免费在线观看a视频的电影网站| 变态另类成人亚洲欧美熟女 | 在线观看免费午夜福利视频| 两性午夜刺激爽爽歪歪视频在线观看 | 久久中文字幕人妻熟女| 亚洲第一电影网av| 亚洲专区中文字幕在线| 色播亚洲综合网| 窝窝影院91人妻| 巨乳人妻的诱惑在线观看| 午夜福利视频1000在线观看 | 久久久水蜜桃国产精品网| 97超级碰碰碰精品色视频在线观看| 亚洲欧美精品综合一区二区三区| 欧美日本中文国产一区发布| www国产在线视频色| 国产一级毛片七仙女欲春2 | 一个人免费在线观看的高清视频| 午夜成年电影在线免费观看| 999久久久国产精品视频| 啪啪无遮挡十八禁网站| 亚洲 欧美一区二区三区| 亚洲视频免费观看视频| 国产成人一区二区三区免费视频网站| 在线十欧美十亚洲十日本专区| 亚洲精品美女久久av网站| 天堂影院成人在线观看| 成人三级黄色视频| aaaaa片日本免费| 999久久久国产精品视频| 18禁裸乳无遮挡免费网站照片 | 欧美日韩亚洲国产一区二区在线观看| 免费在线观看影片大全网站| 91成年电影在线观看| 午夜久久久在线观看| 亚洲专区中文字幕在线| 欧美激情高清一区二区三区| 一级毛片精品| 欧美黄色片欧美黄色片| 高清在线国产一区| 国产精品香港三级国产av潘金莲| av片东京热男人的天堂| 国产欧美日韩一区二区三区在线| 午夜福利视频1000在线观看 | 国产成人精品久久二区二区91| 国产亚洲精品综合一区在线观看 | 中出人妻视频一区二区| 亚洲专区国产一区二区| 久久久水蜜桃国产精品网| 黑人欧美特级aaaaaa片| 日韩欧美一区二区三区在线观看| 精品欧美一区二区三区在线| www.自偷自拍.com| 最近最新中文字幕大全免费视频| 免费久久久久久久精品成人欧美视频| 又紧又爽又黄一区二区| 国产主播在线观看一区二区| 日韩有码中文字幕| 国产精品1区2区在线观看.| 国产成人精品在线电影| 9色porny在线观看| 婷婷六月久久综合丁香| 成人亚洲精品av一区二区| 精品久久久久久,| 日本vs欧美在线观看视频| 大型黄色视频在线免费观看| 亚洲一卡2卡3卡4卡5卡精品中文| 国产亚洲精品久久久久久毛片| av网站免费在线观看视频| 国产免费男女视频| 琪琪午夜伦伦电影理论片6080| 丰满人妻熟妇乱又伦精品不卡| 亚洲美女黄片视频| 热99re8久久精品国产| 久久婷婷成人综合色麻豆| 久久久久久久精品吃奶| 香蕉久久夜色| 长腿黑丝高跟| 天堂影院成人在线观看| 精品国产美女av久久久久小说| 精品久久久久久成人av| 欧美在线黄色| 欧美成人免费av一区二区三区| 国产一区在线观看成人免费| 可以免费在线观看a视频的电影网站| 亚洲少妇的诱惑av| 日韩一卡2卡3卡4卡2021年| 亚洲专区中文字幕在线| 香蕉国产在线看| 在线十欧美十亚洲十日本专区| 亚洲欧美一区二区三区黑人| 国产熟女xx| 欧美日韩亚洲综合一区二区三区_| 午夜日韩欧美国产| 视频区欧美日本亚洲| 人妻丰满熟妇av一区二区三区| av视频免费观看在线观看| 校园春色视频在线观看| 一a级毛片在线观看| 色av中文字幕| 在线观看免费视频网站a站| www.精华液| 日本 av在线| 国内久久婷婷六月综合欲色啪| 在线观看免费视频网站a站| 法律面前人人平等表现在哪些方面| 搡老岳熟女国产| 成人三级做爰电影|