劉思琪,劉斌,寧玉杰,劉術輝,解輝,宋軼涵
抗菌低表面能復合型海洋防污涂料的研究進展
劉思琪,劉斌,寧玉杰,劉術輝,解輝,宋軼涵
(北京化工大學 材料電化學過程與技術北京市重點實驗室 材料科學與工程學院,北京 100029)
海洋生物污損給海洋工程與裝備帶來了巨大的困難與挑戰(zhàn),低表面能型海洋防污涂料由于環(huán)境友好,近年來已發(fā)展成為防污涂料研究與開發(fā)的重點。通過在低表面能防污涂料中引入抗菌劑,制備具有復合功能的防污涂料,可進一步提高涂料的綜合防污能力。針對該技術背景,首先對海洋防污涂料的技術原理和低表面能防污涂料的研究現(xiàn)狀進行了簡要介紹,分析了該類型防污涂料的技術優(yōu)勢,同時提出了其靜態(tài)防污能力差、對細菌型污損生物抗污性能弱的技術短板;然后,圍繞低表面能防污涂料抗菌復合改性這一焦點問題,從添加型和結構型2種抗菌復合改性方式入手,分別闡述了各自涂料的適用抗菌劑種類、主要制備方式和改性后涂料綜合防污性能的相關研究成果;在此基礎上,梳理了以上2類抗菌復合防污涂料存在的問題,并提出了針對性的解決途徑;最后,提出了無機抗菌劑、有機抗菌劑和天然抗菌劑應用于防污涂料的未來研究方向,并對抗菌低表面能復合型海洋防污涂料的發(fā)展與應用前景進行了展望。
抗菌;低表面能;功能復合;海洋防污涂料
海洋占據(jù)了地球表面約70%的面積,蘊藏著極其豐富的各類資源,包括礦物資源、化學資源、生物資源等,海洋資源的開發(fā)與利用具有廣闊的發(fā)展前景,海洋經(jīng)濟和海洋產(chǎn)業(yè)對人類社會的發(fā)展起著極為重要的作用。走向海洋是中國經(jīng)濟繼續(xù)發(fā)展的重要戰(zhàn)略步驟。海洋環(huán)境的特殊性使海洋生物種類繁多,部分海洋生物常會附著在船舶水線以下或海洋設備的表面,帶來一系列的嚴重問題,如使船舶速度降低、油耗增加、水下結構被腐蝕破壞、浮標及航海設施質量增加、設備移動部件失靈、水下管線阻塞等[1-2],因此如何有效避免海洋生物污損是目前海洋科學領域的熱點和難點問題。目前機械防污、電化學防污、超聲波防污、涂層防污等防污技術均已得到實際應用,而在海洋裝備或設備表面涂覆防污涂料,仍是解決海洋生物污染問題的重要技術途徑。
海洋生物污損防護技術的需求與目前防污技術的發(fā)展水平呈現(xiàn)較為明顯的不對稱性,即防污需求日益迫切,技術要求日益提高,技術挑戰(zhàn)性越來越大,而防污技術的研究與開發(fā)則難以與之匹配。近年來,低表面能防污涂料相關工藝由于具有環(huán)境友好性而取得了較快發(fā)展,也逐漸發(fā)展成為國際海洋防污的主流。但是,低表面能防污涂料尚存在一些技術短板,其中靜態(tài)防污能力差、對細菌型污損生物抗污性能弱限制了其進一步的應用和發(fā)展。海洋生物附著的初始階段是細菌等微生物的附著和繁殖,通過向低表面能涂料中引入抗菌劑,制備具有抗菌復合功能的防污涂料,可從源頭抑制海洋生物的污染,提高涂料的防污性能。文中針對該技術背景,對抗菌型低表面能海洋防污涂料的研究進展進行了系統(tǒng)分析與評述。
理想的防污涂料可提供一個在有效期內無生物附著的表面,起到防止海生物附著的作用,其防污的基本原理可分為2種:一種是防污涂層材料中釋放出可殺死或干擾海生物幼體生長的物質,阻止污損生物在其表面生長;另一種是依據(jù)污損生物在附著過程中對涂層材料表面結構的選擇性,來開發(fā)具有某些表面物理特性的材料,阻止污損生物在其表面附著生長[3-4]。
傳統(tǒng)防污涂料中的防污劑通常為毒性較大的有機物、重金屬及其化合物,但這些防污劑的大量使用嚴重污染了海洋環(huán)境,因而逐漸被禁用[5-6]。目前,國內外海洋船舶防污涂料的研究方向為環(huán)保低毒或無毒的防污涂料,主要包括:無錫自拋光防污涂料;以有機硅、有機氟聚合物為主的低表面能防污涂料;以生物激素或生物酶等為防污劑的生物防污涂料及仿生防污涂料;通過電解海水防污的導電防污涂料;以可溶性硅酸鹽為主的高堿性表面無毒防污涂料等[7-9]。其中低表面能涂料的防污原理為利用涂層較低的表面能并在水流剪切力的共同作用下達到防污的效果(見圖1),其實施過程中沒有任何有毒物質的釋放,是目前無毒環(huán)保海洋防污涂料領域的重點研究方向。
圖1 低表面能防污涂料作用原理示意圖[10]
低表面能防污涂料具有很低的表面能,海洋生物難以在上面附著,即使附著后在水流或其他外力作用下也很容易脫落。因此,低表面能防污涂料可防止海洋生物附著,不存在毒性物質的釋放,能起到長期防污的作用[11-12]。由Baier曲線(見圖2)可知,材料表面的相對附著力隨表面能的增大呈現(xiàn)出先減小后增大的趨勢,約在20~25 mJ/m2時達到最低值。
圖2 Baier曲線[13]
低表面能防污涂料自身性質對防污效果影響很大,除較低的表面能外,性能優(yōu)良的低表面能涂料還需要具備以下特性:較高的鏈段柔性,有助于活性鏈段遷移到涂層表面;較低的彈性模量,利于已附著的污損生物在較小的外力作用下以剝離的方式脫落;適宜的涂層厚度,以降低附著生物脫落的臨界剝離力;光滑的表面,避免因為涂層表面存在微孔等粗糙結構使污損生物附著[13-14]。船用低表面能防污涂料主要分為有機硅系列和有機氟系列,如聚硅氧烷、含氟聚氨酯、硅氧烷聚氨酯、氟有機硅等[15-17]。
有關有機硅低表面能涂料樹脂的研究非常活躍,主要可分為向樹脂中添加小分子硅油和對樹脂基體進行有機硅改性2種類型。添加小分子硅油操作簡單,且經(jīng)測試發(fā)現(xiàn)硅油能夠遷移到涂料表面,有效降低部分海洋生物的附著率,但硅油的種類和添加量會影響涂料的防污性能和力學性能,且使用過程中硅油會不斷滲出造成海水污染以及防污效果的減退[13]。改性硅樹脂盡管制備操作復雜且成本較高,但獲得的涂料防污效果優(yōu)良,使用壽命長,因而逐步受到研究人員的重視。
最簡單的有機硅聚合物是聚硅氧烷,主鏈中的硅氧鍵使其具有優(yōu)良的憎水性和耐候性,表現(xiàn)出優(yōu)良的防污性能[18-19]。但聚硅氧烷力學性能較差和基體的黏結性能不好等問題導致其應用受到一定限制,而通過共混共聚、接枝等方法,用其他樹脂對硅樹脂進行改性可以解決該問題,例如借助聚氨酯改性硅樹脂來提高力學性能,借助環(huán)氧樹脂改性硅樹脂來提高耐熱性和對底材的附著力,借助丙烯酸樹脂改性硅樹脂來提高耐溶劑性等[20-23]。董耀華等[24]在丙烯酸樹脂中引入聚硅氧烷側鏈,經(jīng)表征發(fā)現(xiàn)涂層具有良好的低表面能防污特性。Zhang等[25]、Sommer等[26]、Naghash等[27]發(fā)現(xiàn)聚硅氧烷–聚氨酯樹脂涂層力學性能優(yōu)良,同時具備優(yōu)良的低表面能防污特性,但對有機硅樹脂的改性過程可能會對涂料本身的性能產(chǎn)生影響,因而如何平衡改性有機硅涂料的防污性能與力學性能是目前研究的重點之一。
聚四氟乙烯的水接觸角高達114°,但由于其涂層致密性差,表面有大量微孔,很容易被微生物附著,因而不能直接用于防污涂料,需借助其他樹脂作為載體。國內外研究人員發(fā)現(xiàn)將聚四氟乙烯等氟化物添加至聚氨酯、環(huán)氧樹脂中,制備出的涂料具有優(yōu)良的防污性能[24]。將有機氟引入樹脂基體的分子鏈中,利用氟原子電負性大、鍵能高的特點,使含氟樹脂中的碳原子被氟原子包圍,可以提高樹脂的疏水性[28-29],如全氟烷基丙烯酸乙酯改性的丙烯酸樹脂具有良好的硬度、抗沖擊性能和較低的表面能[30]。然而有機氟樹脂價格昂貴、成型溫度高,且含氟樹脂中的碳鏈剛性較大,清理表面附著的生物時需要較高的能量,因此在實際應用中也存在諸多限制[31]。
將有機硅和有機氟綜合運用可以有效改善防污涂層的綜合性能。有研究人員研發(fā)出了一種新型低表面能防污材料氟代聚硅氧烷[28],主鏈中的硅氧鍵具備高彈性和高流動性,側鏈的含氟基團顯著降低了材料的表面能,因而兼有機硅樹脂和氟樹脂的優(yōu)良防污性能。Sun等[32]發(fā)現(xiàn)在丙烯酸樹脂中同時引入有機硅和有機氟,得到的涂層綜合性能較為優(yōu)良。
低表面能防污涂料能夠有效降低海洋生物的附著率,但其靜態(tài)防污能力較差,對細菌等污損生物的防污效果較差。為了制備性能更加綜合的防污涂料,研究人員開始嘗試使用抗菌劑對低表面能涂料進行改性,得到的新型復合防污涂料能夠從源頭阻斷海洋生物的附著過程,預期可獲得更加優(yōu)良的防污效果。
低表面能防污涂料的技術已較為成熟,因此復合防污涂料的制備通常采用向低表面能涂料中引入合適的抗菌劑來實現(xiàn)??咕鷦┦蔷哂袣⒕蛞志阅艿幕瘜W試劑的統(tǒng)稱,向涂料中引入合適的抗菌劑,能夠有效提高涂料的抗菌性能。目前可以用作抗菌劑的物質主要分為無機抗菌劑、有機抗菌劑、天然抗菌劑等。
無機抗菌劑是利用銀、銅、鈦等金屬及其離子的殺菌或抑菌功能制備的抗菌劑,根據(jù)抗菌機理的不同可分為以銀系抗菌劑為代表的接觸型抗菌劑和以氧化鋅、二氧化鈦為代表的光催化型抗菌劑2種。接觸型抗菌劑中的金屬離子在接觸到細菌表面后,能夠穿過細胞膜進入細菌內部,與細菌內部的羧基、羥基、氨基等官能團發(fā)生反應,使蛋白質變性,阻礙細菌的正常生命活動,從而達到殺菌效果[16,33]。光催化型抗菌劑在光的照射下發(fā)生電子躍遷,同時使周圍環(huán)境中的水分子和氧氣轉化為羥基自由基和氧負離子,它們能夠破壞細菌的細胞結構和細菌內的有機物,使其失去生命活性,達到殺菌的效果[33-34]。有機抗菌劑種類眾多,主要有季銨鹽、雙胍類、酚、醇、異噻唑啉酮類等[33-35],其主要作用機理為通過化學作用破壞細菌的細胞膜等結構,例如季銨鹽類抗菌劑或進入細菌內部破壞蛋白質等物質會影響其正常生命活動,從而起到殺菌作用,例如醇類抗菌劑[33,36-37]。天然抗菌劑是指直接從動植物或微生物中提取的具有抗菌活性的物質,是最早得到應用的抗菌劑,主要包括殼聚糖、魚精蛋白、大蒜素、山梨酸等[33,35,38-39]。其中,殼聚糖及其衍生物是目前應用較為廣泛的天然抗菌劑。研究表明,低分子的殼聚糖可以進入細菌內部,阻斷細菌遺傳物質的合成和轉化,從而阻斷細菌的繁殖;高分子的殼聚糖可以吸附在細菌表面,阻斷細菌的物質交換,破壞細菌的細胞膜等結構,從而達到抗菌的目的[40-41]。
如何將較低的表面能和優(yōu)良的抗菌作用結合起來制備性能更加綜合的防污涂料,且不影響涂料的力學性能,是目前復合防污涂料的重點研究方向。根據(jù)向低表面能涂料中引入抗菌劑的方式不同,可分為添加型抗菌復合防污涂料和結構型抗菌復合防污涂料2種類型。
最初得到應用的抗菌改性方式為將抗菌劑作為填料直接加入低表面能涂料基體中,制備出具有一定抗菌能力的新型復合防污涂料。制備添加型復合涂料的關鍵在于抗菌劑的選擇,其中具有廣譜殺菌效果且不易產(chǎn)生抗藥性的無機金屬抗菌劑是最常用的添加型抗菌劑。
Oktay等[42]將納米銀加入聚硅氧烷涂料中,在不影響涂層表面靜態(tài)水接觸角的同時,對大腸桿菌和金色葡萄球菌的殺菌率達到了99%以上。Zhai等[43]制備的疏水性全氟烷氧基樹脂/納米銀涂層具備優(yōu)良的低表面能特性和抗菌性能。李善文等[44]、Qu等[45]發(fā)現(xiàn)納米二氧化鈦改性的硅丙樹脂涂料具有優(yōu)良的復合防污效果。尤文卉[46]在氟硅改性的丙烯酸乳液中引入載銀二氧化鈦粉末,在改善涂層表面粗糙度、提高水接觸角的同時,大幅提高了涂料的抗菌性能。
除無機金屬抗菌劑外,有機抗菌劑和天然抗菌劑也能夠作為填料應用在低表面能涂料中。仇春紅[47]將3種不同季銨鹽添加至有機硅樹脂中,制得的涂料水接觸角均在120°以上,同時對大腸桿菌的抑菌率達到了99%。趙萍萍[48]將改性后的2,4–噻唑烷二酮(TDZ)加入有機硅丙烯酸樹脂中,經(jīng)實驗室和實海掛板測試驗證,該涂料復合防污效果良好。廖道鵬等[49]利用天然抗菌劑間苯三酚的單寧特性,將其應用于改性丙烯酸樹脂中,制備得到的涂層的水接觸角達到了130°(見圖3),同時抗菌效果優(yōu)良(見圖4),表現(xiàn)出了優(yōu)良的復合防污特性。
圖3 水接觸角[49]
結構型抗菌復合防污涂料的制備原理是借助化學反應將抗菌劑(多為小分子有機抗菌劑)引入涂料樹脂的高分子鏈中,同時不破壞抗菌劑中的抗菌基團,這樣制備得到的抗菌涂料使用壽命長,且避免了抗菌劑的析出損失和對環(huán)境造成的污染,制得的抗菌涂料更加綠色環(huán)保[50]。
圖4 純樹脂涂層(a)和添加質量分數(shù)為6%的間苯三酚樹脂涂層(b)的抑菌圈對比[49]
趙玻[51]將胍基型二羥甲基丙酰胺作為擴鏈劑引入氟化聚氨酯中,得到的聚氨酯涂層具有上層抗菌、次層疏水的優(yōu)良防污性能。Wang等[52]在丙烯酸乳液中引入有機硅樹脂和三甲基氯化銨,得到的涂層防污性能優(yōu)良。付昱晨[53]采用季銨鹽改性的含氟聚合物和聚脲醛納米粒子來改性聚氨酯,制備的涂層在含氟聚合物和由納米粒子形成的微觀疏水結構的共同作用下具有優(yōu)良的疏水性能,同時抗菌效果優(yōu)良。Ferreira等[54]將溴代吡咯腈用異氰酸酯功能化后與聚硅氧烷反應構建防污涂層,實海掛板測試結果表明涂層表現(xiàn)出了優(yōu)良的防污效果。Zhang等[55-56]、劉海龍[57]將季銨鹽改性的聚硅氧烷和異佛爾酮異氰酸酯三聚體共聚,制備得到的涂層綜合防污性能優(yōu)良。羅建斌等[58]將側鏈含有氟化雙季銨鹽的二胺引入聚氨酯硬段,得到的系列聚氨酯的水接觸角均在100°以上(見表1),同時涂層對大腸桿菌和金色葡萄球菌均具有良好的殺菌效果(見圖5)。
表1 不同氟化雙季銨鹽含量聚氨酯的水接觸角[58]
Tab.1 Water contact angle of polyurethane with different content of fluorinated bis-quaternary ammonium salt[58]
除了將抗菌劑直接引入高分子主鏈外,還可以采用接枝的方式引入抗菌劑,這樣可以最大程度避免破壞原分子鏈段結構,進而減小對原涂料力學性能的影響。例如對涂層進行表面功能化處理后,將有機硅接枝在涂層表面并進行季銨化處理,使涂層具備抗菌性能[59]。黃饒[60]合成了石墨烯接枝聚乳酸嵌段聚氨酯共聚物,通過引入石墨烯來提高涂料的抗菌性能,并在聚氨酯鏈段中引入羥基聚二甲基硅烷來降低材料的表面能,獲得具有復合防污效果的涂層。Wang等[61]將聚硅氧烷和聚氨酯共聚并接枝到改性碳納米管上,制備得到的涂料具有優(yōu)良的低表面能特性和抗菌性能,同時避免了直接加入碳納米管所引起的團聚現(xiàn)象[62]。
圖5 氟化雙季銨鹽系列聚氨酯對(a)金色葡萄球菌和(b)大腸桿菌的抗菌效果[58]
目前,結構型抗菌復合防污涂料領域中應用較多的抗菌劑多為小分子有機抗菌劑,將殼聚糖等天然抗菌劑引入涂層高分子鏈的研究正在開展,預期在不久的將來也將取得令人滿意的成果。
將抗菌物質直接加入涂料中制備的添加型抗菌復合防污涂料操作簡便,加工成本低,但由于工藝和抗菌劑本身的性質缺陷,使添加型防污涂料仍存在一定問題。
對于無機金屬抗菌劑,二氧化鈦抗菌劑只能在有一定光照強度的環(huán)境中使用,黑暗條件下幾乎不具備抗菌效果;銀系抗菌劑易團聚、分散效果不佳、不穩(wěn)定、易變色且成本較高[34]。小分子有機抗菌劑毒性相對較高,易析出造成環(huán)境污染、降低涂層的使用壽命;高分子有機抗菌劑與涂料相容性不佳,使涂料的防污效果達不到預期。天然抗菌劑存在提純工藝復雜、耐熱性差、抗菌活性有限且易受環(huán)境因素影響、難以人工合成等問題,故不能規(guī)?;a(chǎn)[34,36,63]。
為改善無機金屬抗菌劑的作用效果,研究人員不斷嘗試對其進行改性處理。例如將金屬抗菌劑制備成納米粒子,通過增大表面效應來減少用量,進而改善抗菌劑在涂料中的分散性,避免應力集中現(xiàn)象對涂層造成破壞;將金屬抗菌劑固定在涂層表面,或借助沸石等多孔材料制備載體金屬抗菌劑,來減少抗菌劑的析出損失[64]。Song等[65]利用改性二氧化鈦來負載納米銀離子,成功拓寬了二氧化鈦的光催化響應區(qū),提高了抗菌劑的作用效果。Tian 等[66]制備了納米銀復合水凝膠,減少銀用量的同時,利用水凝膠改善了納米銀粒子在樹脂基底中的分散性,使涂料具有優(yōu)良的防污性能。Sileika等[67]、Xu等[68]在聚氨酯涂層表面涂覆聚多巴胺薄膜用以還原并固定納米銀粒子,有效避免了銀離子的析出損失,提高了涂層的防污性能。有機抗菌劑和天然抗菌劑在添加型復合防污涂料中的應用較為有限,為拓寬其應用范圍,研究人員在改性研究的過程中發(fā)現(xiàn),若將2種及以上不同種類的抗菌劑復合使用,利用不同成分之間的協(xié)同作用,可制備得到性能更加優(yōu)良的復合抗菌劑。姚劍松等[69]制備的季銨化殼聚糖微球的抗菌性能,相較于純殼聚糖得到了有效提高,使殼聚糖能夠在更加廣泛的pH值范圍內得到應用。吳會敏[70]制備的胍基化殼聚糖不僅具有優(yōu)良的抗菌性能,還成功改善了材料的力學性能和殼聚糖在樹脂中的相容性。
綜上所述,盡管添加型抗菌復合涂料存在一定問題,但相關研究起步較早,因此相對發(fā)展較為完善,在海洋防污領域仍占據(jù)比較重要的位置。繼續(xù)加強相關研究工作,可以有效解決目前存在的問題。制備納米金屬粒子抗菌劑和載體抗菌劑的技術手段日漸成熟,是目前應用最為廣泛的金屬抗菌劑改性方式,可以將其作為多數(shù)添加型復合防污涂料用抗菌劑的首選;多種抗菌劑協(xié)同使用的復合抗菌劑也因其綜合性能顯著優(yōu)于單獨使用抗菌劑時而逐漸受到重視,應進一步加大對其的研究和應用力度。
將有機抗菌劑固定在分子鏈中能夠有效解決抗菌劑的析出損失問題,延長涂層的防污壽命。但有機抗菌劑的引入通常會對涂料的其他性能造成一定程度的不良影響。例如季銨鹽本身具有一定的極性和親水性,引入后會影響涂層的表面能和穩(wěn)定性[71];N–(2,4,6–三氯苯基)馬來酰亞胺中的剛性苯環(huán)會增大涂層的模量,不利于涂層表面附著的海洋生物在海水沖刷下的剪切剝離,使涂層的防污性能受到影響[72]。因此,在向樹脂基體的分子鏈中引入抗菌劑時,應著重考慮抗菌性能與表面能、力學性能等的平衡,通過試驗篩選出綜合性能優(yōu)良的涂料配方。Zhang等[56]發(fā)現(xiàn)聚氨酯改性有機硅涂層的靜態(tài)水接觸角和抗菌性能,與涂層表面硅原子和氮離子的濃度基本呈正相關,并通過試驗驗證了共聚物中有機硅鏈段中鏈節(jié)數(shù)為90、季銨鹽質量分數(shù)為20%時具有最佳的綜合性能。
結構型復合抗菌防污涂料正逐步成為海洋防污涂料的研究熱點,應加強和聚焦相關研究工作,以更好地解決以上問題。為避免抗菌劑對涂料性能造成不利影響,應根據(jù)性能需要選擇合適的抗菌劑,同時在分子鏈結構中引入有機抗菌劑時,應嚴格控制其用量,通過實驗確定抗菌性能和力學性能兼具的最佳配方;針對天然抗菌劑,由于從生物中直接提取天然抗菌劑的抗菌機理較為復雜,應將研究重點聚焦在如何將其引入涂料樹脂的分子鏈后而仍能繼續(xù)保持其抗菌性能和樹脂的防污性能。另外,目前抗菌劑的選擇主要集中在小分子有機抗菌劑領域,后續(xù)應加強針對其他抗菌劑引入樹脂分子鏈的相關研究工作。
低表面能涂料技術已經(jīng)取得實際應用成果,抗菌劑的研究也在不斷進步,抗菌低表面能復合防污涂料的優(yōu)點逐漸顯露并已得到研究人員的重視。無機抗菌劑具備廣譜殺菌效果且不易產(chǎn)生抗藥性,已在復合防污涂料中得到應用,未來的研究方向主要為解決金屬抗菌劑在涂料中的分散性和穩(wěn)定性的問題,例如制備載體無機抗菌劑等。小分子有機抗菌劑具有一定毒性,析出后會對環(huán)境和人體帶來危害,因此不適合用于制備添加型抗菌涂料;高分子有機抗菌劑和涂料基體的相容性較差,抗菌效果不好,而將有機抗菌劑引入結構型抗菌涂料可以避免以上問題,同時有效延長涂料的使用壽命。無毒環(huán)保的天然抗菌劑將會逐漸成為抗菌涂料研究領域的熱點研究方向,但天然抗菌劑的應用尚在起步階段,未來的主要研究方向為將殼聚糖等天然抗菌劑引入低表面能涂料樹脂的高分子鏈中,構建無毒環(huán)保的結構型抗菌防污涂料,其中的難點為天然抗菌劑與涂料基體的反應,以及天然抗菌劑的活性保持等問題。
新型抗菌低表面能復合防污涂料對海洋防污領域有著非常重要的意義,我國在相關領域的研究尚處于起步階段,相信在不久的將來,抗菌低表面能復合防污涂料能夠順利走出實驗室,取得令人滿意的實際應用業(yè)績。
[1] 陶宇, 李亞冰. 海洋防污涂料技術的研究現(xiàn)狀及展望[J]. 化學與黏合, 2012, 34(5): 67-71.
TAO Yu, LI Ya-bing. Present Status and Developing Pro-spect of Marine Antifouling Paints Technology[J]. Che-mistry and Adhesion, 2012, 34(5): 67-71.
[2] ALI A, JAMIL M I, JIANG Jing-xian, et al. An Overview of Controlled-Biocide-Release Coating Based on Polymer Resin for Marine Antifouling Applications[J]. Journal of Polymer Research, 2020, 27(4): 1-17.
[3] CAO Shan, WANG Jia-dao, CHEN Hao-sheng, et al. Pro-gress of Marine Biofouling and Antifouling Technologies [J]. Chinese Science Bulletin, 2011, 56(7): 598-612.
[4] COOPER S P, FINLAY J A, CONE G, et al. Engineered Antifouling Microtopographies: Kinetic Analysis of the Attachment of Zoospores of the Green Alga Ulva to Silicone Elastomers[J]. Biofouling, 2011, 27(8): 881-892.
[5] AMARA I, MILED W, SLAMA R B, et al. Antifouling Processes and Toxicity Effects of Antifouling Paints on Marine Environment. a Review[J]. Environmental Toxi-cology and Pharmacology, 2018, 57: 115-130.
[6] DAFFORN K A, LEWIS J A, JOHNSTON E L. Anti-fouling Strategies: History and Regulation, Ecological Impacts and Mitigation[J]. Marine Pollution Bulletin, 2011, 62(3): 453-465.
[7] CALLOW J A, CALLOW M E. Trends in the Develop-ment of Environmentally Friendly Fouling-Resistant Marine Coatings[J]. Nature Communications, 2011, 2(1): 244.
[8] SELIM M S, SHENASHEN M A, EL-SAFTY S A, et al. Recent Progress in Marine Foul-Release Polymeric Nano-composite Coatings[J]. Progress in Materials Science, 2017, 87: 1-32.
[9] SILVA E R, FERREIRA O, RAMALHO P A, et al. Eco- Friendly Non-Biocide-Release Coatings for Marine Bio-fouling Prevention[J]. Science of the Total Environment, 2019, 650(2): 2499-2511.
[10] HU Peng, XIE Qing-yi, MA Chun-feng, et al. Silicone- Based Fouling-Release Coatings for Marine Antifouling [J]. Langmuir, 2020, 36(9): 2170-2183.
[11] 馬英華, 宋振偉, 何遙, 等. 低表面能防污涂料防污機理探討[J]. 上海涂料, 2013, 51(5): 15-18.
MA Ying-hua, SONG Zhen-wei, HE Yao, et al. Discus-sing about Antifouling Mechanism of Antifouling Coa-tings with Low Surface Energy[J]. Shanghai Coatings, 2013, 51(5): 15-18.
[12] MARLèNE L, ANDRé M, CHRISTINE B. Fouling Re-lease Coatings: A Nontoxic Alternative to Biocidal Anti-fouling Coatings[J]. Chemical Reviews, 2012, 112(8): 4347-4390.
[13] 桂泰江, 王科. 低表面能海洋防污涂料的現(xiàn)狀和發(fā)展趨勢[J]. 現(xiàn)代涂料與涂裝, 2010, 13(11): 32-35.
GUI Tai-jiang, WANG Ke. The Present Situation and Development Trend of Low Surface Marine Antifouling Coating[J]. Modern Paint & Finishing, 2010, 13(11): 32-35.
[14] NURIOGLU A G, ESTEVES A C C, DE W G. Non-Toxic, Non-Biocide-Release Antifouling Coatings Based on Molecular Structure Design for Marine Applications[J]. Journal of Materials Chemistry B, 2015, 3(32): 6547- 6570.
[15] KRóL B, KRóL P, BYCZY?SKI ?, et al. Methods of Increasing Hydrophobicity of Polyurethane Materials: Important Applications of Coatings with Low Surface Free Energy[J]. Colloid and Polymer Science, 2017, 295(12): 2309-2321.
[16] CIRIMINNA R, BRIGHT F V, PAGLIARO M. Eco-friendly Antifouling Marine Coatings[J]. ACS Sustainable Chemistry & Engineering, 2015, 3(4): 559-565.
[17] BUSKENS P, WOUTERS M, RENTROP C, et al. A Brief Review of Environmentally Benign Antifouling and Foul- Release Coatings for Marine Applications[J]. Journal of Coatings Technology and Research, 2013, 10(1): 29-36.
[18] HY D T, JEAN-FRAN?OIS B, ANDRé M, et al. Polysi-loxane-Based Block Copolymers with Marine Bacterial Anti-Adhesion Properties[J]. ACS Applied Materials & Interfaces, 2015, 7(28): 15578-86.
[19] LEI H, XIONG M, XIAO J, et al. Fluorine-Free Coating with Low Surface Rnergy and Anti-Biofouling Properties [J]. Progress in Organic Coatings, 2018, 124: 158-164
[20] 劉廣娟, 左禹, 趙景茂. 環(huán)氧改性有機硅涂料耐熱耐蝕性研究[J]. 腐蝕與防護, 2004, 25(6): 238-241.
LIU Guang-juan, ZUO Yu, ZHAO Jing-mao. Heat Resi-stance and Corrosion Resistance of Epoxy-Silicone Based Coating[J]. Corrosion & Protection, 2004, 25(6): 238-241.
[21] 夏杰. 聚氨酯改性有機硅船舶防污涂料研究[D]. 北京: 北京化工大學, 2020: 31.
XIA Jie. Research of Silicone Modified Polyurethane Marine Antifouling Coatings[D]. Beijing: Beijing Univer-sity of Chemical Technology, 2020: 31.
[22] LEJARS M, MARGAILLAN A, BRESSY C. Siloxy Silylester Methacrylate Diblock Copolymer-Based Coa-tings with Tunable Erosion and Marine Antifouling Pro-perties[J]. ACS Applied Polymer Materials, 2020, 2(8): 3291-3300.
[23] SUN Xun, CHEN Rong-rong, GAO Xiang, et al. Fabrica-tion of Epoxy Modified Polysiloxane with Enhanced Mechanical Properties for Marine Antifouling Applica-tion[J]. European Polymer Journal, 2019, 117: 77-85.
[24] 董耀華, 郭娜, 劉濤, 等. 載銀自拋光/低表面能環(huán)保涂層的制備及其耐微生物附著性能研究[J]. 表面技術, 2015, 44(3): 100-106.
DONG Yao-hua, GUO Na, LIU Tao, et al. Research on the Preparation of Ag-Loaded Self-Polishing/Low Surface Energy Coating and Its Antifouling Ability[J]. Surface Technology, 2015, 44(3): 100-106.
[25] ZHANG Zhan-ping, SONG Xiao-fei, CUI Li-ying, et al. Synthesis of Polydimethylsiloxane-Modified Polyurethane and the Structure and Properties of Its Antifouling Coa-tings[J]. Coatings, 2018, 8(5): 157.
[26] SOMMER S, EKIN A, WEBSTER D C, et al. A Preli-minary Study on the Properties and Fouling-Release Per-formance of Siloxane-Polyurethane Coatings Prepared from Poly (Dimethylsiloxane) (PDMS) Macromers[J]. Biofouling, 2010, 26(8): 961-972.
[27] NAGHASH H J, MOHAMMADIDEHCHESHMEH I, MEHRNIA M. Synthesis and Characterization of a Novel Hydroxy Terminated Polydimethylsiloxane and Its App-lication in the Waterborne Polysiloxane-Urethane Disper-sion for Potential Marine Coatings[J]. Polymers for Adva-nced Technologies, 2013, 24(3): 307-317.
[28] 王強, 李昌誠, 閆雪峰, 等. 低表面能海洋防污涂層技術及其評價方法[J]. 材料導報, 2008, 22(10): 84-87.
WANG Qiang, LI Chang-cheng, YAN Xue-feng, et al. Marine Antifouling Coating Technology with Low Sur-face Energy and Its Evaluation Methods[J]. Materials Review, 2008, 22(10): 84-87.
[29] 許麗敏. 有機氟改性丙烯酸樹脂的合成及其涂料的研究[D]. 大連: 大連交通大學, 2010: 5-45.
XU Li-min. Research of Synthetic Organic Fluorine Mo-dified Acrylic Resin and Coating[D]. Dalian: Dalian Jiao-tong University, 2010: 5-45.
[30] ZHANG Yan, ZHANG Zhan ping, QI Yu hong, et al. The Polymerization and Performance of Fluorinated Acrylic Copolymer with Low Surface Energy[J]. Materials Science Forum, 2011, 1300(687): 562-566.
[31] GITTENS J E, SMITH T J, SULEIMAN R, et al. Current and Emerging Environmentally-Friendly Systems for Fouling Control in the Marine Environment[J]. Biotech-nology Advances, 2013, 31(8): 1738-1753.
[32] SUN X, ZHANG F, CHEN Y, et al. Preparation and Properties of Crosslinked Network Coatings Based on Perfluoropolyether/Poly(Dimethyl Siloxane)/Acrylic Polyols for Marine Fouling-Release Applications[J]. Journal of Applied Polymer Science, 2015, 132(17): 41860.
[33] 汪子翔, 張坤, 衛(wèi)金皓, 等. 抗菌材料及抗菌劑的研究現(xiàn)狀及前景展望[J]. 橡塑技術與裝備, 2021, 47(12): 22-29.
WANG Zi-xiang, ZHANG Kun, WEI Jin-hao, et al. The Present Situation and Prospect of Antibacterial Materials and Antimicrobial Agents[J]. China Rubber/Plastics Technology and Equipment, 2021, 47(12): 22-29.
[34] 張小吉, 鄭成. 抗菌涂料的研究應用進展[J]. 廣東化工, 2016, 43(24): 83-84.
ZHANG Xiao-ji, ZHENG Cheng. The Research Progress of Antibacterial Coatings[J]. Guangdong Chemical In-dustry, 2016, 43(24): 83-84.
[35] MU?OZ-BONILLA A, FERNáNDEZ-GARCíA M. Poly-meric Materials with Antimicrobial Activity[J]. Progress in Polymer Science, 2011, 37(2): 281-339.
[36] 張國銘, 黎彧, 鄒訓重, 等. 抗菌涂料的研究進展[J]. 廣東微量元素科學, 2015, 22(11): 6-9.
ZHANG Guo-ming, LI Yu, ZOU Xun-zhong, et al. The Research Progress of Antibacterial Coatings[J]. Guang-dong Trace Elements Science, 2015, 22(11): 6-9.
[37] 敖曉娟, 楊育農(nóng), 王浩江, 等. 聚丙烯酸酯抗菌涂料研究進展[J]. 合成材料老化與應用, 2019, 48(5): 122-126.
AO Xiao-juan, YANG Yu-nong, WANG Hao-jiang, et al. Research Progress on Antibacterial Coatings of Polyacry-late[J]. Synthetic Materials Aging and Application, 2019, 48(5): 122-126.
[38] QIAN Pei-yuan, XU Ying, NOBUSHINO F. Natural Products as Antifouling Compounds: Recent Progress and Future Perspectives[J]. Biofouling, 2010, 26(2): 223-234.
[39] MA Chun-feng, ZHANG Wei-peng, ZHANG Guang-zhao, et al. Environmentally Friendly Antifouling Coatings Based on Biodegradable Polymer and Natural Antifoulant [J]. ACS Sustainable Chemistry & Engineering, 2017, 5(7): 6304-6309.
[40] 李恩宇. 天然殼聚糖的改性制備及其在防污涂層中的應用研究[D]. 哈爾濱: 哈爾濱工程大學, 2018: 12.
LI En-yu. Modification of Natural Chitosan and Its Application in Antifouling Coatings[D]. Harbin: Harbin Engineering University, 2018: 12.
[41] NIGMATULLIN R, KONOVALOVA V, POBIGAY G. Development of Antimicrobial Membranes via the Sur-face Tethering of Chitosan[J]. Journal of Applied Polymer Science, 2009, 111(4): 1697-1705.
[42] OKTAY B, KAYAMAN-APOHAN N. Polydimethylsilo-xane (PDMS)-Based Antibacterial Organic-Inorganic Hybrid Coatings[J]. Journal of Coatings Technology and Rese-arch, 2013, 10(6): 785-798.
[43] ZHAI Meng-jiao, GONG Yong-feng, CHEN Xiu-yong, et al. Mass-Producible Hydrophobic Perfluoroalkoxy/Nano- Silver Coatings by Suspension Flame Spraying for Antifouling and Drag Reduction Applications[J]. Surface & Coatings Technology, 2017, 328: 115-120.
[44] 李善文, 陳美玲, 楊莉, 等. 環(huán)保友好納米二氧化鈦低表面能船舶防污涂料[J]. 功能材料, 2008, 39(5): 853- 856.
LI Shan-wen, CHEN Mei-ling, YANG Li, et al. Pre-paration of Environmentally Benign Low Surface Energy Antifouling Coatings with Nano-Titanium Oxide Powder on Seagoing Vessels[J]. Journal of Functional Materials, 2008, 39(5): 853-856.
[45] QU Yuan-yuan, HUANG Hao-fei. Study of Novel Low Surface Energy Antifouling Coating Prepared with Silicon- Modified Acrylic Resin and Nano-TiO2[J]. Asian Journal of Chemistry, 2015, 27(4): 1212-1214.
[46] 尤文卉. 銀系疏水抗菌涂層制備及其性能研究[D]. 杭州: 浙江大學, 2014: 29-42.
YOU Wen-hui. Preparation and Properties of the Ag- Based Hydrophobic Antibacterial Coating[D]. Hangzhou: Zhejiang University, 2014: 29-42.
[47] 仇春紅. 季銨鹽海洋防污涂層研究[D]. 大連: 大連海事大學, 2012: 33-61.
QIU Chun-hong. Investigation of Marine Antifouling Coatings Based on Quaternary Ammonium Salts[D]. Dalian: Dalian Maritime University, 2012: 33-61.
[48] 趙萍萍. 噻唑烷二酮類抗菌劑在海洋防污涂料中的研究[D]. 淮北: 淮北師范大學, 2019: 21-28.
ZHAO Ping-ping. Application of TZDS Antimicrobials in Marine Antifouling Coatings[D]. Huaibei: Huaibei Normal University, 2019: 21-28.
[49] 廖道鵬, 陳美玲, 張羽生, 等. 天然防污劑間苯三酚在低表面能海洋涂料中的應用[J]. 化工新型材料, 2015, 43(4): 226-228.
LIAO Dao-peng, CHEN Mei-ling, ZHANG Yu-sheng, et al. Application of Natural Antifouling Agent Phloroglu-cinol in Marine Coatings with Low Surface Energy[J]. New Chemical Materials, 2015, 43(4): 226-228.
[50] KUGEL A, STAFSLIEN S, CHISHOLM B J. Antimicro-bial Coatings Produced by “Tethering” Biocides to the Coating Matrix: A Comprehensive Review[J]. Progress in Organic Coatings, 2011, 72(3): 222-252.
[51] 趙玻. 純水性聚氨酯納米乳液及其抗菌與超疏水涂層的制備與研究[D]. 上海: 上海應用技術大學, 2019: 19-33.
ZHAO Bo. Preparation and Study of Waterborne Polyure- Thane Nano-Emulsion and Its Antibacterial and Superhy-drophobic Coatings[D]. Shanghai: Shanghai Institute of Technology, 2019: 19-33.
[52] WANG B, WU Z, ZHANG D, et al. Antibacterial Sili-cylacrylate Copolymer Emulsion for Sntifouling Coatings [J]. Progress in Organic Coatings, 2018: 122-128.
[53] 付昱晨. 多功能超疏水抗菌材料的制備及其表面性能的研究[D]. 杭州: 浙江大學, 2017: 26-46.
FU Yu-chen. Synthesis of Multifunctional Superhydro-phobic Antibacterial Materials and Studies on Their Surface Properties[D]. Hangzhou: Zhejiang University, 2017: 26-46.
[54] FERREIRA O, RIJO P, GOMES J F, et al. Biofouling Inhibition with Grafted Econea Biocide: Toward a Non-releasing Eco-Friendly Multiresistant Antifouling Coa-ting[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(1): 12-17.
[55] ZHANG Q, LIU H, CHEN X, et al. Preparation, Surface Properties, and Antibacterial Activity of a Poly(Dimethyl Siloxane) Network Containing a Quaternary Ammonium Salt Side Chain[J]. Journal of Applied Polymer Science, 2015, 132(14): 5-8.
[56] ZHANG Qing-hua, LIU Hai-long, ZHAN Xiao-li, et al. Microstructure and Antibacterial Performance of Function-alized Polyurethane Based on Polysiloxane Tethered Ca-tionic Biocides[J]. RSC Advances, 2015, 5(95): 77508- 77517.
[57] 劉海龍. 抗菌改性聚硅氧烷低表面能涂層材料的制備與性能研究[D]. 杭州: 浙江大學, 2014: 25-69.
LIU Hai-long. Preparation and Performance of Polysilo-xane Coating Material Modified by Antibacterial Groups [D]. Hangzhou: Zhejiang University, 2014: 25-69.
[58] 羅建斌, 馬晨, 廖戎, 等. 硬段側鏈含有氟化雙季銨鹽的聚氨酯表面性能及抗菌性能分析[J]. 高等學?;瘜W學報, 2010, 31(6): 1268-1273.
LUO Jian-bin, MA Chen, LIAO Rong, et al. Surface and Antibacterial Properties of Polyurethane with Fluorinated Bis-Ammonium Salts Attached to Hard Segments[J]. Chemical Journal of Chinese Universities, 2010, 31(6): 1268-1273.
[59] YANG Wen-jing, NEOH K G, KANG En-tang, et al. Polymer Brush Coatings for Combating Marine Biofou-ling[J]. Progress in Polymer Science, 2014, 39(5): 1017- 1042.
[60] 黃饒. 可降解低表面能海洋防污聚氨酯復合材料的制備及性能研究[D]. 湘潭: 湖南科技大學, 2016: 27-36.
HUANG Rao. The Synthesis and Performance of Deg-radable Polyurethane Hybrid Materials with Low Surface Energy[D]. Xiangtan: Hunan University of Science and Technology, 2016: 27-36.
[61] WANG S, LIU X, YU L, et al. Low Surface Energy Self-Polishing Polymer Grafted MWNTs for Antibacterial Coating and Controlled-Release Property of Cu2O[J]. Journal of Applied Polymer Science, 2020, 138(16): 50267.
[62] ALEXANDRE B, ROSICA M, PETTITT M E, et al. Marine Fouling Release Silicone/Carbon Nanotube Nano-composite Coatings: On the Importance of the Nanotube Dispersion State[J]. Journal of Nanoscience and Nano-technology, 2010, 10(5): 2972-2978.
[63] 譚生, 郭軍紅, 崔錦峰, 等. 抗菌涂料的研究現(xiàn)狀及發(fā)展趨勢[J]. 中國涂料, 2011, 26(2): 16-20.
TAN Sheng, GUO Jun-hong, CUI Jin-feng, et al. Rese-arch Status and Development Trend of Antibacterial Coa-tings[J]. China Coatings, 2011, 26(2): 16-20.
[64] 高黨鴿, 趙洲洋, 呂斌, 等. 超疏水抗菌表面的研究進展[J]. 精細化工, 2021, 38(5): 874-881.
GAO Dang-ge, ZHAO Zhou-yang, LYU Bin, et al. Rese-arch Process of Superhydrophobic Antibacterial Surfaces [J]. Fine Chemicals, 2021, 38(5): 874-881.
[65] SONG Yan-yan, YANG Ting, CAO Jing, et al. Protein- Mediated Synthesis of Antibacterial Silver Nanoparticles Deposited on Titanium Dioxide Nanotube Arrays[J]. Microchimica Acta, 2012, 177(1/2): 129-135.
[66] TIAN Shu, JIANG Dao-yi, PU Ji-bin, et al. A New Hybrid Silicone-Based Antifouling Coating with Nanoco-mposite Hydrogel for Durable Antifouling Properties[J]. Chemical Engineering Journal, 2019, 370: 1-9.
[67] SILEIKA T S, KIM H D, MANIAK P, et al. Antibacterial Performance of Polydopamine-Modified Polymer Surfaces Containing Passive and Active Components[J]. ACS Applied Materials & Interfaces, 2011, 3(12): 4602-4610.
[68] XU De-qiu, SU Yu-ling, ZHAO Li-li, et al. Antibacterial and Antifouling Properties of a Polyurethane Surface Modified with Perfluoroalkyl and Silver Nanoparticles[J]. Journal of Biomedical Materials Research Part A, 2017, 105(2): 531-538.
[69] 姚劍松, 左華江, 徐然, 等. 殼聚糖微球的季銨化及其抗菌性能的研究[J]. 化工新型材料, 2021, 49(2): 103- 106.
YAO Jian-song, ZUO Hua-jiang, XU Ran, et al. Quater-nary Ammoniation of Chitosan Microsphere and Their Antimicrobial Property[J]. New Chemical Materials, 2021, 49(2): 103-106.
[70] 吳會敏. 含胍基化殼聚糖水性聚氨酯涂料的制備研究[D]. 天津: 天津大學, 2018: 39-49.
WU Hui-min. Preparation of Waterborne Polyurethane Coatings Modified by Guanidinated Chitosan[D]. Tianjin: Tianjin University, 2018: 39-49.
[71] MAJUMDAR P, LEE E, PATEL N, et al. Development of Environmentally Friendly, Antifouling Coatings Based on Tethered Quaternary Ammonium Salts in a Crosslinked Polydimethylsiloxane Matrix[J]. Journal of Coatings Technology and Research, 2008, 5(4): 405-417.
[72] XIE Qing-yi, MA Chun-feng, LIU Chao, et al. Poly (Dimethylsiloxane)-Based Polyurethane with Chemically Attached Antifoulants for Durable Marine Antibiofouling [J]. ACS Applied Materials & Interfaces, 2015, 7(38): 21030-21037.
Progress in the Antibacterial and Low Surface Energy Composite Marine Antifouling Coatings
,,,,,
(Beijing Key Laboratory of Materials Electrochemical Process and Technology, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China)
Marine economy and industry play an extremely important role in the development of human society, while the fouling problem of marine organisms brings great difficulties and challenges to marine engineering and equipment. How to effectively avoid marine biological fouling has become a hot and difficult issue. At present, antifouling technologies such as mechanical antifouling, electrochemical antifouling and antifouling coatings have been applied in practice. Among them, coating antifouling technology is the most widely used. Traditional antifouling coatings made use of antifouling agents to kill marine organisms, which will cause irreversible pollution to marine ecological environment. As a result, more research is being concentrated on developing more environmentally acceptable antifouling coatings. The low surface energy antifouling coatings could eliminate marine fouling organisms without releasing hazardous compounds, owing to its lower surface energy and the shear force by water flow. Due to the environment-friendly characteristic, low surface energy marine antifouling coatings have become the focus of research in recent years. To improve the antifouling coatings with more comprehensive properties, researchers try to modify the antifouling coatings with low surface energy unceasingly. Since the starting point of marine biological pollution is the attachment and growth of bacteria, antifouling coatings with antibacterial properties could prevent marine biological pollution at the initial stage. By introducing antimicrobial agents into low surface energy coatings, antifouling coatings with composite function could be prepared to further improve the comprehensive antifouling ability of coatings. According to this background, the technical principle of marine antifouling coatings and the research status of low surface energy antifouling coatings were briefly introduced firstly in this paper, and then the technical advantages of this type of antifouling coatings were analyzed. Meanwhile, the technical shortcomings of poor static antifouling ability and weak antifouling performance to bacterial fouling organisms were proposed. These disadvantages limit the wide application of low surface energy antifouling coatings, which need to be further modified to obtain better antifouling performance. Focusing on the antibacterial composite modification of low surface energy antifouling coatings and starting with two antibacterial composite modification methods of additives and structure, the applicable types of antibacterial agents, main preparation methods and relevant research results of comprehensive antifouling properties of modified coatings were described respectively. The research on adding antibacterial agents to low surface energy antifouling coatings started early, which is relatively well developed and occupies an important position in the field of marine antifouling. By fixing organic antibacterial agent in molecular chain, the problem of precipitation loss of antibacterial agent could be solved effectively and the service life of antifouling coatings could be prolonged. At the same time, the problems of the above two kinds of antibacterial composite antifouling coatings were discussed and the corresponding solutions were put forward. For example, nanoscale metal antibacterial agent and carrier antibacterial agent could be prepared and added to antifouling coatings. Finally, the future research directions of inorganic antibacterial agents, organic antibacterial agents and natural antibacterial agents in antifouling coatings were put forward, and the development and application of antibacterial low surface energy composite marine antifouling coatings have prospected.
antibacterial; low surface energy; composite function; marine antifouling coating
TQ637.2
A
1001-3660(2022)05-0265-09
10.16490/j.cnki.issn.1001-3660.2022.05.027
2021–11–03;
2022–04–28
2021-11-03;
2022-04-28
劉思琪(1999—),女,碩士研究生,主要研究方向為抗菌低表面能復合防污涂料。
LIU Si-qi (1999-), Female, Postgraduate, Research focus: antibacterial low surface energy composite antifouling coatings.
劉斌(1973—),男,博士,教授,主要研究方向為海洋裝備防腐與防污。
LIU Bin (1973-), Male, Doctor, Professor, Research focus: anticorrosion and antifouling of marine equipment.
劉思琪, 劉斌, 寧玉杰, 等. 抗菌低表面能復合型海洋防污涂料的研究進展[J]. 表面技術, 2022, 51(5): 265-273.
LIU Si-qi, LIU Bin, NING Yu-jie, et al. Progress in the Antibacterial and Low Surface Energy Composite Marine Antifouling Coatings[J]. Surface Technology, 2022, 51(5): 265-273.
責任編輯:蔣紅晨