董會,郭鵬飛,徐龍,康凱祥
熱處理溫度對高速激光熔覆Ni/316L涂層組織及摩擦磨損性能的影響
董會,郭鵬飛,徐龍,康凱祥
(西安石油大學 a.材料科學與工程學院 b.西安市高性能油氣田材料重點實驗室,西安 710065)
研究海水腐蝕環(huán)境中熱處理溫度對高速激光熔覆Ni/316L涂層耐磨性能的提升作用。采用高速激光熔覆設(shè)備在Q235鋼表面制備Ni/316L涂層,分別在650、700、750、800 ℃下熱處理1.5 h,通過X射線衍射儀(XRD)、掃描電子顯微鏡(SEM)和能譜儀(EDS)對Ni/316L熔覆層微觀組織結(jié)構(gòu)和相組成進行表征,通過硬度測試和模擬海洋環(huán)境摩擦磨損試驗,分析熱處理溫度對Ni/316L熔覆層硬度與耐磨性能的影響。Ni/316L熔覆層厚度約為2 mm,過渡層約為50 μm。熔覆態(tài)涂層晶粒包含枝狀晶和等軸晶。隨熱處理溫度升高,涂層等軸晶數(shù)量先增加、后減少,第二相含量先升高、后降低,熔覆層硬度先升高、后降低。在750 ℃時,熔覆層硬度達到最高,約為熔覆態(tài)涂層硬度的2.4倍。熱處理后的4種熔覆層的摩擦系數(shù)約為0.31,稍低于熔覆態(tài)涂層摩擦系數(shù)(0.33)。熔覆態(tài)涂層的磨損率比750 ℃熱處理的涂層約高5倍。5種涂層均以磨粒磨損為主。改變熱處理溫度可以改變高速激光熔覆Ni/316L涂層的組織結(jié)構(gòu)和第二相的數(shù)量,進而影響其硬度與耐磨性,但是熱處理溫度過高會導致晶粒組化等問題。因此,高速激光熔覆Ni/316L涂層的熱處理溫度應(yīng)控制在750 ℃以下。
熱處理;高速激光熔覆;Ni/316L涂層;海洋環(huán)境;摩擦磨損
隨著海上石油鉆探、海洋資源開采和深??茖W探索等深海裝備的興建和完善,工程材料同時受到風浪沖擊、沖蝕、海洋生物附著、氯離子腐蝕、磨損等多重因素的影響[1-4],對零部件的耐蝕、耐磨性能提出了更高要求[5]。表面技術(shù)能夠在保持碳鋼低成本的基礎(chǔ)上,提升碳鋼構(gòu)件的耐蝕耐磨性能,目前得到了廣泛應(yīng)用,譬如熱噴涂、堆焊、激光熔覆等[6-7]。等離子噴涂耐蝕性涂層可以提升金屬構(gòu)件的耐蝕性,但涂層內(nèi)部的穿透性孔隙為腐蝕性離子提供了快速通道,會導致碳鋼與涂層的界面處發(fā)生腐蝕[8]。類似地,特定的堆焊層能賦予構(gòu)件高的耐磨耐蝕性,但堆焊過程中的高熱能量輸入會導致構(gòu)件的力學性能降低等問題出現(xiàn)[9]。常規(guī)激光熔覆可以制備致密涂層,但過大的熱輸入會導致熔覆過程能量密度不均勻,出現(xiàn)裂紋等缺陷[10-11]。高速激光熔覆改變了能量分配,粉末顆粒比基體吸收的能量高,光束匯聚直徑小于1 mm[12-13]。隨著激光掃描速度的增加,晶粒變得更細,導致涂層顯微硬度升高,但熱影響區(qū)深度和稀釋率降低[14]。因此,高速激光熔覆涂層具有稀釋率低[15-16]、經(jīng)濟環(huán)保[17]、力學性能好[18]等優(yōu)點。
研究發(fā)現(xiàn),316L不銹鋼具有較好的耐腐蝕性,因其含有質(zhì)量分數(shù)為2%~3%的Mo,具有良好的耐硫酸腐蝕和耐Cl-腐蝕性能[19-20]。但由于其硬度低、耐磨性差,在關(guān)鍵摩擦零部件上的應(yīng)用受到了限制。為提高其耐磨性,最常見的方法是添加合金元素。例如,添加Ni元素后,鐵基涂層的耐磨性提升了約80%[21]。研究發(fā)現(xiàn),經(jīng)過600 ℃的熱處理,激光熔覆Ni60/ h-BN復合涂層的硬度上升,摩擦系數(shù)下降[22],而550 ℃的低溫熱處理能夠顯著提升超音速火焰噴涂WC-12Co和Cr3C2-25NiCr涂層的耐磨性[23]。因此,在316L涂層基礎(chǔ)上添加Ni元素,并輔助熱處理的方式,不僅可以保持涂層優(yōu)良的耐蝕性,還可能提升涂層的硬度與耐磨性,進而拓寬高速激光熔覆316L涂層的服役范圍。目前,熱處理參數(shù)對高速激光熔覆Ni/316L涂層的組織結(jié)構(gòu)、物相組成、硬度、耐磨性的影響尚不清楚。
基于此,本文采用高速激光熔覆技術(shù)在Q235表面制備Ni/316L復合涂層,并對涂層進行不同溫度的熱處理,研究熱處理前后復合涂層的顯微組織、硬度,以及在模擬海水環(huán)境中的摩擦磨損性能,為高速激光熔覆制備高耐蝕、高耐磨涂層,拓寬Ni/316L涂層服役范圍提供理論依據(jù)。
基體為Q235圓棒(50 mm×300 mm)。熔覆材料為316L不銹鋼實心粉末和純Ni粉的機械混合粉末(質(zhì)量比2︰1混合充分),粒度分別為30~70 μm和30~80 μm。與熱噴涂技術(shù)不同[24],激光熔覆的熱輸入較大,能夠保證較大尺寸的粉末完全熔化,該粉末與球形粉末熔化后的液滴形貌相同,熔覆層質(zhì)量與特征也完全相同。因此,在保證粉末流動性與送粉均勻性的基礎(chǔ)上,本文選擇的316L不銹鋼粉末為不規(guī)則形狀,如圖1所示。Ni粉形貌為較規(guī)則的橢球狀。采用機械攪拌的方式將2種粉末充分混合20 min,然后在105 ℃條件下干燥1 h。
圖1 粉末形貌
熔覆前,對Q235基體進行除銹和烘干。將烘干的Ni/316L粉末從烘干機中取出,置于送粉器中。高速激光熔覆設(shè)備由激光器、冷水機、送粉器、計控操縱臺和計算機控制器等設(shè)備組成,激光熔覆參數(shù)見表1。待熔覆好的試樣冷卻后取出,利用電火花式線切割將試樣切割成15 mm×15 mm×10 mm的金相試樣,并用丙酮清洗。熱處理溫度分別為650、700、750、800 ℃,保溫時間為1.5 h,而后空冷至室溫,熱處理參數(shù)見表2。
表1 高速激光熔覆工藝參數(shù)
Tab.1 Parameters of high-speed laser cladding process
表2 熱處理參數(shù)
Tab.2 Parameters of heat treatment
熱處理結(jié)束后,用金相鑲嵌機鑲嵌試樣。用100#—2000#的砂紙對試樣進行打磨,并拋光,再用王水腐蝕熔覆層,采用TESCAN-VEGA Ⅱ XMU型掃描電鏡及OXFORD-7718型能譜儀對熔覆層進行形貌觀察和元素分析。用熔覆層斷面圖片法來統(tǒng)計熔覆層的孔隙率,選取10個以上隨機區(qū)域(不能重復)孔隙率的平均值。熱處理結(jié)束后,用粗砂紙將熔覆層表面犁溝磨平,清洗后用XRD-6000型X射線衍射儀(XRD)對熔覆層表面進行物相表征,選用輻射波長為0.154 06 nm的Cu–K作為α靶材,測量角度為10°~90°。
采用HRD-1000TMC/LCD型硬度計測試熔覆層硬度,設(shè)置保荷時間為15 s,載荷為300 g,測試溫度為室溫。同一熱處理參數(shù)試樣測試3個點,取平均值,測試點之間的距離為0.2 mm。
試樣在模擬海水環(huán)境中的摩擦磨損示意圖見圖2。采用MMX-3G型多功能摩擦磨損試驗機進行海水環(huán)境中的磨損試驗,接觸形式為銷–盤滑動摩擦方式,磨損試樣為銷柱(4.8 mm×12.7 mm),對磨試樣為GCr15鋼,其尺寸為54 mm×38 mm×10 mm。磨損試驗參數(shù)見表3。為模擬涂層在海水中的摩擦磨損行為,根據(jù)文獻研究[25],本文的摩擦磨損試驗在3.5% NaCl溶液中進行。試驗后分別用丙酮、酒精超聲 清洗試樣,時間均為10 min。吹干后稱量試樣質(zhì)量,采用SHIMADZU-AUW220D型分析天平(精度為0.1 mg)稱量試樣磨損前后的質(zhì)量,并計算質(zhì)量損失?,通過式(1)計算磨損率[26]。
式中:W為磨損率,10–6 mm3/(N·m);Δm為磨損質(zhì)量損失,g;ρ為密度,g/mm3;F為施加載荷,N;L為磨損距離,m。
表3 磨損試驗參數(shù)
Tab.3 Parameters of the wear test
不同熱處理溫度下Ni/316L不銹鋼涂層的XRD圖譜見圖3。結(jié)果表明,原始涂層由FeNi3單一相組成,涂層中Cr、Mo等元素以固溶的形式存在。因此,高速激光熔覆態(tài)Ni/316L涂層以FeNi3相為主,熱處理過程中,涂層析出第二相。分析結(jié)果表明,4種不同熱處理溫度下,涂層生成的新相相同,均為Fe19Ni相。同時,基于各圖譜的峰強比可知,隨著熱處理溫度升高,F(xiàn)e19Ni含量先增多、后減少。在750 ℃時,第二相的含量達到最大值。熱處理過程中,溫度升高,原子擴散能力增強,可顯著提升新相的形成速率,但是過高的溫度會導致形成的第二相發(fā)生一定程度的溶解[27]。因此,在800 ℃以內(nèi),涂層第二相的成分與熱處理溫度無關(guān),但其含量取決于熱處理溫度。研究表明,加熱到一定溫度,F(xiàn)e原子在固溶點陣的一定區(qū)域內(nèi)聚集組成Fe19Ni相,使其硬度高于母相[28]。第二相硬度高于基體相時,能夠大幅提高涂層的硬度與耐磨性能,溫度持續(xù)升高會導致析出強化效果降低,涂層的峰值硬度逐漸降低,導致耐磨性減弱[29]。Fe19Ni相先增加、后減少,會使得涂層硬度先達到峰值,然后逐漸降低,耐磨性先增強、后減弱。
圖3 不同熱處理溫度時Ni/316L熔覆層表面的XRD圖譜
不同熱處理熔覆層截面形貌如圖4所示。由圖4a低倍形貌可知,涂層與基體結(jié)合緊密,涂層厚度約為2 mm,致密均勻,無明顯缺陷,但是高倍形貌顯示,涂層內(nèi)部出現(xiàn)了一定數(shù)量的氣孔。這主要是由于高速激光熔覆掃描速率高,涂層凝固速率快,氣體來不及逸出導致[30-31]。界面結(jié)合處呈現(xiàn)細微波浪狀,出現(xiàn)厚度約50 μm的過渡層,高速激光熔覆制備Ni/316L涂層能夠與基體達到冶金結(jié)合。圖4b—e分別是熱處理650、700、750、800 ℃涂層的截面形貌。在高倍鏡下可以看出,界面結(jié)合程度高,結(jié)合處附近有細小的孔隙。孔隙主要集中在靠近熔覆層一側(cè),沒有貫穿界面,說明高速激光熔覆在基體上方形成熔池,并快速凝固,與基體結(jié)合形成熔覆層。結(jié)合圖4a—e低倍形貌可知,熱處理工藝對涂層厚度無影響。通過分析測定和計算熔覆層界面結(jié)合處的孔隙率,發(fā)現(xiàn)5組試樣的孔隙率均在1.00%左右。結(jié)合圖4a可知,熱處理及其參數(shù)對高速激光熔覆過程中產(chǎn)生的孔隙沒有影響。激光增材制造過程中產(chǎn)生的孔隙無法避免,可以通過選擇合適的送粉速度、在高溫保護氣體中干燥粉末或者在粉末中添加少量稀土元素等方法,將孔隙控制在標準范圍內(nèi),從而提高熔覆質(zhì)量[32]。
不同熱處理條件下熔覆層與基體的能譜分析與元素分布如圖5所示。涂層區(qū)3種主要元素(Fe、Cr、Ni)含量穩(wěn)定,基體中主要以Fe元素為主,同時Fe元素相對強度變化曲線連續(xù),且靠近基體一側(cè)遠高于熔覆層。由線掃可知,5種熱處理溫度下的基材與熔覆層界面附近均存在元素波動;由面掃可知,F(xiàn)e、Cr、Ni元素分別在熔覆層和基體中均勻分布,無明顯偏聚現(xiàn)象。熱處理之后,熔覆層中的Cr、Ni元素并沒有向基體擴散,這就充分保證了涂層的力學性能,熱處理溫度的變化對熔覆層和基體整體元素分布基本沒有影響。
圖4 不同熱處理溫度下熔覆層斷面形貌
不同熱處理溫度后涂層中部顯微組織的SEM形貌如圖6所示。不銹鋼涂層中間呈現(xiàn)粗細不一的柱狀晶,在周圍還出現(xiàn)了等軸晶粒。經(jīng)熱處理涂層的晶界比熔覆態(tài)涂層的晶界明顯,棒狀結(jié)構(gòu)有逐漸分離的趨勢,晶界間的距離變短。隨著熱處理溫度升高,晶粒尺寸先降低、后增加。在750 ℃時,晶粒最為均勻細小。溫度達到800 ℃時,相比750 ℃,晶粒有所增大。等軸晶粒結(jié)構(gòu)能夠顯著提高材料的硬度及耐磨性,溫度升高,均勻細小的等軸晶數(shù)量增多,使得材料的硬度及耐磨性大幅提高。溫度繼續(xù)升高,使析出強化效果下降,從而導致硬度與耐磨性下降[33-34]。
不同熱處理工藝下,高速激光熔覆Ni/316L復合涂層的顯微硬度分布如圖7所示,分為熔覆層、過渡區(qū)和基體3個區(qū)。熔覆態(tài)涂層硬度明顯比基體硬度低(最高值約為149.7HV0.3),過渡區(qū)的硬度介于基體硬度和熔覆層硬度之間。經(jīng)熱處理的4種涂層,硬度均高于熔覆態(tài)涂層,且隨著熱處理溫度升高,涂層硬度先增大、后減小,750 ℃時硬度最高(最高值約為361.3HV0.3),約是熔覆態(tài)涂層硬度的2.4倍。結(jié)合XRD圖譜和熔覆層形貌特征分析,750 ℃時Fe19Ni相的峰強最高,較小等軸晶粒分布均勻,使涂層的硬度大大提升,說明750 ℃保溫1.5 h的熱處理工藝具有良好的涂層強化效果。800 ℃時析出強化效果明顯降低,F(xiàn)e19Ni相數(shù)量減少,高溫導致晶粒粗化,相同區(qū)域面積下的等軸晶數(shù)量較750 ℃變少,進而使得熔覆層顯微硬度下降。
圖5 不同熱處理溫度下熔覆層與基體的元素分布
圖6 不同熱處理溫度后涂層中部的SEM形貌
不同熱處理溫度下,Ni/316L涂層在海水環(huán)境中磨損形貌如圖8所示。發(fā)現(xiàn)750 ℃的涂層磨損表面相對輕微,F(xiàn)e19Ni相增多和晶粒細化能提高了涂層耐磨性,與前述分析結(jié)果一致。其他4種熔覆層磨損后的形貌大致相同,可以明顯看到磨損后的熔覆層表面有裂紋、分層、犁溝和剝落。磨損形成的磨粒保留在磨痕處和周邊時,會進入到涂層與摩擦副之間,形成磨粒磨損,導致涂層磨損率上升[35]。一方面,海水具有腐蝕性,不銹鋼涂層在海水中首先形成一層鈍化膜,磨損時導致鈍化膜被破壞,進而加劇腐蝕,導致裂紋拓展。當裂紋拓展到一定程度時,會在此基礎(chǔ)上剝落,并且在滑動摩擦的作用下,多個裂紋不斷拓展和貫穿,最終產(chǎn)生層層剝落的現(xiàn)象[36]。另一方面,GCr15鋼在海水中的耐蝕性很差,GCr15的硬度高于熔覆層,快速腐蝕后的產(chǎn)物在滑動摩擦時形成磨屑顆粒,進入到涂層與摩擦副之間,產(chǎn)生三體磨損,對熔覆層產(chǎn)生連續(xù)切削作用,表現(xiàn)為典型的磨粒磨損[37]。同時,在200 N的高載荷下,涂層表面產(chǎn)生塑性變形,切削后的磨屑和顆粒進入到滑動摩擦之中,導致切削作用加劇,形成一道道犁溝與塑性變形導致的外翻形貌,總體呈現(xiàn)出磨粒磨損特征。
圖7 不同熱處理溫度下高速激光熔覆Ni/316L涂層的顯微硬度分布
圖8 不同熱處理溫度下Ni/316L復合涂層表面磨損形貌
不同熱處理工藝下,熔覆層的摩擦系數(shù)如圖9所示。熔覆態(tài)涂層的摩擦系數(shù)約為0.33,4種熱處理的涂層摩擦系數(shù)均低于熔覆態(tài)涂層,約為0.31。因此,通過改變Ni/316L涂層的相含量與晶粒大小,可以降低涂層在海水環(huán)境中的摩擦系數(shù)。
圖9 不同熱處理溫度下熔覆層摩擦系數(shù)
不同熱處理溫度下Ni/316L涂層的磨損率如圖10所示。750 ℃熱處理涂層的磨損率(1.67×10–6mm3·N–1·m–1)最低,熔覆態(tài)涂層的磨損率(8.07×10–6mm3·N–1·m–1)最高,約為750 ℃熱處理涂層的5倍。結(jié)合XRD圖譜和顯微硬度分析,發(fā)現(xiàn)Fe19Ni相數(shù)量越多,熔覆層的硬度越高,其磨損率越低。4組連續(xù)溫度區(qū)間的磨損率表現(xiàn)出先降低、后升高的趨勢,這與顯微硬度結(jié)果一致。800 ℃的高溫熱處理在一定程度上影響了涂層的耐磨性。高溫時晶粒長大,F(xiàn)e19Ni相數(shù)量減少,導致涂層的耐磨性下降[38]。因此,涂層在750 ℃下經(jīng)過1.5 h熱處理后表現(xiàn)出更優(yōu)異的耐磨性能,4種不同熱處理工藝都能起到提高熔覆層耐磨性能的效果。
圖10 不同熱處理溫度下熔覆層磨損率
1)本文試驗條件下,高速激光熔覆Ni/316L復合涂層厚約2 mm,過渡層約為50 μm,熔覆層具有致密、低孔隙、無裂紋等特點。
2)熔覆層孔隙率與熱處理溫度影響無關(guān)。熔覆態(tài)涂層以FeNi3相為主,熱處理后涂層出現(xiàn)Fe19Ni相,且隨著熱處理溫度升高,F(xiàn)e19Ni相含量先增多、后減少。與新相含量變化趨勢類似,隨著溫度升高,晶粒尺寸先減小、后增大。這導致涂層硬度先增大、后減小,在750 ℃時達到峰值硬度361.3HV0.3。
3)熔覆層熱處理后在海水環(huán)境中的摩擦系數(shù)降低。在本文的模擬海水環(huán)境中,5種熔覆層的磨損機理相同,均以磨粒磨損為主。因此,硬度最高,對應(yīng)750 ℃熱處理涂層的磨損率最低,耐磨性最好。
[1] PORCHETTA S, CARLESI T, VETRANO M R, et al. Experimental Investigation of the Airflow Structure above Mechanically Generated Regular Waves for both Aligned and Opposed Wind-Wave Directions[J]. Experimental Thermal and Fluid Science, 2022, 133: 110578.
[2] LI Yang, LIAN Ying, SUN Yan-jun. Comparison of Cavitation Erosion Behaviors between the As-Cast and Friction Stir Processed Ni-Al Bronze in Distilled Water and Artificial Seawater[J]. Journal of Materials Research and Technology, 2021, 13: 906-918.
[3] LIU Meng-yue, LI Shao-nan, WANG Hao, et al. Research Progress of Environmentally Friendly Marine Antifouling Coatings[J]. Polymer Chemistry, 2021, 12(26): 3702-3720.
[4] LI Xue-wu, SHI Tian, LI Ben, et al. Subtractive Manu-facturing of Stable Hierarchical Micro-Nano Structures on AA5052 Sheet with Enhanced Water Repellence and Durable Corrosion Resistance[J]. Materials & Design, 2019, 183: 108152.
[5] TSUGE S. Recent Advances in Stainless Steel[J]. Ency-clopedia of Materials: Metals and Alloys, 2022, 2:200-207.
[6] 張津超, 石世宏, 龔燕琪, 等. 激光熔覆技術(shù)研究進展[J]. 表面技術(shù), 2020, 49(10): 1-11.
ZHANG Jin-chao, SHI Shi-hong, GONG Yan-qi, et al. Research Progress of Laser Cladding Technology[J]. Surface Technology, 2020, 49(10): 1-11.
[7] 徐海巖, 李濤, 李海波, 等. 316L激光熔覆質(zhì)量預測及路徑選擇研究[J]. 激光技術(shù), 2018, 42(1): 53-59.
XU Hai-yan, LI Tao, LI Hai-bo, et al. Study on Quality Prediction and Path Selection of 316L Laser Cladding[J]. Laser Technology, 2018, 42(1): 53-59.
[8] DEHGHANI A, ASLANI F. A Review on Defects in Steel Offshore Structures and Developed Strengthening Techniques[J]. Structures, 2019, 20: 635-657.
[9] 鄧德偉, 陳蕊, 張洪潮. 等離子堆焊技術(shù)的現(xiàn)狀及發(fā)展趨勢[J]. 機械工程學報, 2013, 49(7): 106-112.
DENG De-wei, CHEN Rui, ZHANG Hong-chao. Present Status and Development Tendency of Plasma Transferred Arc Welding[J]. Journal of Mechanical Engineering, 2013, 49(7): 106-112.
[10] PARTES K, SEPOLD G. Modulation of Power Density Distribution in Time and Space for High Speed Laser Cladding[J]. Journal of Materials Processing Technology, 2008, 195(1-3): 27-33.
[11] PARTES K, SEEFELD T, SEPOLD G, et al. High Effi-ciency Laser Cladding at Elevated Processing Speed [C]//International Congress on Applications of Lasers & Electro-Optics. Miami, Florida, USA: Laser Institute of America, 2005.
[12] 王慧琳, 郭亞雄, 藍宏偉, 等. 光斑類型對激光熔覆MoFeCrTiWAlNb高熔點高熵合金涂層組織和性能的影響[J]. 表面技術(shù), 2019, 48(6): 130-137.
WANG Hui-lin, GUO Ya-xiong, LAN Hong-wei, et al. Effect of Spot Type on Microstructure and Properties of MoFeCrTiWAlNb Refractory High-Entropy Alloy Coating Fabricated by Laser Cladding[J]. Surface Technology, 2019, 48(6): 130-137.
[13] LI Li-qun, SHEN Fa-ming, ZHOU Yuan-dong, et al. Comparative Study of Stainless Steel AISI 431 Coatings Prepared by Extreme-High-Speed and Conventional Laser Cladding[J]. Journal of Laser Applications, 2019, 31(4): 042009.
[14] CHEN J L, LI J, SONG R, et al. Effect of the Scanning Speed on Microstructural Evolution and Wear Behaviors of Laser Cladding NiCrBSi Composite Coatings[J]. Optics & Laser Technology, 2015, 72: 86-99.
[15] SCHOPPHOVEN T, GASSER A, BACKES G. EHLA: Extreme High-Speed Laser Material Deposition[J]. Laser Technik Journal, 2017, 14(4): 26-29.
[16] KELBASSA I, GASSER A, MEINERS W, et al. High Speed LAM[C]//International Photonics and Optoelec-tronics Meetings. Wuhan: OSA, 2012.
[17] SCHOPPHOVEN T, GASSER A, WISSENBACH K, et al. Investigations on Ultra-High-Speed Laser Material Deposition as Alternative for Hard Chrome Plating and Thermal Spraying[J]. Journal of Laser Applications, 2016, 28(2): 022501.
[18] YUAN Wu-yan, LI Rui-feng, CHEN Zhao-hui, et al. A Comparative Study on Microstructure and Properties of Traditional Laser Cladding and High-Speed Laser Cladding of Ni45 Alloy Coatings[J]. Surface and Coatings Techno-logy, 2021, 405: 126582.
[19] 董會, 姚建洮, 周勇, 等. 碳鋼表面等離子噴涂NiCrAl涂層的耐蝕性能研究[J]. 熱加工工藝, 2017, 46(22): 135-138.
DONG Hui, YAO Jian-tao, ZHOU Yong, et al. Research on Corrosion Resistance of Plasma-Sprayed NiCrAl Coa-ting on Carbon Steel Surface[J]. Hot Working Techno-logy, 2017, 46(22): 135-138.
[20] WANG Z B, HU H X, ZHENG Y G. Synergistic Effects of Fluoride and Chloride on General Corrosion Behavior of AISI 316 Stainless Steel and Pure Titanium in H2SO4Solutions[J]. Corrosion Science, 2018, 130: 203-217.
[21] 張海瑜, 王芙蓉, 杜雙明, 等. Ni元素對等離子噴涂鐵基涂層組織和摩擦磨損性能的影響[J]. 礦冶工程, 2021, 41(4): 150-155.
ZHANG Hai-yu, WANG Fu-rong, DU Shuang-ming, et al. Effect of Ni Element on Microstructure and Tribo-logical Properties of Plasma Sprayed Iron-Based Coa-tings[J]. Mining and Metallurgical Engineering, 2021, 41(4): 150-155.
[22] 陸小龍, 劉秀波, 余鵬程, 等. 后熱處理對304不銹鋼激光熔覆Ni60/h-BN自潤滑耐磨復合涂層組織和摩擦學性能的影響[J]. 摩擦學學報, 2016, 36(1): 48-54.
LU Xiao-long, LIU Xiu-bo, YU Peng-cheng, et al. Effects of Post Heat-Treatment on Microstructure and Tribolo-gical Properties of Ni60/H-BN Self-Lubricating Anti-Wear Composite Coating on 304 Stainless Steel by Laser Cladding[J]. Tribology, 2016, 36(1): 48-54.
[23] VASHISHTHA N, SAPATE S G, BAGDE P, et al. Effect of Heat Treatment on Friction and Abrasive Wear Be-haviour of WC-12Co and Cr3C2-25NiCr Coatings[J]. Tri-bology International, 2018, 118: 381-399.
[24] 付朗, 毛杰, 鄧子謙, 等. PS-PVD制備鋯酸釓熱障涂層及其性能研究[J]. 表面技術(shù), 2021, 50(10): 293-300.
FU Lang, MAO Jie, DENG Zi-qian, et al. Microstructure and Mechanical Properties of Gadolinium Zirconate Coa-tings Prepared by Plasma Spray-Physical Vapor Deposi-tion[J]. Surface Technology, 2021, 50(10): 293-300.
[25] 王偉, 文懷興, 陳威. 海水環(huán)境下材料摩擦學行為研究現(xiàn)狀[J]. 材料導報, 2017, 31(11): 51-58.
WANG Wei, WEN Huai-xing, CHEN Wei. Research Status on Tribological Behaviors of Materials under Sea-water Environment[J]. Materials Review, 2017, 31(11): 51-58.
[26] DU L M, LAN L W, ZHU S, et al. Effects of Temperature on the Tribological Behavior of Al0.25CoCrFeNi High- Entropy Alloy[J]. Journal of Materials Science & Techno-logy, 2019, 35(5): 917-925.
[27] 胡家齊, 劉榮佩, 梁劍雄, 等. 調(diào)整處理對AM355不銹鋼微觀組織與力學性能的影響[J]. 金屬熱處理, 2015, 40(6): 91-96.
HU Jia-qi, LIU Rong-pei, LIANG Jian-xiong, et al. Effects of Intermediate Treatment on Microstructure and Mechanical Properties of AM355 Stainless Steel[J]. Heat Treatment of Metals, 2015, 40(6): 91-96.
[28] 呂昭平, 蔣雖合, 何駿陽, 等. 先進金屬材料的第二相強化[J]. 金屬學報, 2016, 52(10): 1183-1198.
LU Zhao-ping, JIANG Sui-he, HE Jun-yang, et al. Second Phase Strengthening in Advanced Metal Materials[J]. Acta Metallurgica Sinica, 2016, 52(10): 1183-1198.
[29] 卜林森, 王敏, 郝慶國, 等. 一種析出強化型Fe-C-Mn- Ni奧氏體合金鋼的微觀組織和力學性能[J]. 機械工程材料, 2020, 44(8): 57-62.
BU Lin-sen, WANG Min, HAO Qing-guo, et al. Micro-structure and Mechanical Properties of a Precipitate- Hardened Fe-C-Mn-Ni Austenitic Alloy Steel[J]. Materials for Mechanical Engineering, 2020, 44(8): 57-62.
[30] LU Yi, SUN Gui-fang, XIAO Xian-feng, et al. In Suit Monitoring of Solidification Mode, Porosity and Clad Height during Laser Metal Deposition of AISI 316 Stainless Steel[J]. Journal of Manufacturing Processes, 2021, 68: 1705-1713.
[31] ZENG Chao, TIAN Wei, LIAO Wen he, et al. Micro-structure and Porosity Evaluation in Laser-Cladding Deposited Ni-Based Coatings[J]. Surface and Coatings Technology, 2016, 294: 122-130.
[32] YANG Zhi-xiang, WANG Ai-hua, WENG Zhi-kun, et al. Porosity Elimination and Heat Treatment of Diode Laser- Clad Homogeneous Coating on Cast Aluminum-Copper Alloy[J]. Surface and Coatings Technology, 2017, 321: 26-35.
[33] CHOI S W, LI Cheng-lin, WON J W, et al. Deformation Heterogeneity and Its Effect on Recrystallization Beha-vior in Commercially Pure Titanium: Comparative Study on Initial Microstructures[J]. Materials Science and Engineering: A, 2019, 764: 138211.
[34] YANG Jiao-xi, BAI Bing, KE Hua, et al. Effect of Metallurgical Behavior on Microstructure and Properties of FeCrMoMn Coatings Prepared by High-Speed Laser Cladding[J]. Optics & Laser Technology, 2021, 144: 107431.
[35] 趙萬新, 周正, 黃杰, 等. FeCrNiMo激光熔覆層組織與摩擦磨損行為[J]. 金屬學報, 2021, 57(10): 1291-1298.
ZHAO Wan-xin, ZHOU Zheng, HUANG Jie, et al. Microstructure and Frictional Wear Behavior of FeCrNiMo Alloy Layer Fabricated by Laser Cladding[J]. Acta Metallurgica Sinica, 2021, 57(10): 1291-1298.
[36] DIOMIDIS N, CELIS J P, PONTHIAUX P, et al. Tribocorrosion of Stainless Steel in Sulfuric Acid: Identification of Corrosion-Wear Components and Effect of Contact Area[J]. Wear, 2010, 269(1-2): 93-103.
[37] ZHANG Q Y, WANG S Q, ZHOU Y, et al. Artificial Oxide-Containing Tribo-Layers and Their Effect on Wear Performance of Ti-6Al-4V Alloy[J]. Tribology Interna-tional, 2017, 105: 334-344.
[38] GONG Fu-bao, SHEN Jun, GAO Run-hua, et al. Influ-ence of Heat Treatment on Microstructure and Mech-anical Properties of FeCrNi Coating Produced by Laser Cladding[J]. Transactions of Nonferrous Metals Society of China, 2016, 26(8): 2117-2125.
Effect of Heat Treatment Temperature on Microstructure and Friction and Wear Properties of High-speed Laser Cladded Ni/316L Coating
,,,
(Xi'an Key Laboratory of High Performance Oil and Gas Field Materials, School of Material Science and Engineering, Xi'an Shiyou University, Xi'an 710065, China)
The effect of heat treatment temperature on the wear resistance of high-speed laser cladded Ni/316L coatings in seawater corrosive environment was illustrated in this case. Ni/316L coatings were prepared on the surface of Q235 steel by high-speed laser cladding equipment, and heat-treated at 650, 700, 750 ℃, and 800 ℃ for 1.5 h, respectively. X-ray diffraction (XRD), scanning electron microscope (SEM) The microstructure and phase composition of the Ni/316L cladding layer were characterized by energy dispersive spectrometer (EDS). In addition, the effect of heat treatment temperature on the hardness and the wear resistance of the Ni/316L cladding layer was analyzed via hardness test and wear test in a simulated marine environment. The thickness of as-cladded layer is about 2 mm, and the transition layer is about 50 μm. The cladding layer has the characteristics of compactness, low porosity and crack free. The cladding coating grains contain dendrites and equiaxed grains. With the increase of heat treatment temperature, the number of equiaxed crystal in the coating first increased and then decreased, similar to that of the new phase content, the second phase content first increased and then decreased. Correspondingly, as the heat treatment temperature increased, the grain size of the cladding layer decreased first and then increased, resulting in the hardness of the cladding layer increased first and then decreased. The hardness of the cladding layer reached the highest value at 750 ℃, which was about 2.4 times that of the as-cladded coating. It was found that the friction coefficient of the four cladding layers after heat treatment is about 0.31, which is slightly lower than that of the cladding coating (0.33). The wear rate of the as-cladded coating was about 5 times higher than that of the coating heat-treated at 750 ℃. Under the high load of 200 N, the coating surface was plastically deformed, and the wear debris and particles after cutting enter into the sliding friction, resulting in cutting effect intensified, forming a valgus morphology caused by furrows and plastic deformation. The seawater is corrosive, and the stainless steel coating first forms a passivation film in seawater, which will be destroyed and will intensify corrosion and lead to crack expansion. On the other hand, the resistance of GCr15 steel in seawater the corrosion resistance is poor. The products after rapid corrosion formed abrasive particles during sliding friction, which enter the coating and the friction pair to produce three-body wear. As a result, the particles has a continuous cutting effect on the cladding layer. 5 kinds of coatings wear mechanisms are mainly the abrasive wear. The four different heat treatment processes all could improve the wear resistance of the cladding layer, while C shows a better wear resistance. The?the coating heat-treated at 750 ℃microstructure and the number of second phases of the high-speed laser cladding Ni/316L coating changes with the heat treatment temperature. However, the high temperature leads to some problems, such as grain growth. Therefore, the heat treatment temperature of the high-speed laser cladding Ni/316L coating should be controlled below 750 ℃.
heat treatment; high-speed laser cladding;Ni/316L coating; marine environment; friction and wear
TG174.4
A
1001-3660(2022)05-0111-10
10.16490/j.cnki.issn.1001-3660.2022.05.012
2022–02–18;
2022–04–19
2022-02-18;
2022-04-19
陜西省自然科學基金(2020JM540);西安交通大學金屬材料強度國家重點實驗室項目(20202210);西安石油大學《材料科學與工程》省級優(yōu)勢學科項目(YS37020203);西安石油大學研究生創(chuàng)新與實踐能力培養(yǎng)計劃資助項目(YCS20212124)
The Natural Science Foundation of Shaanxi Province (2020JM540); State Key Laboratory of Metal Material Strength, Xi'an Jiaotong University (20202210); Provincial Advantage Discipline Project of Materials Science and Engineering, Xi'an Shiyou University (YS37020203); Foundation of Postgraduate Innovation and Practice Ability of Xi'an Shiyou University Graduate Innovation and Practice Ability Training Project (YCS20212124)
董會(1981—),男,博士,副教授,主要研究方向為材料表面涂層(隔熱、耐蝕、耐磨涂層)技術(shù)。
DONG Hui (1981-), Male, Doctor, Associate professor, Research focus: coating (thermal barrier, anti-corrosion and anti-wear) technology on material.
董會, 郭鵬飛, 徐龍, 等. 熱處理溫度對高速激光熔覆Ni/316L涂層組織及摩擦磨損性能的影響[J]. 表面技術(shù), 2022, 51(5): 111-120.
DONG Hui, GUO Peng-fei, XU Long, et al. Effect of Heat Treatment Temperature on Microstructure and Friction and Wear Properties of High-speed Laser Cladded Ni/316L Coating[J]. Surface Technology, 2022, 51(5): 111-120.
責任編輯:劉世忠